
Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research Paper

Neural networks in closed-loop systems: Verification using interval
arithmetic and formal prover
Federico Rossi ∗, Cinzia Bernardeschi, Marco Cococcioni
Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, 56127, PI, Italy

A R T I C L E I N F O

Keywords:
Cyber–physical systems
Neural networks
Closed-loop control systems
Formal verification
Interval arithmetic

A B S T R A C T

Machine Learning approaches have been successfully used for the creation of high-performance control
components of cyber–physical systems, where the control dynamics result from the combination of many
subsystems. However, these approaches may lack the trustworthiness required to guarantee their reliable
application in a safety-critical context. In this paper, we propose a combination of interval arithmetic and
theorem-proving verification techniques to analyze safety properties in closed-loop systems that embed neural
network components. We show the application of the proposed approach to a model-predictive controller for
autonomous driving comparing the neural network verification performance with other existing tools. The
results show that open-loop neural network verification through interval arithmetic can outperform existing
approaches proving properties with a smaller time overhead. Furthermore, we demonstrate the capability
of combining the two approaches to construct a formal model of the network in higher-order logic of the
controlled system in a closed-loop.
1. Introduction

Cyber–physical systems (CPS) (Alur, 2015) are a combination of
computational algorithms and physical components that interact as
closed-loop systems. In the current landscape of CPS neural network
integration is becoming more and more common (Rathore et al., 2021),
changing the capabilities of these systems in various fields including
smart grids, smart manufacturing (Huang et al., 2021), autonomous
vehicles (AVs) (Cococcioni et al., 2021; Rossi et al., 2024), industrial
automation (Bernardeschi et al., 2023), medical, and more.

A widespread approach is to apply neural computing to the con-
troller part of CPSs, increasing modeling and adaptation capabili-
ties (Antsaklis, 1990; Emami et al., 2022; Jin et al., 2018). Neural
networks are also applied for the generation of surrogated components
of CPSs. For example, in Song et al. (2024) authors proposed a neural-
network based, fault-tolerant control design for a quadrotor unmanned
aerial vehicle. Furthermore, in Song et al. (2023) authors proposed
a quantization approach to neural network control for non-linear
systems. Another potential application of machine learning to time-
series analysis is predictive maintenance for machinery (Putnik et al.,
2021). Furthermore, by examining real-time data from the physical
system’s sensors, recurrent neural networks (RNN) and long short-
term memory (LSTM) techniques can be utilized to carry out anomaly

∗ Corresponding author.
E-mail address: federico.rossi@ing.unipi.it (F. Rossi).

1 https://pvs.csl.sri.com/.
2 https://pytorch.org/.

detection (Jeffrey et al., 2023). The authors of Vereno et al. (2023)
used reinforcement learning in conjunction with the co-simulation of a
smart grid system; they used separate architectures for the power grid
integration and the AI system. The use of neural network components in
safety-critical CPS, however, raises concerns about their dependability
and safety.

Formal verification techniques are gaining popularity as a means
of ensuring neural network trustworthiness in CPS (Urban and Miné,
2021; Alur, 2011). Formal verification offers a logical and quantitative
way to assess the accuracy and adherence to requirements of complex
systems, providing a level of assurance that is essential for applications
where errors might have catastrophic consequences.

Interval arithmetic (Hickey et al., 2001; Althoff, 2015; Kochdumper
et al., 2023) provides a systematic approach for handling uncertain-
ties in computations by representing quantities as intervals bounded
by their lower and upper bounds. In the context of neural network
verification, interval arithmetic offers an efficient way of bounding the
output of a neural network given a range of possible inputs. In interval
arithmetic-based verification, the goal is to compute guaranteed output
intervals for a neural network given intervals representing the possible
range of inputs.

In this work, we propose an approach which takes as input the
trained model, a fully connected feed-forward neural network resulting
https://doi.org/10.1016/j.engappai.2024.109238
Received 16 April 2024; Received in revised form 14 July 2024; Accepted 29 Augu
vailable online 3 September 2024
952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
st 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:federico.rossi@ing.unipi.it
https://pvs.csl.sri.com/
https://pytorch.org/
https://doi.org/10.1016/j.engappai.2024.109238
https://doi.org/10.1016/j.engappai.2024.109238
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.109238&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Rossi et al.

T
p
w
i
d
n
t
t
a
p
b

c
n
r
-
n
o
b
n
o
s
e
c
b
p

2

o
f
f
a

S
(
b
T
c
n
u
a
n
a
e
p
S
n
t

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Table 1
Summary of related works, grouped by approach to verification.

Work Activation Open/Closed Approach
function loop

Katz et al. (2017), Pulina and Tacchella (2010), Ehlers (2017), Katz et al. (2019) and Narodytska
et al. (2018)

ReLU Open SMT

Ivanov et al. (2019, 2021) Sigmoid Open Hybrid automata
Huang et al. (2019), Fan et al. (2020) and Xiang et al. (2018) Any Open Monte Carlo simulation
Aleksandrov and Völlinger (2023) and Rossi et al. (2024) Any Open Formal prover
Lopez et al. (2023b), Althoff (2015), Kochdumper et al. (2023), Bak and Tran (2022), Lopez et al.
(2023a,c) and Bak (2021)

Any Open/Closed Reachability

+Interval sets
Wang et al. (2021), Xu et al. (2020), Kotha et al. (2024), Zhang et al. (2022) and Shi et al. (2024) Any Open Bound propagation
from well-known training algorithms, and automatically produces its
formal representation using interval arithmetic. This allows the verifi-
cation of user-defined properties on the closed-loop system controlled
by the neural network with a theorem prover such as Prototype Ver-
ification System (PVS) (Owre et al., 1996; Masci and Muñoz, 2019).1

he formal verification of the closed-loop system is a semi-automatic
rocess that combines automatic procedures of the theorem prover
ith user knowledge. We show how our approach can be seamlessly

ntegrated inside the PyTorch (Paszke et al., 2019; Ansel et al., 2024)2

eep learning framework and how the timing overhead in verifying the
eural network properties compared to other state-of-the-art verifica-
ion tools is sensibly smaller in many cases. Furthermore, we show how
he proved bounds of the neural network output can be used to provide

high-level abstraction of the neural network model inside the PVS
rover to verify closed-loop properties of dynamic systems controlled
y the neural network.

The paper is organized as follows: (i) Section 2 deepen on the
urrent state of the art of formal verification and modeling of neural
etworks both in open and closed loop, (ii) Section 3 briefly summa-
izes the basic concepts of the [nome esteso messo prima sostituire
Prototype Verification System (PVS) - con - PVS] prover, neural

etworks and PyTorch neural network framework, (iii) Section 4 details
n the use of interval arithmetic for analytically prove neural networks
ounds, (iv) Section 5 shows the formalization in higher-order logic of
eural networks, (v) Section 6 introduces and explains the approach
f formalizing and modeling neural network properties in closed-loop
ystems and its integration within PyTorch, (vi) Section 7 shows an
xample use-case to validate the approach applied to an adaptive cruise
ontrol system where the core model predictive controller is substituted
y a neural network controller, (vii) Section 8 concludes and states
ossible further work.

. Related works

Several studies have focused on the formal or analytical validation
f neural networks using a variety of theories, most of which use the
eed-forward neural network’s rectified linear unit (ReLU) activation
unction. Table 1 summarizes the different works grouped by the base
pproach/technology used for verification.

atisfiability modulo theory (SMT) based tools. Authors of Katz et al.
2017) provide an effective technique for using SMT to validate relu-
ased deep (fully connected) neural networks. Authors of Pulina and
acchella (2010) described a similar SMT method for multilayer per-
eptron verification, abstracting sigmoid-based feed-forward neural
etworks with a piece-wise linear activation function. Authors again
sed ReLU-like activation functions in Ehlers (2017) to propose an SMT
pproach to validate properties of piece-wise linear feed-forward neural
etworks. Similarly, based once more on ReLU activation functions,
uthors in Katz et al. (2019) introduced Marabou, an evolution of Katz
t al. (2017) to extend verification capabilities to the convolutional and
ooling layers. Other methods, such as Narodytska et al. (2018), use
AT solvers and Propositional Satisfiability Solvers to validate neural
etwork properties by taking advantage of the boolean satisfiability

heory.

2
Hybrid automata. Different classes of activation functions and neural
networks, such as convolutional layers or non-linear activation func-
tions, were the focus of other investigations. Specifically, the authors
of Ivanov et al. (2019, 2021) formalized sigmoid-based neural networks
using hybrid automata.

Simulation-based. In Huang et al. (2019), Fan et al. (2020) and Xiang
et al. (2018), the authors use a Monte-Carlo-like simulation technique
to empirically analyze the reachability set of a neural network. The
authors of Lopez et al. (2023b) present a geometrical polyhedron-
based verification technique that can only be used in conjunction
with the ReLU activation function to assess the reachability set of a
neural network across several deep learning models. Authors present
a method for formal verification of neural networks and ‘‘learning
enabled’’ components in a closed control loop system in Bak and Tran
(2022) and Lopez et al. (2023a,c).

Formal provers. The Coq prover3 was utilized by the authors of Alek-
sandrov and Völlinger (2023) to offer methods for feed-forward neural
network verification. The PVS prover was used in Rossi et al. (2024) to
prove neural network properties.

Interval-sets and bound propagation. Althoff (2015) and Kochdumper
et al. (2023) suggest CORA, a tool for continuous reachability analy-
sis using zonotopes, Taylor models, and interval arithmetic that can
be used with both dynamic systems and neural networks. Authors
of Bak (2021) propose nnenum, an high-performance, state-of-the-art
verification tool for ReLU-based neural networks based on zonotopes
overapproximations. In Wang et al. (2021), Xu et al. (2020), Kotha
et al. (2024), Zhang et al. (2022) and Shi et al. (2024) authors proposed
a bound propagation mechanism to verify neural network robustness
against perturbations of the inputs. In particular (Wang et al., 2021)
is one of the most representative works of bound-propagation for
neural network verification, ranking as the winner in the International
Verification of Neural Components (VNNCOMP) in 2021, 2022 and
2023.

In this work, we aim to combine the interval arithmetic approach
and the higher abstraction of formal models, providing a thorough ap-
proach to prove safety properties in closed-loop systems. This approach
encompasses the use of exponential-based activation functions, such as
the hyperbolic tangent and the sigmoid.

3. Background

This Section provides details on the PVS prover and neural network
notation that will be extensively used in the remainder of this work. Al-
though our approach is not limited to fully connected neural networks,
in this work we will focus on this class of network, more suitable for
regression problems used to create neural network controllers. Details
for interval arithmetic are shown in Section 4.

3 https://coq.inria.fr/.

https://coq.inria.fr/

F. Rossi et al.

3

2
w
a
S
t
L
f

4

t
t
i

𝑥

s
l

𝑦

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
3.1. PVS language

PVS (Owre et al., 1996) is a mechanized environment for formal
specification and verification. A PVS specification is a combination of
one or more theories, where a theory is a set of formulas, variable
declarations, and function declarations. The PVS language provides
a large set of base types for variables, including naturals, integers,
reals, booleans, and their operations, each defined in the fundamental
library prelude, implicitly imported in every PVS theory. Complex and
advanced data types, such as the matrices used in this work, have
been provided by the Nasalib extensions (Dutertre, 1996). Function
declarations are in the form foo(arg: T1): T2, where foo is the
name, arg is the argument of type T1, and T2 is the type returned
by the function. The formulas are the sentences (named THEOREM or
LEMMA) that users should prove to guarantee that a certain property
of the system described in the specification holds starting from some
valid AXIOMS.

The proof system of PVS is based on the sequent calculus (Smullyan,
1968). The sequent calculus works on expressions, called sequents, of
this form:

𝐴1 ∧ 𝐴2 ∧⋯ ∧ 𝐴𝑛 ⊢ 𝐵1 ∨ 𝐵2 ∨⋯ ∨ 𝐵𝑚

with 𝐴𝑖 being the antecedents and 𝐵𝑖 bineg the consequents. An-
tecedent and consequent are separated by the turnstile ‘‘⊢’’ symbol. The
turnstile can be interpreted as ‘‘entails’’ or ‘‘yields’’. Except for another
sequent, every antecedent or consequent is a formula in any form (in
the underlying logic language).

Sequents can be transformed using the sequent calculus’s inference
rules. A proof can be visualized as a tree with sequents at the nodes
and applications of inference rules at the arcs, where certain rules split
a single sequent into two or more new ones. When every branch of the
proof ends with a proven sequence, that is, when a formula appears
as both an antecedent and a consequent, or when any antecedent is
false, or when any consequent is true, the proof is considered to have
terminated successfully.

3.2. Neural network

The input–output relation for a generic neural network can be
expressed as follows:

𝑛𝑛 ∶ 𝑅𝑚×𝑛 → 𝑅𝑝×𝑞 , (1)

The neural network has two shapes: (𝑚, 𝑛) and (𝑝, 𝑞), which represent
the input and output, respectively. For example, in a regression prob-
lem, the shapes will be (1, 𝑛) and (1, 1) when the network is trained
to approximate a function of 𝑛 arguments and one output. Now that
we have more specifics, we can look at the less universal feed-forward
network model. Eq. (1) can also be used to summarize this network;
on the other hand, the single fully linked layers 𝑙𝑖 functions can be
furthered as follows:

𝑖 ∶ 𝑅𝑚𝑖×𝑛𝑖 → 𝑅𝑝𝑖×𝑞𝑖 , (2)

where the input and output shapes of layer 𝑙𝑖 are denoted by (𝑚𝑖, 𝑛𝑖) and
(𝑝𝑖, 𝑞𝑖), respectively. The forms in the regression problem example will
be (1, 𝑛𝑖) and (1, 𝑞𝑖) once again. A neural network layer typically consists
of a collection of biases 𝐵 and weights 𝑊 . Biases can be thought of
as an extra neural network parameter degree of freedom. With the
fully-connected layer 𝑙𝑖 with weights and biases denoted by 𝑊𝑖, 𝐵𝑖, the
function that further describes Eq. (2) is as follows:

𝑖(𝑋) = 𝜎𝑖
(

𝑋 ×𝑊𝑖 + 𝐵𝑖
)

, (3)

where the matrix addition operation is +, the matrix-matrix multiplica-
tion operation is ×, and the generic activation function is 𝜎𝑖. 𝑋 ∈ 𝑅1,𝑚𝑖 ,
𝑊𝑖 ∈ 𝑅𝑚𝑖 ,𝑛𝑖 , and 𝐵𝑖 ∈ 𝑅1,𝑛𝑖 are the variables in a regression problem.
As a result, (𝑋) ∈ 𝑅1,𝑚𝑖 → 𝑅1,𝑛𝑖 is the layer result.
𝑖

3
1 Sequential(
2 Linear(10, 100),
3 Tanh(),
4 Linear(100, 100),
5 Tanh(),
6 Linear(100, 30),
7 Tanh(),
8 Linear(30, 3),
9 Tanh()

10)

Listing 1: PyTorch example of a fully-connected neural network.

A sequence of fully-connected layers 1,2,… ,𝑛 make up an n-
layer feed-forward neural network. The transformation stated in (3) is
applied by each of these layers to either the output of the preceding
layer or, in the case of the input layer 𝑙1, to the input data 𝑖. Using this
idea, we can then express the relation (1):

𝑛𝑛(𝑖) = 𝑛(𝑛−1(...2(1(𝑖)))). (4)

For example, a 3-layer neural network can be expressed as follows:

𝑛𝑛(𝑖) = 3(2 (1(𝑖))) = 𝜎(𝜎(𝜎(𝑊1 × 𝑖 + 𝐵1) ×𝑊2 + 𝐵2) ×𝑊3 + 𝐵3).

.3. PyTorch

In this work we use the PyTorch python framework (Paszke et al.,
019; Ansel et al., 2024) to create, train, and manipulate neural net-
orks. A fully connected neural network can be created using PyTorch
s shown in Listing 1, where an example of a neural network (called
equential by PyTorch) with a hyperbolic tangent activation func-

ion is declared. The network has 4 fully connected layers (called
inear by PyTorch) with hyperbolic tangent activation, 10 input

eatures, and 3 output classes (or neurons).

. Analytical verification using interval arithmetic

In this Section, we detail the use of interval arithmetic to evaluate
he bounds of a neural network output. Let 𝑥 = {𝑥(1), 𝑥(2),… , 𝑥(𝑛)} be
he input features to a neural network. Each of the single 𝑥(𝑘) feature
s represented with its upper and lower bounds.
(𝑘) = [𝑥(𝑘), 𝑥(𝑘)]

The objective is to compute an output interval 𝑦 = {𝑦(1), 𝑦(2),… , 𝑦(𝑞)}
uch that each of the single outputs 𝑦(𝑘) are bounded by an upper and
ower value.
(𝑘) = [𝑦(𝑘), 𝑦(𝑘)]

This represents the possible range of outputs produced by the neural
network for inputs within the input feature 𝑥 = {𝑥(1), 𝑥(2),… , 𝑥(𝑛)}.

To compute output intervals using interval arithmetic, we propagate
the input intervals from input 𝑥 through each layer of the neural
network. At each layer, we apply interval arithmetic operations that
evaluate interval bounds for the intermediate activations. These inter-
val bounds are then used as input intervals for the subsequent layer,
continuing the propagation process until we obtain output intervals for
the final layer. The following propagation rules are employed.

Sum: [𝑎, 𝑎] + [𝑏, 𝑏] = [𝑎 + 𝑏, 𝑎 + 𝑏]

Example: [−1, 1] + [2, 3] = [1, 4].

Subtraction: [𝑎, 𝑎] − [𝑏, 𝑏] = [𝑎 − 𝑏, 𝑎 − 𝑏]

Example: [2, 3] − [1, 2] = [0, 2].

Multiplication: [𝑎, 𝑎]⋅[𝑏, 𝑏] = [min(𝑎⋅𝑏, 𝑎⋅𝑏, 𝑎⋅𝑏, 𝑎⋅𝑏), max(𝑎⋅𝑏, 𝑎⋅𝑏, 𝑎⋅𝑏, 𝑎⋅𝑏)]

F. Rossi et al.

L

S
c
b

a

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Example: [−1, 1] ⋅ [2, 3] = [−3, 3].

Reciprocate: 1
[𝑎, 𝑎]

=
[

1
𝑎
, 1
𝑎

]

Example: [2, 3]−1 = [1∕3, 1∕2].

Division:
[𝑎, 𝑎]

[𝑏, 𝑏]
= [𝑎, 𝑎] ⋅ 1

[𝑏, 𝑏]

Example: [0, 1] ⋅ 1∕[2, 3] = [0, 1∕2].

let 𝜎 ∶ ℜ → ℜ monotonic increasing, 𝜎
([

𝑎, 𝑎
])

=
[

𝜎(𝑎), 𝜎(𝑎)
]

Example: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑([2, 3]) = [𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2), 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(3)].
By propagating input intervals through the network layers until

the output one, we can evaluate the output intervals to provide rig-
orous bounds on the network predictions. The output intervals 𝑦 =
{𝑦(1), 𝑦(2),… , 𝑦(𝑞)} represent the possible range of outputs produced
by the neural network for inputs within the provided input intervals
𝑥. These output intervals serve as verifiable bounds on the model’s
behavior, enabling the assessment of its reliability and robustness
within specified input ranges. This enables us to analytically prove that,
within a certain input interval, we can guarantee a certain prediction.
Indeed, we just need to prove that, given the desired class label for
the prediction, its bounded interval has no intersection with all the
other bounded intervals and its lower bound is higher than all the
other intervals’ upper bounds. For example, if we want to prove that
we guarantee class 𝑦1 prediction in a given input interval, we need to
show that:

∀𝑖 ∈ [2,𝑀] ∶ 𝑦𝑖
⋂

𝑦1 = ∅ ∧ 𝑦
1
> 𝑦𝑖

Programmatically, this can be verified with (𝑀) time, where 𝑀 is the
number of network outputs or classes.

Fig. 1 shows an example visualization of using interval arithmetic
within neural networks. In Fig. 1(a) we reported the prediction score
intervals for a 3-label classifier. In the example, within the provided
input intervals, we can guarantee that the prediction is always class
1. Fig. 1(b) shows the evolution over the time of the prediction score
intervals when the input intervals vary. This kind of visualization is
useful when dealing with dynamic systems that evolve over time and
are influenced by the neural network output that, in turn, has an output
based on some (or all) of the dynamic system outputs. This is typical
of closed-loop systems when the neural network component acts as a
controller on some parts of the system.

5. Translation of neural networks to formal models

In this section, we start from the network as represented by Eq. (4).
We make use of the matrices PVS theory to represent both 1-
dimensional vectors and two-dimensional matrices, formalizing the
application of each layer as a PVS function. Moreover we show the for-
malization of network input constraints and properties on the network
outputs.

5.1. Network specification

Specifically, using Eq. (3), we can formalize the weights and biases
of a layer 𝑙𝑖 ∶ 𝑅1×𝑚𝑖 → 𝑅1×𝑛𝑖 . These may be found in Listing 2. PVS
allows nested lists to be used to initialize dimensional matrices, which
are represented by the MatrixMN type. For example, a 2 × 2 matrix
can be initialized as (: (: 1,1 :), (: 2,2 :) :), where (: :) is
the Lisp notation for a list.

1 wi: MatrixMN(m,n) = (:(: w11, w12, ... , w1n :), ...
, :)

2 bi: MatrixMN(1,n) = (: b1, b2, ..., bn :)

Listing 2: PVS formalization for a fully connected layer.
 s

4
Fig. 1. Examples of interval prediction scores.

The PVS definition of layer activation functions, as shown in Listing
3, can be used to implement them simply. ReLU-like functions (Agarap,
2018) can be generalized as general piece-wise linear functions, or
leaky relu when the argument’s values are positive (i.e., 𝑦 = 𝑥, 𝑥 ≥ 0), a
leaky relu behaves as the identity function; when the argument’s values
are negative (i.e., 𝑦 = 𝑛𝑠𝑙𝑜𝑝𝑒×𝑥, 𝑥 ≤ 0), it behaves as a straight line with
a positive slope. Listing 3 illustrates how the ReLU function is a specific
instance of the leaky relu if 𝑛𝑠𝑙𝑜𝑝𝑒 = 0.

1 leaky_relu(x: real, nslope: real):
2 real = IF x >= 0 THEN x
3 ELSE nslope*x ENDIF
4 relu(x: real) : real = leaky_relu(x,0)

isting 3: PVS formalization for piece-wise linear activation functions.

By utilizing PVS’s (exp) formulation of the exponential function,
-shaped functions like the sigmoid and hyperbolic tangent functions
an also be expressed, as shown in Listing 4. The sigmoid function can
e used as a building block to define the hyperbolic tangent.

Listing 5 formalizes the application of these scalar functions over
n entire matrix, where act_fun is one of the previously encountered
calar functions.

F. Rossi et al.

g
i

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
1 sigmoid(x: real): real =
2 1/(1 + exp(-x))
3 tanh(x: real): real =
4 2*sigmoid(2*x) - 1

Listing 4: PVS formalization of s-shaped, sigmoid-based activation
functions.

1 act(M: Matrix): MatrixMN(rows(M),columns(M)) =
2 form_matrix(LAMBDA (i,j:nat):
3 act_fun(entry(M)(i,j)), rows(M), columns(M));

Listing 5: PVS formalization for generic activation function on a
matrix.

To bring everything together, we formalize the network forward
pass in its entirety as seen in Eq. (4) and Listing 6.

1 net(input: Matrix): Matrix =
2 act(act(input*w1+b1)*w2+b2)*w3+b3 ...

Listing 6: PVS formalization for generic activation function on a
matrix.

5.2. Network constraints and properties

We can state certain limits on the input layer arguments and a
theorem for the network’s overall output as we are interested in proving
properties on the network outputs. To confine the 𝑖th input 𝑥𝑖 to be
𝑥𝑖 ∈ [𝑙𝑏𝑖, 𝑢𝑏𝑖], we can constrain the neural network inputs inside a
specific range. According to the theorem, the neural network’s 𝑖th
output is entry(net(...)(0,i)). We can constrain each of these
outputs by connecting them with a conjunctive or disjunctive phrase as
in Listing 7.

x1: TYPE = { r: real | r>=lb1 AND r<=ub1 }
x2: TYPE = { r: real | r>=lb2 AND r<=ub2 }
...
xn: TYPE = { r: real | r>lbn AND r<=ubn }
network_bounds: THEOREM

FORALL (x0in: x1,x1in: x2, ...):
entry(net((:(:x0in,x1in, ... :):)))(0,0)

<= ... AND
entry(net((:(:x0in,x1in, ... :):)))(0,1)

<= ...

Listing 7: PVS constraints for the input variables and theorem on the
output.

6. Integration inside PyTorch

In this Section, we detail the practical integration of the two afore-
mentioned techniques within the PyTorch machine-learning frame-
work.

6.1. Automatic theory generation

The previous approach can produce a functioning and provable
theory for a feed-forward neural network; however, it is not tractable
to manually write a theory when the number and size of layers scale
up. Therefore we developed a Python-based tool that can automatically
generate an entire PVS theory starting from a pre-trained PyTorch
neural network model. The algorithmic complexity of generating a PVS
theory from a network model is (𝑛𝑝), where 𝑛𝑝 is the number of
parameters in the model (e.g. generating the theory for the network
in Listing 1 takes 2 s on a 3GHz desktop processor). In the next section,
we will cover a more complex use case, with a bigger fully connected
network, to highlight the potential capabilities of our approach. Some
assumptions must be made before the generation of the theory from the
network specifications:
5
Fig. 2. Simple neural network with two hidden neurons and ReLU activation function.

• The neural network must be a feed-forward network (e.g. multi-
layer perceptron).

• The number of neurons in the network must not exceed 60–70 for
scalability issues of the prover itself.

• Linear-activation functions are preferable to provide tighter
bounds and reduce over-approximations

Such assumptions are also stressed out again in Section 6.4.

6.2. Interval arithmetic computation

We instrumented PyTorch to process interval arithmetic by extend-
ing the base Tensor class with an IntervalTensor class where
every tensor element is an instance of a Interval class. The actual in-
terval arithmetic is provided by the pyinterval library.4 The library
implements an algebraically closed interval system on the extended
real number set can be implemented in Python with the help of this
package. According to this library’s definition, interval objects are made
up of a finite union of closed intervals that may or may not be unbound
mathematically. In our case, the bounds are all mathematically bound
and each interval object is made up of at most one closed interval since
the only interval operations involved are the algebraic sum and the
function activation. Indeed, the multiplication by a scalar preserves the
number of finite closed intervals inside the interval object.

Such integration allows us to seamlessly use IntervalTensor in Py-
Torch models without the need to recompile the whole framework or
change pre-trained models. Layer operation implementations are over-
ridden inside the IntervalTensor class to provide a common interface
that adheres to the original PyTorch Tensor one.

6.3. A small example of the two techniques

Starting from a very simple neural network, suppose we have a
single-layer neural network as shown in Fig. 2. The correspondent
PyTorch model summary is shown in Listing 8.

Sequential(
nn.Linear(in_features=3,out_features=4, bias=
False),
nn.ReLU(),
nn.Linear(in_features=4,out_features=2, bias=
False)

)

Listing 8: PyTorch code for a simple network model with two hidden
neurons.

We can produce the correspondent PVS theory with the automatic
eneration as shown in Listing 9. We then add some constraints on the
nput variables and a theorem to verify the network output.

4 https://pyinterval.readthedocs.io/en/latest/.

https://pyinterval.readthedocs.io/en/latest/

F. Rossi et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
1 mlp: THEORY
2 BEGIN
3 IMPORTING matrices@matrices
4 linear0: MatrixMN(3,4) = (:(:1.,-1.,1.,-1.:)

,...,(:1.,-1.,1.,-1.:):)
5 linear2: MatrixMN(4,2) = (:(:1.,-1.:)

,...,(:1.,-1.:):)
6 relu(x: real): real = IF x > 0 THEN x ELSE 0

ENDIF
7 act(M: Matrix): MatrixMN(rows(M),columns(M)) =

...
8 net(input: Matrix): Matrix = act(input*linear0)*

linear2
9 % Manually added

10 x1: TYPE = { r: real | r>=-1 AND r<=1}
11 x2: TYPE = { r: real | r>=-1 AND r<=1}
12 x3: TYPE = { r: real | r>=-1 AND r<=1}
13 network_bounds: THEOREM
14 FORALL (x: x1, y: x2):
15 entry(net((:(:x,y:):)))(0,0) >= 0 AND
16 entry(net((:(:x,y:):)))(0,1) <= 0
17 %|- network_bounds: PROOF
18 %|- (grind)
19 %|- QED
20 END mlp

Listing 9: Full PVS theory for the simple network shown before.

1 network_bounds : PROOF
2 (then (grind))
3 QED network_bounds

Listing 10: Proof script for the theorem network_bounds

1 net = nn.Sequential(
2 nn.Linear(3,4, bias=False),
3 nn.ReLU(),
4 nn.Linear(2,2, bias=False)
5)
6
7 intervals = [[-1,1], [-1,1], [-1,1]]
8 itensor = IntervalTensor(intervals)
9 bounds = net(itensor)

Listing 11: Full PVS theory for the simple network shown before.

In Listing 9 there is the complete theory generated with the manual
addition of constraints on the two inputs. Lines 17-19 show the script
used to prove the theorem. The output of the prover, with the successful
proof indication is reported in Listing 10, where the verb QED indicates
the completion of the proof.

We can obtain a similar result by exploiting interval arithmetic
as shown in Listing 11. Fig. 3 shows the outcome of the experiment,
showing the same bounds proved before with the automatic theory
generation and formal proof. The vertical line in 𝑥 = 0 corresponds
to the bounds specified also in Listing 11. This is verified numerically
by the two output intervals for the two classes:

• Class label 1: [−14,−0.4]
• Class label 0: [0.4, 14]

6.4. Limits of the PVS theory generation and proof

When using the PVS theory generation we can provide a higher-
order logic formalization of a neural network that can be formally eval-
uated to guarantee a given property. However, the approach presents
some limitations, hence the development of the other interval arith-
metic technique. The core limitations of the approach are the following:
(i) poor scalability with the number of internal layers and neurons in
6
Fig. 3. Output bounds for the predictions of the two classes for the network shown in
Fig. 2.

particular when considering the ReLU activation function. Although
computationally simple, for each ReLU evaluation the prover must fork
into two branches, depending on the input sign. This means that we
generate two branches of the proof tree for each intermediate layer out-
put neuron. The branch evaluation then scales like (2𝐿), with L being
the number of intermediate outputs, leading to exponentially increasing
computational complexity; (ii) poor scalability with the number of
input neurons. For each of the branches to evaluate, the prover must
find a solution to an inequality system with 𝑁 variable, being 𝑁 the
number of network inputs (iii) automated reasoning on the network is
limited when using other non-linear transcendental activation functions
(e.g. sigmoid, tanh) since they need dedicated solution strategies (Titolo
et al., 2023). These limitations can be solved using interval arithmetic
to evaluate the network output bounds. Furthermore, this results in
an over-approximation of the bounds, making the technique more
conservative.

Fig. 4 shows how the two techniques can be combined to provide
guarantees on a closed-loop system, obtaining the bounds with the
interval arithmetic and modeling the network as a black box with such
bounds in PVS, alongside the formal model of the rest of the system.
We will refer to the model of the network as a black box (input interval
to interval output relation) as ‘‘network formal model’’.

Figs. 5 and 6 details the step involved in the generation of the neural
network formal model and the proof process: (i) the pre-trained net-
work is read from the file, (ii) input intervals related to the verification
scenario are read from the file and the neural network is evaluated with
such intervals producing output intervals, (iii) a relation between input
intervals and output (the neural network formal model) is generated
and saved, (iv) the PVS prover takes as inputs the closed-loop system,
the neural network formal model and the safety properties to be proven,
(v) the proof is carried out with the PVS prover and (vi) the generated
proof is saved to file.

As a final remark we stress that with the combination of interval
arithmetic and PVS prover, the limitations expressed in Section 6.1
no longer apply. Indeed, through PyTorch, we can build any network
architecture and perform inference using IntervalTensor through it,
without any limits to the network size and topology. Therefore, the
prover does not need to evaluate the entire network but only the formal
model generated with the interval arithmetic, which is sensibly easier
to handle. In the next section, we show a use-case application of this
approach to an adaptive cruise control where the core model predictive
controller is substituted by a neural network controller.

F. Rossi et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Fig. 4. Architectural components of the proposed approach.
Fig. 5. Flowchart of the generation of the neural network formal model through interval arithmetic computation.
Fig. 6. Flowchart of the proof process using the neural network model and the closed-loop system PVS theory.
Fig. 7. Scheme for the MPC controlled cruise control application.
7. Use case: adaptive cruise control with surrogated controller

In this section, we take a look at the autonomous driving applica-
tion5 shown in Fig. 7. Note that the considerations done in this section
are strictly related to the scenario considered and the model constraints
and specifications and are not intended to apply generically to the
adaptive cruise control application for every scenario.

Specifically, we take into consideration the straightforward scenario
in which the autonomous driving system determines the ego car’s
acceleration by detecting the position and speed of the lead car. To
solve this problem, for instance, the speed of the ego car is controlled
using a model-predictive controller (MPC) in two operational modes: (i)
adhering to the set velocity 𝑣𝑠𝑒𝑡 and (ii) keeping a safe distance from
the lead car equal to 𝑑𝑠𝑎𝑓𝑒 = 𝑡𝑔𝑎𝑝 ∗ 𝑣𝑒𝑔𝑜 + 𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡, where 𝑡𝑔𝑎𝑝 denotes a
time constant, 𝑣𝑒𝑔𝑜 is the ego car’s speed, and 𝑑𝑑𝑒𝑓𝑎𝑢𝑙𝑡 is the standstill
spacing.

5 https://it.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-
model-predictive-controller.html.
7
Three nominal inputs are accepted by the MPC controller: the lead
car’s relative velocity, relative distance, and the ego car’s longitudinal
velocity. The ego car’s acceleration control is the only output, which
is the only regulated quantity. Consequently, Fig. 8 illustrates how a
surrogate model based on a neural network with the following topology
might take the place of the MPC controller.

𝑛(𝑣𝑒𝑔𝑜, 𝑑𝑟𝑒𝑙 , 𝑣𝑟𝑒𝑙) = 𝑎𝑒𝑔𝑜. (5)

Consequently, by employing the method suggested in Bernardeschi
et al. (2023), we can model the use case scenario and produce a set of
tuples 𝑣𝑒𝑔𝑜, 𝑑𝑟𝑒𝑙 , 𝑣𝑟𝑒𝑙 , 𝑎𝑒𝑔𝑜 that will serve as input and output data for the
training procedure. Using the ADAM optimizer (Kingma and Ba, 2014),
we trained the network in Fig. 8 (140 learnable parameters, sigmoid
activation function) for 1000 epochs, using the mean squared error
(MSE) loss function and a learning rate of 0.001. A final MSE of 0.034
was obtained. The rationale behind substituting the model predictive
controller with a neural network is well-known in the literature (Wang
et al., 2022; Cheng et al., 2015). Based on the current condition of the
plant, model predictive control (MPC) solves a constrained quadratic
programming (QP) optimization problem in real-time. As MPC resolves

https://it.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html
https://it.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html

F. Rossi et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Fig. 8. Neural network for solving the MPC regression problem.
d
i
2

7

p
S
2
n
T
d
e
h
g
s
t

n
n
𝑛

o
n
t
c
2
2

1 closed_loop_system: THEORY
2 BEGIN
3 x0_lead: posreal = 35
4 t: VAR posreal
5 v_lead(t): posreal;
6 x_lead(t): posreal = v_lead(t)*t + x0_lead;
7 a_lead(t): real = 0;
8 v_ego(t): real
9 a_controller(drel: real, vrel: real, vabs: real):

real
10
11 x_ego(t): posreal
12 a_ego(t): real =
13 a_controller(x_lead(t) - x_ego(t), v_lead(t) -

v_ego(t), v_ego(t))
14 ego_x_law: AXIOM
15 x_ego(t) = 1/2*(a_ego(t) * t^2)
16 ego_v_law: AXIOM
17 v_ego(t) = a_ego(t)
18
19 safety_distance: THEOREM
20 FORALL(t): x_lead(t) >= x_ego(t)+35
21 END dynamics

Listing 12: Formalization for the closed-loop system model of ego
and lead car

its optimization problem in an open-loop manner, a deep neural net-
work may be used in place of the controller. Therefore, evaluating a
deep neural network can potentially be more computationally efficient
than real-time QP problem-solving, especially when employed in a
constrained on-board embedded device.

7.1. Modeling and proving properties for the neural network

Listing 12 shows how we formalized the dynamic equations of the
closed-loop system. In particular, at line 15 we declared the control
law equation represented by the neural network controller.

Safety property: safety distance between the two cars. We want to ensure
that the absolute position of the lead car is always greater than the
absolute position of the ego car plus a safety distance in the considered
scenario. For example, considering the maximum 𝑣 velocity shown
𝑒𝑔𝑜 t

8
safety_distance: THEOREM
FORALL(t): x_lead(t) >= x_ego(t)+35

Listing 13: Theorem on maintaining the safety distance

uring the training (𝑣𝑒𝑔𝑜 = 25 m∕s) and the default time gap 𝑡𝑔𝑎𝑝 = 1.4 s,
t is possible to set the safety distance at 𝑑𝑠 = 𝑡𝑔𝑎𝑝 × 𝑣𝑒𝑔𝑜 = 1.4 s ×
5 m∕s = 35 m. Listing 13 shows the formulation for such a property.

.2. Evaluation of the neural network bounds

To evaluate the boundaries of the neural network controller out-
ut in the considered scenario, we exploited the approach shown in
ection 6 to analytically compute the output boundaries. Given 𝑣𝑒𝑔𝑜 =
5 m∕s, and 𝑣𝑟𝑒𝑙 ∈ [−2, 2] m

s2 we widely varied the 𝑑𝑟𝑒𝑙 input to assess the
eural network output boundaries when varying the relative distance.
his reflects on a scenario when the ego car is closer than the safety
istance and should decelerate to keep 𝑑𝑠 ≥ 35 m. Fig. 9 shows the
volution of the boundaries over time, while the ego car is decelerating,
ence pulling away from the lead car. As we can see the bounds
uarantee us that the acceleration output is negative until around the
afety distance is reached, then it becomes positive to be able to follow
he lead car 𝑣𝑠𝑒𝑡.

To compare our open-loop verification approach on the neural
etwork bounds we set up a similar experiment where different neural
etwork provers were asked to prove the following property, where
(𝑣𝑒𝑔𝑜, 𝑣𝑟𝑒𝑙 , 𝑑𝑟𝑒𝑙) is the neural network as defined in Eq. (5):

𝑝(𝑛): 𝑑𝑟𝑒𝑙 ≤ 35, 𝑣𝑒𝑔𝑜 = 25, 𝑣𝑟𝑒𝑙 ∈ [−2, 2] ⇒ 𝑛(𝑣𝑒𝑔𝑜, 𝑣𝑟𝑒𝑙 , 𝑑𝑟𝑒𝑙) < 0

For the comparison we are interested in two metrics: (i) completion
f the verification (i.e. if the verifier is able to verify the property or
ot), (ii) verification time (i.e. the time it took the verifier to complete
he proof). Table 2 shows the time performance of this approach
ompared to the Marabou neural network verification tool (Katz et al.,
019), the nnenum tool (Bak, 2021) and alpha-beta-crown (Wang et al.,
021). We measured 1000 independent runs of the proof and measured
he average time to proof completion as well as the standard deviation.

F. Rossi et al.

7

n
t
c
c
l
a
a
a
f
m
i
s
L
a
v
p

n
n
i
e

Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Fig. 9. Acceleration output uncertainty when varying the relative distance uncertainty
over time.

Table 2
Time comparison with other neural network verification tools.

Verified Time (s)

Marabou (Katz et al., 2019) Yes 0.1311 ± 0.015
nnenum (Bak, 2021) Yes 0.057 ± 0.0044
alpha-beta-crown (Wang et al., 2021) Yes 0.0044 ± 0.0023
This work Yes 𝟎.𝟎𝟎𝟐𝟖 ± 𝟎.𝟎𝟎𝟏

1 a_accel: {x: real | x > 0}
2 a_decel: {x: real | x < 0}
3 a_controller(drel: real, vrel: real, vabs: real):

real =
4 IF drel < 37
5 THEN a_decel
6 ELSE a_accel
7 ENDIF

Listing 14: Behavior of the neural network controller

From that table it can be seen how all the tool are able to verify the
property, but our approach takes lesss time.

We can use the analytically proven boundaries to model the neu-
ral network behavior in PVS, as shown in Listing 14. In lines 1-2
we modeled the acceleration and deceleration values as two sets of
real numbers a_accel, a_decel that are, respectively positive and
negative. This allows us to use them during the proof without actually
knowing their magnitude.

7.3. Closed-loop verification

Once we integrated the formalization of the network behavior inside
the PVS theory, we can prove the closed loop’s safety property for
the system shown in Fig. 10 for this particular scenario. PVS proof
can be done interactively or by providing a proof script to the prover.
Hereafter in Listing 15 is an example of the latter approach, with a
proof script for the safety_distance theorem. We put %|- QED
at the end of the script to mark that the proof should be completed at
that point. If a completed proof is reached (i.e. all the sequent calculus
implications are proved) the prover will complete. We report the proof
tree for the prover output with the previous script, highlighting the
successful verification of the safety property in Fig. 11 for this specific
scenario.
a

9
Fig. 10. Visualization of the closed-loop system with the ego car and the neural
network controller.

1 %|- safety_distance: PROOF
2 %|- (skeep)
3 %|- (expand x_lead)
4 %|- (rewrite ego_x_law)
5 %|- (expand a_ego)
6 %|- (expand x_lead)
7 %|- (grind) % <- fork into two subgoals
8 %|- (lemma a_law_neg)
9 %|- (inst?)

10 %|- (field) % <- completion of first subgoal
11 %|- (field)
12 %|- (rewrite ego_x_law)
13 %|- (field) % <- completion of second subgoal
14 %|- QED % <- proof completion

Listing 15: Proof script for the safety_distance property

.4. Limitations and scalability of the approach

The presented approach can provide output bounds for any neural
etwork that can be implemented through the PyTorch library. Fur-
hermore, these bounds can be used in formal models using PVS to
haracterize the behavior of closed-loop dynamic systems. The appli-
ability of interval arithmetic to neural networks can present some
imitations that are intrinsic to the arithmetic itself. In general, interval
rithmetic provides an over-approximation of the bounds. The over-
pproximation may grow numerically with the number of consecutive
rithmetic operations on intervals. In detail, interval arithmetic suffers
rom the so-called dependency problem: if the same interval appears
ultiple times inside an expression the resulting interval will result

n an overapproximation of the actual value interval. For example,
uppose to have an interval 𝑥 = [−1, 1] and the expression 𝑦 = 𝑥 − 𝑥.
ogically the result should be 0. However, if we apply the interval
rithmetic rules, the result will be 𝑦 = [−2, 2] which contains the actual
alue but overapproximates it. In future works, we plan to mitigate this
roblem by constraining the overapproximation of the result.

From the scalability point of view, the complexity of deriving the
etwork bounds is the same as performing inference on the neural
etwork, with the added cost of handling interval arithmetic. While
nference is already performed efficiently, we plan to optimize the infer-
nce of the intervals through the network exploiting GPU acceleration
s much as possible in future works.

F. Rossi et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Fig. 11. PVS proof tree for the safety_distance property.

8. Conclusion

We introduced a novel verification approach that leverages the
strengths of interval arithmetic and theorem-proving formal verifica-
tion technique. This combination provides a robust framework for
ensuring the safety and reliability of neural networks in closed-loop
systems.

Our approach seamlessly integrates with the PyTorch deep learn-
ing framework, ensuring that it can be adopted without significant
changes to existing workflows. This allowed us to formalize a closed-
loop system of an adaptive cruise control application where the model-
predictive controller was replaced by a well-trained neural network.
Finally, we were able to specify and verify safety requirements on the
system-controlled variable.

Our approach demonstrated significant improvements in verifica-
tion performance, considerably reducing the time overhead when com-
pared to other state-of-the-art approaches. Future works will include
the optimization of the interval arithmetic method mitigating the lim-
itations of the approach by constraining the overapproximation of the
result and accelerating interval computation through GPU as much
as possible. Moreover, further expansions of this work will add more
detailed dynamics of the vehicle including modeling the behavior in
10
PVS with a set of differential equations to consider more complex
scenarios.

CRediT authorship contribution statement

Federico Rossi: Writing – review & editing, Writing – original draft,
Methodology, Investigation, Data curation, Conceptualization. Cinzia
Bernardeschi: Writing – review & editing, Conceptualization. Marco
Cococcioni: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank the reviewers for the insightful comments and sugges-
tions.

Work funded by: the PNRR - M4C2 - Investimento 1.3, Parte-
nariato Esteso PE00000013 - ‘‘FAIR - Future Artificial Intelligence
Research’’ - Spoke 1 ‘‘Human-centered AI’’ under the NextGeneration
EU programme; the European High Performance Computing Joint Un-
dertaking (JU) under Framework Partnership Agreement No 800928
and Specific Grant Agreement No 101036168 (EPI SGA2); the Italian
Ministry of University and Research (MUR) in the framework of the
FoReLab and CrossLab projects (Departments of Excellence).

References

Agarap, A.F., 2018. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

Aleksandrov, A., Völlinger, K., 2023. Formalizing piecewise affine activation functions
of neural networks in Coq. In: Rozier, K.Y., Chaudhuri, S. (Eds.), NASA Formal
Methods. In: Lecture Notes in Computer Science, Springer Nature Switzerland,
Cham, pp. 62—-78. http://dx.doi.org/10.1007/978-3-031-33170-1_4.

Althoff, M., 2015. An introduction to CORA 2015. In: Proc. of the 1st and 2nd
Workshop on Applied Verification for Continuous and Hybrid Systems. EasyChair,
pp. 120–151. http://dx.doi.org/10.29007/zbkv.

Alur, R., 2011. Formal verification of hybrid systems. In: 2011 Proceedings of the Ninth
ACM International Conference on Embedded Software. EMSOFT, pp. 273–278.
http://dx.doi.org/10.1145/2038642.2038685.

Alur, R., 2015. Principles of Cyber-Physical Systems. MIT Press.
Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P.,

Berard, D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison, A.,
DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind, M., Hirsh, B., Huang, S.,
Kalambarkar, K., Kirsch, L., Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y.,
Luk, C., Maher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim, M., Siraichi, M.Y.,
Suk, H., Suo, M., Tillet, P., Wang, E., Wang, X., Wen, W., Zhang, S., Zhao, X.,
Zhou, K., Zou, R., Mathews, A., Chanan, G., Wu, P., Chintala, S., 2024. PyTorch
2: Faster machine learning through dynamic python bytecode transformation
and graph compilation. In: 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2. ASP-
LOS’24, ACM, http://dx.doi.org/10.1145/3620665.3640366, URL: https://pytorch.
org/assets/pytorch2-2.pdf.

Antsaklis, P., 1990. Neural networks for control systems. IEEE Trans. Neural Netw. 1
(2), 242–244. http://dx.doi.org/10.1109/72.80237.

Bak, S., 2021. Nnenum: Verification of ReLU neural networks with optimized ab-
straction refinement. In: NASA Formal Methods: 13th International Symposium,
NFM 2021, Virtual Event, May 24–28, 2021, Proceedings. Springer-Verlag, Berlin,
Heidelberg, pp. 19—-36. http://dx.doi.org/10.1007/978-3-030-76384-8_2.

Bak, S., Tran, H.-D., 2022. Neural network compression of ACAS xu early prototype is
unsafe: Closed-loop verification through quantized state backreachability. In: Desh-
mukh, J.V., Havelund, K., Perez, I. (Eds.), NASA Formal Methods. In: Lecture Notes
in Computer Science, Springer International Publishing, Cham, pp. 280—-298.
http://dx.doi.org/10.1007/978-3-031-06773-0_15.

http://arxiv.org/abs/1803.08375
http://dx.doi.org/10.1007/978-3-031-33170-1_4
http://dx.doi.org/10.29007/zbkv
http://dx.doi.org/10.1145/2038642.2038685
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb5
http://dx.doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
http://dx.doi.org/10.1109/72.80237
http://dx.doi.org/10.1007/978-3-030-76384-8_2
http://dx.doi.org/10.1007/978-3-031-06773-0_15

F. Rossi et al. Engineering Applications of Artiϧcial Intelligence 137 (2024) 109238
Bernardeschi, C., Cococcioni, M., Palmieri, M., Rossi, F., 2023. Training neural networks
in cyber-physical systems using design space exploration and co-simulation. In: 4th
International Conference on Electrical, Communication and Computer Engineering.
ICECCE 2023, pp. 1–7. http://dx.doi.org/10.1109/ICECCE61019.2023.10442825.

Cheng, L., Liu, W., Hou, Z.-G., Yu, J., Tan, M., 2015. Neural-network-based nonlinear
model predictive control for piezoelectric actuators. IEEE Trans. Ind. Electron. 62
(12), 7717–7727. http://dx.doi.org/10.1109/TIE.2015.2455026.

Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S., de Dinechin, B.D., 2021. Novel
arithmetics in deep neural networks signal processing for autonomous driving:
Challenges and opportunities. IEEE Signal Process. Mag. 38 (1), 97–110. http:
//dx.doi.org/10.1109/MSP.2020.2988436.

Dutertre, B., 1996. Elements of mathematical analysis in PVS. In: Goos, G., Hartma-
nis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (Eds.), Theorem
Proving in Higher Order Logics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
141–156. http://dx.doi.org/10.1007/BFb0105402.

Ehlers, R., 2017. Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (Eds.), Automated Technology for Verification
and Analysis. In: Lecture Notes in Computer Science, Springer International
Publishing, Cham, pp. 269–286. http://dx.doi.org/10.1007/978-3-319-68167-2_19.

Emami, S.A., Castaldi, P., Banazadeh, A., 2022. Neural network-based flight control
systems: Present and future. Annu. Rev. Control 53, 97—-137. http://dx.doi.org/
10.1016/j.arcontrol.2022.04.006.

Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q., 2020. ReachNN*: A tool for reacha-
bility analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O.
(Eds.), Automated Technology for Verification and Analysis. Springer International
Publishing, Cham, pp. 537–542. http://dx.doi.org/10.1007/978-3-030-59152-6_30.

Hickey, T., Ju, Q., Van Emden, M.H., 2001. Interval arithmetic: From principles to
implementation. J. ACM 48 (5), 1038—-1068. http://dx.doi.org/10.1145/502102.
502106.

Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q., 2019. ReachNN: Reachability analysis
of neural-network controlled systems. ACM Trans. Embed. Comput. Syst. 18 (5s),
http://dx.doi.org/10.1145/3358228.

Huang, Z., Shen, Y., Li, J., Fey, M., Brecher, C., 2021. A survey on AI-Driven Digital
Twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors 21
(19), http://dx.doi.org/10.3390/s21196340.

Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I., 2021. Verisig 2.0:
Verification of neural network controllers using taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (Eds.), Computer Aided Verification. In: Lecture Notes
in Computer Science, Springer International Publishing, Cham, pp. 249—-262.
http://dx.doi.org/10.1007/978-3-030-81685-8_11.

Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I., 2019. Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control. HSCC ’19, Association for Computing Machinery, New York, NY, USA,
pp. 169—-178. http://dx.doi.org/10.1145/3302504.3311806.

Jeffrey, N., Tan, Q., Villar, J.R., 2023. A review of anomaly detection strategies to
detect threats to cyber-physical systems. Electronics 12 (15), http://dx.doi.org/10.
3390/electronics12153283.

Jin, L., Li, S., Yu, J., He, J., 2018. Robot manipulator control using neural networks:
A survey. Neurocomputing 285, 23–34. http://dx.doi.org/10.1016/j.neucom.2018.
01.002.

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J., 2017. Reluplex:
An efficient SMT solver for verifying deep neural networks. In: Majumdar, R.,
Kunčak, V. (Eds.), Computer Aided Verification. Springer International Publishing,
Cham, pp. 97–117. http://dx.doi.org/10.1007/978-3-319-63387-9_5.

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljić, A., Dill, D.L., Kochenderfer, M.J., Barrett, C., 2019. The marabou
framework for verification and analysis of deep neural networks. In: Dillig, I.,
Tasiran, S. (Eds.), Computer Aided Verification. In: Lecture Notes in Computer
Science, Springer International Publishing, Cham, pp. 443–452. http://dx.doi.org/
10.1007/978-3-030-25540-4_26.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kochdumper, N., Schilling, C., Althoff, M., Bak, S., 2023. Open- and closed-loop
neural network verification using polynomial zonotopes. In: NASA Formal Methods
Symposium. Springer, pp. 16–36. http://dx.doi.org/10.1007/978-3-031-33170-1_2.

Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H., 2024. Provably bounding neural
network preimages. http://dx.doi.org/10.48550/arXiv.2302.01404.

Lopez, D.M., Althoff, M., Forets, M., Johnson, T.T., Ladner, T., Schilling, C., 2023a.
ARCH-COMP23 category report: Artificial intelligence and neural network control
systems (AINNCS) for continuous and hybrid systems plants. In: Frehse, G.,
Althoff, M. (Eds.), Proceedings of 10th International Workshop on Applied Verifi-
cation of Continuous and Hybrid Systems. ARCH23, In: EPiC Series in Computing,
vol. 96, EasyChair, pp. 89–125. http://dx.doi.org/10.29007/x38n.

Lopez, D.M., Choi, S.W., Tran, H.-D., Johnson, T.T., 2023b. NNV 2.0: The neural
network verification tool. In: Enea, C., Lal, A. (Eds.), Computer Aided Verification.
In: Lecture Notes in Computer Science, Springer Nature Switzerland, Cham, pp.
397—-412. http://dx.doi.org/10.1007/978-3-031-37703-7_19.

Lopez, D.M., Johnson, T.T., Bak, S., Tran, H.-D., Hobbs, K.L., 2023c. Evaluation of
neural network verification methods for air-to-air collision avoidance. J. Air Transp.
31 (1), 1–17. http://dx.doi.org/10.2514/1.D0255.
11
Masci, P., Muñoz, C.A., 2019. An integrated development environment for the prototype
verification system. Electron. Proc. Theor. Comput. Sci. 310, 35—-49. http://dx.doi.
org/10.4204/eptcs.310.5.

Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T., 2018. Verifying
properties of binarized deep neural networks. Proc. AAAI Conf. Artif. Intell. 32
(11), http://dx.doi.org/10.1609/aaai.v32i1.12206.

Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M., 1996. PVS: combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T. (Eds.),
Computer-Aided Verification, CAV ’96. In: Lecture Notes in Computer Science, vol.
1102, Springer, Berlin, Heidelberg, pp. 411–414.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.,
2019. PyTorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 8024–8035. http://dx.doi.org/10.5555/3454287.3455008.

Pulina, L., Tacchella, A., 2010. An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (Eds.), Computer
Aided Verification. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 243–257.
http://dx.doi.org/10.1007/978-3-642-14295-6_24.

Putnik, G.D., Manupati, V.K., Pabba, S.K., Varela, L., Ferreira, F., 2021. Semi-
Double-loop machine learning based CPS approach for predictive maintenance
in manufacturing system based on machine status indications. CIRP Ann 70 (1),
365–368. http://dx.doi.org/10.1016/j.cirp.2021.04.046.

Rathore, M.M., Shah, S.A., Shukla, D., Bentafat, E., Bakiras, S., 2021. The role of AI,
machine learning, and big data in digital twinning: A systematic literature review,
challenges, and opportunities. IEEE Access 9, 32030–32052. http://dx.doi.org/10.
1109/ACCESS.2021.3060863.

Rossi, F., Bernardeschi, C., Cococcioni, M., Palmieri, M., 2024. Towards formal
verification of neural networks in cyber-physical systems. In: 16th NASA Formal
Methods Symposium, Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.
14627, Springer Nature Switzerland, pp. 207–222. http://dx.doi.org/10.1007/978-
3-031-60698-4_12.

Shi, Z., Jin, Q., Kolter, Z., Jana, S., Hsieh, C.-J., Zhang, H., 2024. Neural network
verification with branch-and-bound for general nonlinearities. http://dx.doi.org/
10.48550/arXiv.2405.21063.

Smullyan, R.M., 1968. First-Order Logic. Preliminaries. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 43–52. http://dx.doi.org/10.1007/978-3-642-86718-7_4.

Song, X., Sun, P., Song, S., Stojanovic, V., 2023. Quantized neural adaptive finite-time
preassigned performance control for interconnected nonlinear systems. Neural Com-
put. Appl. 35 (21), 15429–15446. http://dx.doi.org/10.1007/s00521-023-08361-
y.

Song, X., Wu, C., Song, S., Stojanovic, V., Tejado, I., 2024. Fuzzy wavelet neural
adaptive finite-time self-triggered fault-tolerant control for a quadrotor unmanned
aerial vehicle with scheduled performance. Eng. Appl. Artif. Intell. 131, 107832.
http://dx.doi.org/10.1016/j.engappai.2023.107832.

Titolo, L., Moscato, M., Feliú, M.A., Dutle, A., Muñoz, C., 2023. Floating-point round-
off error analysis of safety-critical avionics software. In: Arceri, V., Cortesi, A.,
Ferrara, P., Olliaro, M. (Eds.), Challenges of Software Verification. Springer Nature
Singapore, Singapore, pp. 197–220. http://dx.doi.org/10.1007/978-981-19-9601-
6_11.

Urban, C., Miné, A., 2021. A review of formal methods applied to machine learning.
CoRR abs/2104.02466, URL: https://arxiv.org/abs/2104.02466.

Vereno, D., Harb, J., Neureiter, C., 2023. Paving the way for reinforcement learning
in smart grid co-simulations. In: Software Engineering and Formal Methods. SEFM
2022 Collocated Workshops: AI4EA, F-IDE, CoSim-CPS, CIFMA, LNCS 13765. pp.
242—-257. http://dx.doi.org/10.1007/978-3-031-26236-4_21.

Wang, D., Shen, Z.J., Yin, X., Tang, S., Liu, X., Zhang, C., Wang, J., Rodriguez, J.,
Norambuena, M., 2022. Model predictive control using artificial neural network
for power converters. IEEE Trans. Ind. Electron. 69 (4), 3689–3699. http://dx.doi.
org/10.1109/TIE.2021.3076721.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J., Kolter, J.Z., 2021.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for
complete and incomplete neural network robustness verification. http://dx.doi.org/
10.48550/arXiv.2103.06624.

Xiang, W., Tran, H.-D., Johnson, T.T., 2018. Output reachable set estimation and
verification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29 (11), 5777–5783. http://dx.doi.org/10.1109/TNNLS.2018.2808470.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.-W., Huang, M., Kailkhura, B., Lin, X.,
Hsieh, C.-J., 2020. Automatic perturbation analysis for scalable certified robustness
and beyond. Adv. Neural Inf. Process. Syst. 33, 1129–1141. http://dx.doi.org/10.
5555/3495724.3495820.

Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh, C.-J., Kolter, J.Z., 2022.
General cutting planes for bound-propagation-based neural network verification.
http://dx.doi.org/10.48550/arXiv.2208.05740.

http://dx.doi.org/10.1109/ICECCE61019.2023.10442825
http://dx.doi.org/10.1109/TIE.2015.2455026
http://dx.doi.org/10.1109/MSP.2020.2988436
http://dx.doi.org/10.1109/MSP.2020.2988436
http://dx.doi.org/10.1109/MSP.2020.2988436
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/978-3-319-68167-2_19
http://dx.doi.org/10.1016/j.arcontrol.2022.04.006
http://dx.doi.org/10.1016/j.arcontrol.2022.04.006
http://dx.doi.org/10.1016/j.arcontrol.2022.04.006
http://dx.doi.org/10.1007/978-3-030-59152-6_30
http://dx.doi.org/10.1145/502102.502106
http://dx.doi.org/10.1145/502102.502106
http://dx.doi.org/10.1145/502102.502106
http://dx.doi.org/10.1145/3358228
http://dx.doi.org/10.3390/s21196340
http://dx.doi.org/10.1007/978-3-030-81685-8_11
http://dx.doi.org/10.1145/3302504.3311806
http://dx.doi.org/10.3390/electronics12153283
http://dx.doi.org/10.3390/electronics12153283
http://dx.doi.org/10.3390/electronics12153283
http://dx.doi.org/10.1016/j.neucom.2018.01.002
http://dx.doi.org/10.1016/j.neucom.2018.01.002
http://dx.doi.org/10.1016/j.neucom.2018.01.002
http://dx.doi.org/10.1007/978-3-319-63387-9_5
http://dx.doi.org/10.1007/978-3-030-25540-4_26
http://dx.doi.org/10.1007/978-3-030-25540-4_26
http://dx.doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1007/978-3-031-33170-1_2
http://dx.doi.org/10.48550/arXiv.2302.01404
http://dx.doi.org/10.29007/x38n
http://dx.doi.org/10.1007/978-3-031-37703-7_19
http://dx.doi.org/10.2514/1.D0255
http://dx.doi.org/10.4204/eptcs.310.5
http://dx.doi.org/10.4204/eptcs.310.5
http://dx.doi.org/10.4204/eptcs.310.5
http://dx.doi.org/10.1609/aaai.v32i1.12206
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://refhub.elsevier.com/S0952-1976(24)01396-4/sb34
http://dx.doi.org/10.5555/3454287.3455008
http://dx.doi.org/10.1007/978-3-642-14295-6_24
http://dx.doi.org/10.1016/j.cirp.2021.04.046
http://dx.doi.org/10.1109/ACCESS.2021.3060863
http://dx.doi.org/10.1109/ACCESS.2021.3060863
http://dx.doi.org/10.1109/ACCESS.2021.3060863
http://dx.doi.org/10.1007/978-3-031-60698-4_12
http://dx.doi.org/10.1007/978-3-031-60698-4_12
http://dx.doi.org/10.1007/978-3-031-60698-4_12
http://dx.doi.org/10.48550/arXiv.2405.21063
http://dx.doi.org/10.48550/arXiv.2405.21063
http://dx.doi.org/10.48550/arXiv.2405.21063
http://dx.doi.org/10.1007/978-3-642-86718-7_4
http://dx.doi.org/10.1007/s00521-023-08361-y
http://dx.doi.org/10.1007/s00521-023-08361-y
http://dx.doi.org/10.1007/s00521-023-08361-y
http://dx.doi.org/10.1016/j.engappai.2023.107832
http://dx.doi.org/10.1007/978-981-19-9601-6_11
http://dx.doi.org/10.1007/978-981-19-9601-6_11
http://dx.doi.org/10.1007/978-981-19-9601-6_11
http://arxiv.org/abs/2104.02466
https://arxiv.org/abs/2104.02466
http://dx.doi.org/10.1007/978-3-031-26236-4_21
http://dx.doi.org/10.1109/TIE.2021.3076721
http://dx.doi.org/10.1109/TIE.2021.3076721
http://dx.doi.org/10.1109/TIE.2021.3076721
http://dx.doi.org/10.48550/arXiv.2103.06624
http://dx.doi.org/10.48550/arXiv.2103.06624
http://dx.doi.org/10.48550/arXiv.2103.06624
http://dx.doi.org/10.1109/TNNLS.2018.2808470
http://dx.doi.org/10.5555/3495724.3495820
http://dx.doi.org/10.5555/3495724.3495820
http://dx.doi.org/10.5555/3495724.3495820
http://dx.doi.org/10.48550/arXiv.2208.05740

	Neural networks in closed-loop systems: Verification using interval arithmetic and formal prover
	Introduction
	Related works
	Background
	PVS Language
	Neural network
	PyTorch

	Analytical verification using interval arithmetic
	Translation of neural networks to formal models
	Network specification
	Network constraints and properties

	Integration inside PyTorch
	Automatic theory generation
	Interval arithmetic computation
	A small example of the two techniques
	Limits of the PVS theory generation and proof

	Use case: adaptive cruise control with surrogated controller
	Modeling and proving properties for the neural network
	Evaluation of the neural network bounds
	Closed-loop verification
	Limitations and scalability of the approach

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

