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Abstract. We derive expressions for the effective nonlinear susceptibility tensors for both the second har-
monic generation (SHG) and induced third harmonic generation (THG) of nonlinear composite materials,
in which nondilute coated particles with radial dielectric anisotropy are randomly embedded in the linear
host. Two types of coated particles are considered. The first is that the core possesses a second order
nonlinear susceptibility and the shell is linear and radially anisotropic, while the second is that the core is
linear with radial anisotropy and the shell has a second order nonlinear susceptibility. We observe greatly
enhanced SHG and THG susceptibilities at several surface plasmon resonant frequencies. For the second
model, due to the coating material being metallic, there exists two fundamental resonant frequencies ωc1

and ωc2, whose difference ωc2−ωc1 is strongly dependent on the interfacial parameter and the radial dielec-
tric anisotropy. Furthermore, in both systems, the adjustment of the dielectric anisotropy results in larger
enhancement of both SHG and induced THG susceptibilities at surface plasmon resonant frequencies than
the corresponding isotropic systems. Therefore, both the core-shell structure and the dielectric anisotropy
play important roles in determining the nonlinear enhancement and the surface resonant frequencies.

PACS. 42.65.An Optical susceptibility, hyperpolarizability – 42.79.Ry Gradient-index (GRIN) devices –
72.20.Ht High-field and nonlinear effects – 77.84.Lf Composite materials

1 Introduction

Theoretical and experimental investigations on functional
materials with large nonlinear optical properties and fast
response time are of great interest in recent years for
their potential applications in ultra-fast switching, opti-
cal signal processors, and bistable memory devices [1–3].
Composite materials may possess larger nonlinear opti-
cal properties such as third-order nonlinear susceptibil-
ity [4], second harmonic generation (SHG) susceptibility
and third harmonic generation (THG) susceptibility [5]
than those of their components, and even produce novel
optical bistable and multi-stable properties [6,7] that none
of the components have. These interesting physical prop-
erties of composite media are believed to result from the
percolation mechanism [8] and the inhomogeneity of the
local fields within the composites [9].

As we know, the enhancement of the local fields in
composites can be realized by the choice of the microstruc-
ture and by the suitable adjustment of the physical pa-
rameters of the components. As for the microstructure,
with the advancement in nanotechnology, it is possible to
fabricate nanoparticles with specific microgeometry such
as core-shell structures [10,11]. In this connection, large
enhancement of optical nonlinear response was found in
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metal/semiconductor core-shell structures [12]. In addi-
tion, SHG susceptibility for a dilute suspension of core-
shell nanoparticles was investigated [13], and optimal
threshold intensity for optical bistability can be found in
coated particles by tuning the core/shell thickness [14].
In a new report [15], the enhancement of effective third-
order nonlinear susceptibility through the core-shell struc-
tures was observed experimentally. On the other hand,
anisotropy in the components can also affect optical non-
linearity of composite media. For instance, composite sys-
tems containing carbon nanotube particles can achieve
large optical third order nonlinearity due to the geomet-
ric anisotropy of nanotubes [16]. Moreover, anisotropy can
be an intrinsic material property or can be induced by the
application of fields [17].

In this paper, in order to obtain composite materials
for a better nonlinear optical property, we hope to com-
bine the special optical properties of core-shell structure
and intrinsic material anisotropy in a composite system,
in which the coated inclusions with second order nonlinear
susceptibility are randomly embedded in a linear dielectric
host. For coated inclusions, we consider two simple cases,
one is the core being second order nonlinear and the shell
being dielectric anisotropic (model A), while the second
is the core being anisotropic and the shell being nonlinear
(model B). To one’s interest, the dielectric tensor will be
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assumed to be radially anisotropic, i.e., it is diagonal in
spherical coordinates with a value εr in the radial direc-
tion and εt in the tangential directions. Such an anisotropy
can be easily established from a problem of graphitic mul-
tishells [18], spherically stratified medium [19], and indeed
found in cell membranes containing mobile charges [20].
In addition to the consideration of both the coated mi-
crostructures and the physical anisotropy, we further con-
sider the coated inclusions to be in nondilute case instead
of the dilute limit [13]. As a result, the electrostatic inter-
actions among nonlinear coated inclusions must be taken
into account. We would like to investigate the effective
nonlinear susceptibility for second harmonic generation
(SHG) and induced third harmonic generation (THG) of
the composite system. For this purpose, we adopted gen-
eral expressions for SHG and THG of composite materi-
als, derived by Hui et al. [21,22]. Actually, these analyti-
cal expressions were recently applied to random composite
materials of graded spherical particles [23] and composi-
tionally graded films [24].

Our paper is organized as follows. In Section 2, we
describe the model and outline briefly the effective SHG
and induced THG susceptibilities of the composites. In
Section 3, the analytical expressions for the effective SHG
and induced THG susceptibilities for model A are derived
and the numerical results are given. In Section 4, we study
the case for model B. This paper ends with a discussion
and conclusion in Section 5.

2 effective nonlinear susceptibilities for SHG
and THG

We consider a macroscopically inhomogeneous material
containing a nondilute suspension of nonlinear coated
particles embedded in a linear host with the dielectric con-
stant εm. The core (or the shell) is assumed to be second-
order nonlinear due to the fact that the inversion symme-
try is broken at the surface [25,26]. The local constitutive
relation between the displacement field D and the electric
field E of the core and the shell in the static case is

Dα
i =

z∑

j=x

εα
ijEj +

z∑

j,k=x

dα
ijkEjEk

(i = x, y, zand α = c, s) (1)

where Di and Ei are the ith component of D and E, and
dα

ijk is the components of second order nonlinear suscep-
tibility tensor of the core or the shell.

When we apply a monochromatic external field
E0(t) = E0,z(ω)e−iωt + c.c along z-axis to the composite
system, the local potentials and fields will be generated at
all harmonic frequencies due to the quadratic nonlinear-
ity of the components inside the composite. Thus at finite
frequencies, the constitutive relation in the particles will
be [22]

Dα
i =

∞∑

n=−∞
Dα

i (nω)e−inωt (2)

with

Dα
i (nω) = (εα)(nω)Ei(nω)

+
z∑

j,k=x

∞∑

m=−∞
(dα

ijk)[(n−m)ω,mω]Ej [(n − m)ω]Ek(mω),

where (εα)(nω) denotes the frequency dependent linear di-
electric constant in component α, while (dα

ijk)[(n−m)ω,mω]

represent the second order nonlinear susceptibilities.
We aim at studying the effective second and third har-

monic susceptibilities of the composite system. The effec-
tive nonlinear SHG susceptibility d

(ω,ω)
e,ijk can be written in

the form [21]

d
(ω,ω)
e,ijk =

s∑

α=c

fα

〈
K2ω

il (dα
lmn)(ω,ω)Kω

jmKω
kl

〉

α
(3)

where 〈...〉 stands for the spatial average of ..., fα is the
volume fraction of component α, and Kω

il ≡ El(ω)/E0,i(ω)
is the local field factor giving the lth Cartesian component
of linear electric field inside the particles when the external
field E0 is applied along the ith direction at frequency ω.
Here we would like to mention that repeated indices such
as l, m, n in equation (3) should be summed over.

For the effective THG susceptibility χ
(ω,ω,ω)
e,ijkl , one

has [22,23]

χ
(ω,ω,ω)
e,ijkl =

s∑

α=c

fα

〈
2K3ω

im(dα
mnp)

(ω,2ω)

·K
2ω
rn − Irn

δ(εα)(2ω)
· (dα

rst)
(ω,ω)Kω

jsK
ω
ktK

ω
lp

〉

α

, (4)

from equation (4), we observe that although the compo-
nent possesses the second-order nonlinear response, the
whole system shall induce the effective third-order nonlin-
ear susceptibility.

In what follows, we shall study the effective SHG sus-
ceptibility and the induced THG susceptibility for two
kind of models.

3 SHG and THG susceptibilities for model A

We consider that a nondilute suspension of nonlinear
coated particles randomly embedded in a linear host. The
coated spheres consist of nonlinear core of radius r0 and
the linear shell of radius R > r0 with radial dielectric
anisotropy (Model A). The nonlinear core has the linear
dielectric constant εc and second-order susceptibility ten-
sor

↔
dc. And the shell is linear and radially anisotropic with

↔
ε s = εsrerer + εst(eθeθ + eϕeϕ).

When a monochromatic external field is applied, say
along z-axis, we want to solve the potential function in
the core, the shell and the host. Since the coated in-
clusions under consideration are in nondilute, the elec-
trostatic dipolar interaction among the coated inclusions
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should be taken into account. In this regard, the local elec-
tric fields in the system are affected not by E0, but rather
by the Lorentz field EL. The solution is as follows,
⎧
⎪⎨

⎪⎩

φc = −A1ELr cos θ r < r0

φs = −EL

(
B1r

ν1 − C1
rν1+1

)
cos θ r0 < r < R

φm = −EL

(
r − D1R3

r2

)
cos θ r > R

(5)

where

A1 =
3εmεsr(2ν1 + 1)λ(ν1−1)/3

Q1

and B1 =
3εm[εsr(1 + ν1) + εc]R1−ν1

Q1

C1 =
−3εmλ(2ν1+1)/3(εsrν1 − εc)Rν1+2

Q1

and D1 =
P1

Q1
,

with interfacial parameter λ = (r0/R)3 and

ν1 =
1
2

(√
1 + 8εst/εsr − 1

)

P1 = (εsrν1 − εm)[εc + (1 + ν1)εsr]

+ λ(2ν1+1)/3[εm + (1 + ν1)εsr](εc − εsrν1)
Q1 = [εsr(1 + ν1) + εc](εsrν1 + 2εm)

+ λ(2ν1+1)/3[2εm − εsr(1 + ν1)](εsrν1 − εc).

The averaged field over the entire system, inside and out-
side the inclusions, must be equal to E0, that is

f〈Ec〉 +
(

f

λ
− f

)
〈Es〉 +

(
1 − f

λ

)
EL = E0, (6)

where f is the volume fraction of the core.
To establish the relation between EL and E0, accord-

ing to equation (6), we need to calculate the average fields
in the nonlinear core and anisotropic shell. Especially, the
local electric field in the shell is derived to be,

Es =
[
ELB1(ν1 − 1)rν1−1 + ELC1(ν1 + 2)

1
rν1+2

]

× sin θ cos θ(cosϕex + sinϕey)

+
{[

ELB1ν1r
ν1−1 + EL(ν1 + 1)

C1

rν1+2

]
cos2 θ

+
[
ELB1r

ν1−1 − EL
C1

rν1+2

]
sin2 θ

}
ez,

and hence

〈Es〉 =
[
ELB1

(
Rν1+2 − rν1+2

0

R3 − r3
0

)

−ELC1

(
R1−ν1 − r1−ν1

0

R3 − r3
0

)]
ez.

Then we can obtain the relation between E0 and EL,

EL =
Q1

Q1 − f
λP1

E0. (7)

For convenience, we suppose dlll �= 0 for l = x, y, z only.
In this case, the local field factor Kω

il is nonzero only for
i = l. When we apply the general expressions for SHG and
THG [see Eqs. (3) and (4)] to the present model, we only
get the surviving effective SHG susceptibility de

zzz and the
THG susceptibility χe

zzzz , which are written as

de
zzz

fd
(ω,ω)
zzz

=

(
A1Q1

Q1 − f
λP1

)

2ω

(
A1Q1

Q1 − f
λP1

)2

ω

, (8)

and

χe
zzzz

fd
(ω,2ω)
zzz d

(ω,ω)
zzz

=
2

ε2ω
c − ε2ω

e1

(
A1Q1

Q1 − f
λP1

)

3ω

×
[(

A1Q1

Q1 − f
λP1

)

2ω

− 1

](
A1Q1

Q1 − f
λP1

)3

ω

, (9)

where

ε2ω
e1 =

[
εm + 3

f

λ
εm

P1

Q1 − f
λP1

]

2ω

. (10)

As numerical examples, we consider the core to be a Drude
metal, which has a dielectric constant of the form

εc(ω) = 1 − ω2
p

ω2 + iω/τ
,

with ωp being the plasma frequency and τ the relax-
ation time . We take ωp = 2.28 × 1016 s−1 and τ =
6.9 × 10−15 s [13], The anisotropic shell is assumed to
have a frequency-independent radial dielectric constant
εsr = 2.52, while the host medium also has a frequency-
independent dielectric constant εm = 1.76. These values
are typical of nonconducting materials.

Figure 1 shows the effective nonlinear susceptibility
for SHG de

zzz/fd
(ω,ω)
zzz as a function of frequency ω/ωp

for various interfacial parameter λ and for different ra-
tios of tangential dielectric constant εst to radial dielec-
tric constant εsr. Since SHG susceptibility intrinsically
involves two different frequencies, there are two enhance-
ment peaks in de

zzz , one located at the surface plasmon
frequency ωc while the other located at the half of ωc as
expected. Moreover, large enhancement of SHG suscepti-
bility is found to be the order of 104 at ωc. To one’s inter-
est, when the ratio of tangential dielectric constant to ra-
dial dielectric constant decreases, the enhancement peaks
are enlarged with the locations shifted to high frequency
region. This indicates that the radial dielectric anisotropy
is helpful to realize the enhancement of SHG susceptibility
and change the surface plasmon frequencies.

Figure 2 shows the induced nonlinear susceptibil-
ity of third harmonic generations (THG susceptibility)
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Fig. 1. For model A, the enhancement of effective SHG suscep-

tibility |de
zzz/(fd

(ω,ω)
zzz )| against the normalized incident angu-

lar frequency ω/ωp for the volume fraction of coated particles
f/λ = 0.1.

χe
zzzz/fd

(ω,2ω)
zzz d

(ω,ω)
zzz . For THG susceptibility, there exist

three enhancement peaks, with the predominant one lo-
cated at the resonant frequency ωc. The reason is that
the present nonlinear optical process involves the effect of
first forming a 2ω component and then combining the 2ω
component with a ω component to give a 3ω component.
On the other hand, the enhancement of THG susceptibil-
ity is found to be the order of 105. As far as the effect of
dielectric anisotropy is concerned, the behavior for THG
susceptibility is quite similar as that for SHG suscepti-
bility in Figure 1. That is, the large effective THG sus-
ceptibility can be indeed achieved at the high frequency
region when the ratio of tangential dielectric constant εst

to radial dielectric constant εsr is small. Therefore, the di-
electric anisotropy plays an important role in determining
the magnitude and the resonant frequencies of the SHG
and THG susceptibilities.

4 SHG and THG susceptibilities for Model B

Model B is similar as Model A, except that the core of
the coated spheres is linear and radially anisotropic with
↔
ε c = εcrerer + εct(eθeθ + eϕeϕ), while the shell is non-
linear with linear dielectric constant εs, and second order
susceptibility tensor

↔
ds. To have a unique defined dielec-

tric constant for the core, let the origin at the core be
surrounded by a small sphere of isotropic dielectric con-
stant εcr [19].

Fig. 2. Same as Figure 1, but for the induced THG suscepti-

bility |χe
zzzz/(fd

(ω,2ω)
zzz d

(ω,ω)
zzz )|.

For such a model, we express the solutions of the po-
tential function in the core, the shell and the host as,
⎧
⎪⎪⎨

⎪⎪⎩

φc = −A2ELrν2 cos θ r < r0

φs = −EL

(
B2r − C2r3

0
r2

)
cos θ r0 < r < R

φm = −EL

(
r − D2R3

r2

)
cos θ r > R

(11)

where

A2 =
9εmεsr

1−ν2
0

Q2
and B2 =

3εm (2εs + εcrν2)
Q2

C2 =
3εm (εcrν2 − εs)

Q2
and D2 =

P2

Q2
,

with

ν2 =
1
2

(√
1 + 8εct/εcr − 1

)
,

P2 = (2εs + εcrν2) (εs − εm) + λ(εcrν2 − εs)(2εs + εm),
Q2 = (εs + 2εm)(2εs + εcrν2) + 2λ(εs − εm)(εcrν2 − εs).

Then, the local fields in the core and the shell are found
to be

Ec = A2ELrν2−1 [(ν2 − 1) sin θ cos θ(cos ϕex

+ sinϕey) + (ν2 cos2 θ + sin2 θ)ez

]
,

Es = EL

{
3C2r

3
0

r3
cos θ sin θ(cosϕex + sinϕey)

+
[
B2 +

C2r
3
0

r3
(2 cos2 θ − sin2 θ)

]
ez

}
, (12)
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Fig. 3. Same as Figure 1, but for the enhancement of effective

SHG susceptibility |de ≡ de
zzz/(fsd

(ω,ω)
zzz )| with fs ≡ (f/λ − f)

for model B.

and correspondingly, the averages fields in the core and
the shell are

〈Ec〉 = A2ELrν2−1
0 ez and 〈Es〉 = ELB2ez. (13)

As a result, we obtain the relation between E0 and EL for
Model B,

EL =
Q2

Q2 − f
λP2

E0. (14)

Again, we suppose the nonlinear susceptibility for second
harmonic generation of the shell dlll �= 0 for l = x, y, z
only. As consequence, the effective SHG susceptibility de

zzz

and the induced THG susceptibility χe
zzzz have

de
zzz

(f/λ − f)dzzz
= (Bω

2 )2B2ω
2 +

4λ

5
[
2Bω

2 Cω
2 C2ω

2

+(Cω
2 )2B2ω

2

]
+

8
35

λ(1 + λ)(Cω
2 )2C2ω

2 (15)

and

χ
(ω,ω,ω)
e,zzzz

(f/λ − f)d(ω,2ω)
zzz d

(ω,ω)
zzz

=
2

385(ε2ω
s − ε2ω

e2 )
{
77(Bω

2 )3

× [5 (−1 + B2ω
2

)
B3ω

2 + 4λC2ω
2 C3ω

2

]
+ 132λ(Bω

2 )2Cω
2

× [7B3ω
2 C2ω

2 − 7C3ω
2 + 7B2ω

2 C3ω
2 + 2(1 + λ)C2ω

2 C3ω
2

]

+ 132λBω
2 (Cω

2 )2
[
2C3ω

2 [(1 + λ)(B2ω
2 − 1)

+2(1 + λ + λ2)C2ω
2 ] + B3ω

2 (−7 + 7B2ω
2 + 2(1 + λ)C2ω

2 )
]

+ 8λ(Cω
2 )3

[
2C3ω

2 [11(1 + λ + λ2)(B2ω
2 − 1)

+10(1 + λ + λ2 + λ3)C2ω
2 ] +11B3ω

2 [(1 + λ)(B2ω
2 − 1)

+2(1 + λ + λ2)C2ω
2 ]
]}

, (16)

Fig. 4. Same as Figure 3, but for induced THG susceptibility

|χe
zzzz/(fsd

(ω,2ω)
zzz d

(ω,ω)
zzz ]|.

where ε2ω
e2 has the same form as equation (10), except

that P1 (or Q1) is replaced by P2 (or Q2).
In model B, we choose the same material parameters

as those in Model A. For instance, the nonlinear shell is
assumed to be a Drude metal, while the anisotropic core
possesses frequency-independent radial dielectric constant
εcr = 2.52.

In Figures 3 and 4, the effective SHG susceptibility
and the induced THG susceptibility per unit volume of
nonlinear coated material are plotted as a function of fre-
quency ω/ωp for various ratios of tangential dielectric con-
stant εct to radial dielectric constant εcr. It is found that
the enhancement factor of the order of 104 for SHG sus-
ceptibility (or 106 for THG susceptibility) can be achieved
at several surface plasmon resonant frequencies. Actually,
by tuning the core-shell geometrical ratio and/or the di-
electric anisotropy of the core, the spatial local field can
be enhanced which leads to large enhancement of nonlin-
ear optical responses of the composite. To one’s interest, in
comparison with Figures 1 and 2, there exist four peaks for
SHG susceptibility as shown in Figure 3 and six peaks for
induced THG susceptibility (see Fig. 4) in Model B, which
are as twice as those for model A. The reason is that the
coated material is metallic and the local field in the shell is
inhomogeneous for model B. As a result, two fundamental
resonant frequencies ωc1 and ωc2 appear, whose difference
ωc2 − ωc1 is found to be strongly dependent on the in-
terfacial parameter and the radially dielectric anisotropy.
When the tangential dielectric constant εct is decreased,
the enhancement peak exhibits blue-shift, and the differ-
ence ωc2 − ωc1 becomes large.

In the end, we show the effective SHG susceptibility
as a function of frequency ω/ωp for various λ in Figure 5.
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Fig. 5. |de
zzz/(fd

(ω,ω)
zzz )| as a function of ω/ωp for various inter-

facial parameter λ and different ratios of tangential dielectric
constant to radial dielectric constant. The figures on the left
column are for Model A while the right ones are for Model B.

For model A, we find that when the ratio of tangential
dielectric constant to radial dielectric constant is small,
appreciable enhancement peaks in higher frequency region
are found, and the increase of the interfacial parameter λ
leads to blue-shift of the resonant frequencies. However, in
the case of the large ratio of tangential dielectric constant
to radial dielectric constant, increasing λ results in the
red-shift of the resonant frequencies. On the other hand,
the figures for Model B are more complicated than the
ones for Model A. In detail, there exist two fundamen-
tal resonant frequencies due to the coating material being
metallic, and four resonant peaks dominate the spectra of
SHG susceptibility. Note that the enhancement peak ex-
hibits a red-shift in low frequency region and a blue-shift
in high frequency region with the increase of the interfacial
parameter λ.

5 Discussion and conclusion

In this paper, we have investigated the effective nonlin-
ear susceptibilities for second harmonic generation (SHG)

and induced third harmonic generation (THG) of nonlin-
ear composite materials, in which nondilute coated parti-
cles with radial dielectric anisotropy are embedded in the
linear host. Two typical coated particles are studied. The
first is that the core being second order nonlinear and the
shell being radially dielectric anisotropic, while the second
is the core being anisotropic and the shell being nonlinear.
In both cases, we observe large enhancement of SHG and
induced THG susceptibilities at several surface plasmon
resonant frequencies.

It is found that the dielectric anisotropy and the core-
shell structure play important roles in determining the
nonlinearity enhancement and the surface resonant fre-
quencies. And the adjustment of the dielectric anisotropy
may result in large enhancement of both SHG and in-
duced THG susceptibilities at surface plasmon resonant
frequencies. For model B, we find that there exist two
fundamental resonant frequencies ωc1 and ωc2 due to the
coated material being metallic. In addition, the interfacial
parameter can affect the nonlinear responses of the two
systems. Therefore, by choosing proper interfacial param-
eter and radially dielectric anisotropy, we can obtain the
large enhancement of SHG and induced THG susceptibil-
ities at surface plasmon resonant frequencies.

In our paper, we have considered that the coated par-
ticles to be in the nondilute limit (f = 0.1). In this regard,
we take into account the electrostatic dipolar interac-
tion among the coated particles and introduced a Lorentz
field EL to derive our formulae for effective SHG and THG
susceptibilities. In this connection, the enhancement of ef-
fective nonlinear susceptibilities in nondilute limit is found
to be than the one in the dilute limit [13].

As a matter of fact, dielectric anisotropy exists in many
nanostructures such as in biological cells [20] and in real
phospholipid vesicles [27]. In material science, people dis-
covered giant multiple-shell structures which called onion-
like fullerences [28], whose dielectric properties possess the
radial anisotropy [29]. The multishell may be filled with
gold clusters and be surrounded by a third material [30],
just as our Model A. In general, the dielectric response
for nematic liquid crystal droplet is more complex, for its
structure depends on many factors such as the interfa-
cial interactions between the liquid crystal and the sur-
rounding medium, temperature, and the external electric
or magnetic field. The radial dielectric response may be re-
alized for strong molecular anchoring perpendicular to the
liquid-crystal-polymer interface [31]. More recently, opti-
cal properties of a subwavelength metallic ellipsoid cov-
ered by an optically anisotropic molecular layer are stud-
ied [32], in which the model is similar as our model A too.
In addition, Model B may be realized by adding metal-
lic shells to the functionally graded particles which often
have the local dielectric anisotropy. We hope our theo-
retical predictions may help to improve the experimental
investigation.

This work was supported by the National Natural Sci-
ence Foundation of China for financial support under Grant
No. 10674098.
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