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A B S T R A C T

Computer Vision (CV) labeling problems play a pivotal role in low-level vision. For decades, it has been
known that these problems can be elegantly formulated as discrete energy-minimization problems derived
from probabilistic graphical models such as Markov Random Fields (MRFs). Despite recent advances in MRF
inference algorithms (such as graph-cut and message-passing methods), the resulting energy-minimization
problems are generally viewed as intractable. The emergence of quantum computations, which offer the
potential for faster solutions to certain problems than classical methods, has led to an increased interest
in utilizing quantum properties to overcome intractable problems. Recently, there has also been a growing
interest in Quantum Computer Vision (QCV), hoping to provide a credible alternative/assistant to deep learning
solutions. This study investigates a new Quantum Annealing-based inference algorithm for CV discrete energy
minimization problems. Our contribution is focused on Stereo Matching as a significant CV labeling problem. As
a proof of concept, we also use a hybrid quantum–classical solver provided by D-Wave System to compare our
results with the best classical inference algorithms in the literature. Our results show that Quantum Annealing
can yield promising results for Stereo Matching problems, with improved accuracy on certain stereo images
and competitive performance on others.
1. Introduction

Computer Vision (CV) is a field of study focusing on how computers
gain high-level perception from digital images/videos, which can help
decision-making in real-world environments. While humans routinely
interpret the environment, enabling computers to perceive the real
world from its representation through images/videos remains a largely
unsolved problem. Many problems in CV are formulated as labeling
problems. A CV labeling problem consists of a set of image features
(such as pixels, edges, or image segments) on which we want to
estimate quantities from a set of labels [1] (such as intensity in Image
Restoration or disparity in Stereo Matching and Motion). Generally, CV
labeling problems are modeled by a discrete minimization problem,
where an objective function is defined to be optimized over a set of
possible labeling solutions. When this objective function measures the
badness, the optimization problem is often called energy minimization,
and the objective function is referred to as an energy function [2].
Given the intrinsically tricky nature of CV minimization problems,
researchers have always been looking for efficient algorithms to ap-
proximate the optimal solution as fast and accurately as possible. Thus,
there has been significant development in minimization algorithms for
CV problems from the classical methods in the 1990s, such as Simulated
Annealing [3], Mean-field Annealing [4], and Iterated Conditional
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Modes (ICM) [5] to the recent state-of-the-art algorithms, such as
graph-cut based [6–11] and message-passing based [12–14] approaches
(we refer interested readers to the most recent comparative studies
on CV minimization algorithms [15–19]). Despite being extensively
researched and even considering the most recent advances using deep
learning-based strategies [20], which are computationally expensive,
CV labeling problems are still considered open problems with no pre-
fect (optimal) solutions due to the extensive range of mathematics
involved and the complexity of recovering unknowns from insufficient
information.

Therefore, researchers have always been looking for alternatives to
tackle the problem. With the advent of quantum computations which
promise potentially lower-time complexity on certain problems than
the best-classical counterparts [21–23], recent studies have focused
on leveraging quantum properties to overcome intractable classical
problems using Quantum Annealing (QA). D-Wave Systems was the
first company to build a Quantum Processing Unit (QPU) that naturally
approximates the ground state of a particular problem representation,
namely Ising model [24]. The importance of Ising models is that
one can solve a variety of NP-hard optimization problems by find-
ing the corresponding ground state [25–27]. Despite the promising
vailable online 24 May 2024
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experiments [21,22], D-Wave QPUs are specifically designed to solve
optimization problems, making them less versatile than other quan-
tum computation approaches. This restricts their application domain
primarily to optimization and sampling tasks, while they may not
be suitable for more general-purpose computing requirements. Also,
D-Wave QPUs exhibit limited qubit connectivity, and the scarcity of
available qubits has been consistently challenging, from the 128-qubit
D-Wave One built in 2011 to the newly released 5000-qubit D-Wave
Advantage. Therefore, large CV problems involving highly non-convex
functions in a search space of many thousands of dimensions have
not been widely explored to see if QA can provide advantages in
real-world CV problems. In recent years, there has been a growing
interest in Quantum Computer Vision (QCV), largely fueled by recent
advancements in D-Wave QPU architectures and their capabilities in
solving optimization problems, such as Classification [28–32], Synchro-
nization [33,34], Tracking [35], Fitting [36,37], Detection [38], and

atching [39–43] problems. However, each method employs a distinct
uantum model to represent the respective CV problem, allowing it to
e minimized on a D-Wave QPU. A versatile framework for converting a
V problem into an appropriate quantum model holds significant value.
uch a flexible solution not only simplifies the process of adapting
arious CV problems for quantum computation but also opens up
ew avenues for harnessing the power of quantum computation in
ddressing intricate optimization tasks.

In this study, we aim to focus on a challenging labeling problem,
tereo Matching, and provide a general-purpose quantum model that
an be used for any CV labeling problem (such as Image Segmentation,
mage Restoration, Image Registration, Optical Flow, Object Detection,
nd Image Inpainting). Due to the scarcity of available qubits on the
urrent D-Wave QPUs, we use a D-Wave hybrid quantum–classical
olver to show the feasibility of the proposed quantum model once
nough qubits are available. Our findings show that QA can offer
romising results in CV applications compared to the state-of-the-art
V minimization inference algorithms.

The paper is organized as follows: Section 2 briefly introduces
tereo Matching, an important CV labeling problem. In Section 3, we
hift the focus to QA and D-Wave QPUs. Our general-purpose quantum
olution to Stereo Matching and its proof of correctness are presented
n Section 4. We provide experimental results and numerical evaluation

in Section 5. Finally, Section 7 concludes the paper.

2. Stereo matching

The characteristics of binocular vision in humans allow for the
simultaneous observation of a singular object by both eyes. This ability
significantly contributes to the understanding of depth in the brain. The
distance between our eyes, often referred to as ‘‘baseline’’, facilitates
slight variation in the perspective captured by each eye. Despite each
eye observing a nearly identical image, a marginal displacement exists.
The brain uses this displacement to perceive a 3D observation from the
scene. Likewise, a stereo vision system is designed to replicate human
vision mechanisms. This system comprises two horizontal cameras
on the left and right sides, effectively simulating human binocular
perception. Each camera in the system records an image that, while
fundamentally similar, features a certain degree of displacement. This
displacement, often called disparity, signifies the difference in the
position of a 3D point, as observed from two different viewpoints
(the left and right viewpoints) [44]. The main goal of implementing a
stereo vision system is to construct a 3D model using the left and right
stereo images. This procedure may encompass various stages, including
Camera Calibration (optional), Rectification, Stereo Matching, and 3D
Reconstruction [45] as shown in Fig. 1. Camera Calibration is the
rocess of estimating specific parameters of a camera. These param-
ters are used to correct image distortions and determine an accurate
elationship between a 3D point in the scene and its corresponding 2D
55

rojections in the images [46]. Before Stereo Matching, rectifying a pair
Fig. 1. Outline of stereo-vision steps: Calibration (optional), Rectification, Stereo
Matching, and 3D Reconstruction.

of stereo images is essential to reduce the complexity of the underlying
problem. The main goal of Stereo Matching is to match a given pixel in
the left image with its corresponding pixel in the right image, where
the corresponding pixels are the same projections of a 3D point in
the real world. This process can be performed by searching for the
corresponding pixels in a 2D search space, which is computationally
expensive. Rectification transforms the 2D search space into a 1D
search space. This significantly simplifies the correspondence problem,
as the search for matching pixels can be reduced to a 1D search along
the horizontal line of pixels rather than a 2D search in the entire image.
Despite this search-space reduction, Stereo Matching represents the
most computationally demanding component of a stereo vision system.
A Stereo Matching algorithm estimates a disparity value for each pixel
in the left image to determine its corresponding pixel in the right
image. The final output is a disparity map in which regions with higher
disparity values belong to real-world objects closer to the cameras,
whereas those with lower disparity values belong to real-world objects
farther away from the cameras. Regarding visualization, regions nearer
and with greater disparity values appear brighter than those farther
away with smaller disparity values (see Fig. 1).

Stereo Matching methods are broadly categorized into global and
local approaches. While local methods prioritize speed, often at the
cost of accuracy due to susceptibilities like local ambiguities and oc-
clusions, global methods comprehensively consider the entire image
during disparity computation. Although computationally demanding,
they effectively address challenges such as occluded and textureless
regions [44]. These methods typically lean on probabilistic graphical
models, a potent blend of probability and graph theory, for their
formalism [47]. Based on the defined probabilistic graphical model,
an energy function is modeled which can be minimized to solve the
Stereo Matching problem [47, p. 1612]. In the following, we provide
the general form of a global Stereo Matching energy function, which
can be adapted for any CV labeling problem (see the recent comparative
study on CV labeling problems [19] for more information).

Let 𝐼𝑙 and 𝐼𝑟 be a pair of 𝑛×𝑚 stereo images, and 𝐷 = {𝑑𝑚𝑖𝑛,… , 𝑑𝑚𝑎𝑥}
e a set of positive integers, where 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the lowest
nd highest possible disparity values, respectively. Considering the left
mage 𝐼𝑙 as the reference for which we want to compute a disparity
ap, the set of pixels is defined as (1). We also initialize 𝑁 as a
-neighborhood system defined in (2).

𝑃 = {(𝑖, 𝑗) ∣ 𝑖 ∈ {0,… , 𝑛 − 1}, 𝑗 ∈ {0,… , 𝑚 − 1}}, (1)

𝑁 = {{(𝑖, 𝑗), (𝑖′, 𝑗′)} ∣ (𝑖, 𝑗) ∈ 𝑃 , (2)
(𝑖′, 𝑗′) ∈ {(𝑖 ± 1, 𝑗), (𝑖, 𝑗 ± 1)}},

where, 0 ≤ 𝑖′ < 𝑛, 0 ≤ 𝑗′ < 𝑚. In a global Stereo Matching model,
the Stereo Matching problem is modeled by a labeling problem where
each pixel in 𝑃 is labeled by a disparity value in 𝐷 [1, p. 5]. In fact, a
‘‘labeling’’ involves mapping from 𝑃 to 𝐷. Such a labeling problem is
defined by a discrete optimization problem, where an energy function is
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defined to be minimized over a set of possible labeling solutions. This
energy function has two terms. The first term penalizes the solutions
when inconsistent with the data, and the second term imposes some
constraints on spatial coherence [18, p. 1]. Let 𝐰 ∈ 𝐷𝑛×𝑚 be a vector of
variables defined as 𝐰 = (𝑤𝑖,𝑗 )(𝑖,𝑗)∈𝑃 , where 𝑤𝑖,𝑗 ∈ 𝐷. The global Stereo
Matching energy function 𝐹 ∶ 𝐷𝑛×𝑚 → R+ is defined as (3).

𝐹 (𝐰) =
∑

(𝑖,𝑗)∈𝑃
𝜃{𝑖,𝑗}(𝑤𝑖,𝑗 ) + 𝜆

∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁
𝛿(𝑤𝑖,𝑗 , 𝑤𝑖′ ,𝑗′ ) (3)

where,

𝜃𝑖,𝑗 (𝑤𝑖,𝑗 ) =
|

|

|

𝐼𝑙(𝑖, 𝑗) − 𝐼𝑟(𝑖 −𝑤𝑖,𝑗 , 𝑗)
|

|

|

,

(𝑤𝑖,𝑗 , 𝑤𝑖′ ,𝑗′ ) =
{

0, if 𝑤𝑖,𝑗 = 𝑤𝑖′ ,𝑗′ ;
1, otherwise.

he first term is the Sum of Absolute Difference (SAD) matching cost
unction defined by 𝜃{𝑖,𝑗} ∶ 𝐷 → R+. When 𝜃{𝑖,𝑗}(𝑤𝑖,𝑗 ) is (or close
o) zero, it means the pixel (𝑖, 𝑗) in the left image matches the pixel
𝑖 − 𝑤𝑖,𝑗 , 𝑗) in the right image, and they are more likely to be the
ame projections of a 3D point in the real world. In the second term,
∶ 𝐷2 → {0, 1} is the penalty function that penalizes the variation of

he disparities, adding one when the allocated disparities to a pair of
eighboring pixels are not equal and zero otherwise. The second term
ssumes that the disparities of a neighborhood of pixels present some
oherence and generally do not change abruptly [48]. Furthermore,
∈ R+, known as the smoothness factor, weighs the penalties given

y the second term.
We aim to provide a general-purpose quantum model for the defined

lobal Stereo Matching problem (3), which can be adapted to any CV
abeling problem. Thus, we first give the preliminaries to describe this
uantum model.

. Quantum annealing

QA [49] is a specialized optimization technique that leverages
rinciples from quantum mechanics to solve complex computational
roblems. In this model, quantum bits (qubits) are particles in a quan-
um dynamical system that evolve based on special forces acting on
hem. These forces are either internal (from interactions among qubits)
r external (from other sources). Each state of a register of qubits has
nergy based on the applied forces. A time-dependent Hamiltonian is a
athematical representation of a system, providing information about

he system’s energy and detailing the forces acting upon it at any given
ime [24]. QA is a computational technique employed to discover the
tate of the system with the minimum energy as determined by the
ime-dependent Hamiltonian. Consequently, QA constitutes a compu-
ational paradigm known for its efficiency in addressing optimization
roblems and providing approximations to the optimal solutions. It is
nspired by the concept of annealing in metallurgy, where a material
s slowly cooled to minimize defects and reach a low-energy state. In
A, this cooling process is simulated by a QPU known as a quantum
nnealer which is based on a time-dependent Hamiltonian 𝐻(𝑡) that has
hree components [24]: Initial Hamiltonian 𝐻𝐼 , where all qubits are in a
uperposition state. Problem Hamiltonian 𝐻𝑝, where the specific forces

are defined to encode the objective function. The lowest-energy state of
𝐻𝑝 is the solution that minimizes the objective function. Adiabatic path
𝑠(𝑡), which is a smooth function that decreases from 1 to 0, such as 𝑠(𝑡) =
− 𝑡

𝑡𝑓
, where 𝑠(𝑡) decreases from 1 to 0 as 𝑡 increases from 0 to some

lapsed time 𝑡𝑓 . During QA, the Initial Hamiltonian is slowly evolved
long the Adiabatic path to the Problem Hamiltonian as 𝐻(𝑡) = 𝑠(𝑡)𝐻𝐼 +
1− 𝑠(𝑡))𝐻𝑝 [24], decreasing the influence of 𝐻𝐼 over time to reach 𝐻𝑃

as 𝑠(𝑡) goes from 1 to 0. D-Wave Systems was the first company to build
a quantum annealer. To minimize/maximize an objective function
using QA and a D-Wave QPU, it should be in a standard model like Ising
or Quadratic Unconstrained Binary Optimization (QUBO) models [24].
Given a vector of 𝑛 binary variables as 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ {0, 1}𝑛, a

𝑇 𝑛
56

QUBO model is represented as 𝐻𝑞𝑢𝑏𝑜(𝐱) = 𝐱 𝐐𝐱, where {0, 1} is a set
f 𝑛 binary values, and 𝐐 is an 𝑛 × 𝑛 matrix that can be chosen to be
pper-diagonal. Therefore, 𝐻𝑞𝑢𝑏𝑜(𝐱) can be reformulated as (4).

𝑞𝑢𝑏𝑜(𝐱) =
∑

𝑖
𝐐𝑖,𝑖𝑥𝑖 +

∑

𝑖<𝑗
𝐐𝑖,𝑗𝑥𝑖𝑥𝑗 . (4)

he diagonal terms 𝐐𝑖,𝑖 are the linear coefficients acting as the external
orces, and the off-diagonal terms 𝐐𝑖,𝑗 are the quadratic coefficients for
he internal forces [24].

. Quantum stereo matching

We introduce an equivalent QUBO model to the global Stereo
atching minimization problem (3) and provide proof of its correct-

ess. Our idea draws inspiration from the approach employed by
he D-Wave Ocean Software Development Kit (SDK) when handling
iscrete objective functions [50]. We first allocate |𝐷| binary variables
o each pixel (𝑖, 𝑗) ∈ 𝑃 , where |𝐷| is the number of elements in 𝐷,
≤ 𝑖 ≤ 𝑛 − 1, and 0 ≤ 𝑗 ≤ 𝑚 − 1. Therefore, we define 𝐱 ∈ {0, 1}𝑛𝑚|𝐷| as
vector of 𝑛𝑚|𝐷| binary variables such that 𝐱 = (𝑥𝑖,𝑗,𝑑 ) for all (𝑖, 𝑗) ∈ 𝑃

nd 𝑑 ∈ 𝐷. Let our QUBO model be defined as (5).

(𝐱) = 𝛼
∑

(𝑖,𝑗)∈𝑃

(

1 −
∑

𝑑∈𝐷
𝑥𝑖,𝑗,𝑑

)2

+
∑

(𝑖,𝑗)∈𝑃

∑

𝑑∈𝐷
𝜃{𝑖,𝑗}(𝑑)𝑥𝑖,𝑗,𝑑 (5)

+ 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁

∑

𝑑1∈𝐷

∑

𝑑2∈𝐷
𝛿(𝑑1, 𝑑2)𝑥𝑖,𝑗,𝑑1𝑥𝑖′ ,𝑗′ ,𝑑2 ,

here 𝛼 >
(

∑

(𝑖,𝑗)∈𝑃 max{𝜃{𝑖,𝑗}(𝑑) ∣ 𝑑 ∈ 𝐷}
)

+ 𝜆|𝑁|, and |𝑁| is the
umber of elements in 𝑁 . We set 𝐱∗ = arg min𝐱 𝐻(𝐱) and define a vector
f 𝑛𝑚 integer values as 𝐰∗ = (𝑤∗

𝑖,𝑗 )(𝑖,𝑗)∈𝑃 , where 𝑤∗
𝑖,𝑗 = 𝑑 if 𝑥∗𝑖,𝑗,𝑑 = 1.

hen, 𝐰∗ minimizes the global Stereo Matching energy function (3).

roof of correctness

Eq. (5) has three parts. The first part guarantees each pixel is
ssigned a unique disparity value from 𝐷. The second calculates the
ost of the assigned disparity values to the pixels. The third part
ncodes the defined contextual constraint.

efinition 1. 𝐱 is called feasible if and only if ∑𝑑∈𝐷 𝑥𝑖,𝑗,𝑑 = 1 for all
ixels (𝑖, 𝑗) ∈ 𝑃 . We denote a feasible 𝐱 by 𝐱′.

Definition 1 states that given a pixel (𝑖, 𝑗) ∈ 𝑃 , its corresponding
ector of binary variables (𝑥′𝑖,𝑗,𝑑𝑚𝑖𝑛 ,… , 𝑥′𝑖,𝑗,𝑑𝑚𝑎𝑥 ) has only one value of
‘1’’ in its values, making it possible to label each pixel uniquely by a
isparity 𝑑 ∈ 𝐷. Hence, the allocated disparity to a pixel (𝑖, 𝑗) ∈ 𝑃 is 𝑑
f 𝑥′𝑖,𝑗,𝑑 = 1.

efinition 2. Given 𝐱′, the corresponding integer vector 𝐰′ =
(𝑤′

𝑖,𝑗 )(𝑖,𝑗)∈𝑃 is called a labeling, where 𝑤′
𝑖,𝑗 = 𝑑 if 𝑥′𝑖,𝑗,𝑑 = 1.

Lemma 1. Given a feasible 𝐱′ and its corresponding labeling 𝐰′, the
equality 𝐻(𝐱′) = 𝐹 (𝐰′) holds, where 𝐹 is the global Stereo Matching energy
function in (3).

Proof. Considering 𝐻(𝐱′) in (5),

• Since 𝐱′ is feasible, ∑

𝑑∈𝐷 𝑥′𝑖,𝑗,𝑑 = 1 for all pixels (𝑖, 𝑗) ∈ 𝑃 by
Definition 1. Therefore, we have

𝛼
∑

(𝑖,𝑗)∈𝑃

(

1 −
∑

𝑑∈𝐷
𝑥′𝑖,𝑗,𝑑

)2

= 𝛼
∑

(𝑖,𝑗)∈𝑃
(1 − 1)2 = 0.

• Given a pixel (𝑖, 𝑗) ∈ 𝑃 , only one variable in the vector
(𝑥′𝑖,𝑗,𝑑𝑚𝑖𝑛 ,… , 𝑥′𝑖,𝑗,𝑑𝑚𝑎𝑥 ) is one, and all the others are zero. This
non-zero variable is 𝑥′

𝑖,𝑗,𝑤′
𝑖,𝑗

by Definition 2. Therefore, we have
∑ ∑

𝜃{𝑖,𝑗}(𝑑)𝑥′𝑖,𝑗,𝑑 =
∑

𝜃{𝑖,𝑗}(𝑤′
𝑖,𝑗 )𝑥

′
𝑖,𝑗,𝑤′
(𝑖,𝑗)∈𝑃 𝑑∈𝐷 (𝑖,𝑗)∈𝑃 𝑖,𝑗
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=
∑

(𝑖,𝑗)∈𝑃
𝜃{𝑖,𝑗}(𝑤′

𝑖,𝑗 ).

• Given {(𝑖, 𝑗), (𝑖′, 𝑗′)} ∈ 𝑁 , the two corresponding vectors of binary
variables are

– (𝑖, 𝑗) ∶ (𝑥𝑖,𝑗,𝑑𝑚𝑖𝑛 ,… , 𝑥𝑖,𝑗,𝑑𝑚𝑎𝑥 )
– (𝑖′, 𝑗′) ∶ (𝑥′𝑖′ ,𝑗′ ,𝑑𝑚𝑖𝑛 ,… , 𝑥′𝑖′ ,𝑗′ ,𝑑𝑚𝑎𝑥 )

Since 𝐱′ is feasible, only one of the variables in each vector is one,
and the others are zero. These variables are 𝑥′

𝑖,𝑗,𝑤′
𝑖,𝑗

and 𝑥′
𝑖′ ,𝑗′ ,𝑤′

𝑖′𝑗′
,

respectively, by Definition 2. Thus, we can write

𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁

∑

𝑑1∈𝐷

∑

𝑑2∈𝐷
𝛿(𝑑1, 𝑑2)𝑥′𝑖,𝑗,𝑑1𝑥

′
𝑖′ ,𝑗′ ,𝑑2

= 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁
𝛿(𝑤′

𝑖,𝑗 , 𝑤
′
𝑖′𝑗′ )𝑥

′
𝑖,𝑗,𝑤′

𝑖,𝑗
𝑥′𝑖′ ,𝑗′ ,𝑤′

𝑖′𝑗′

= 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁
𝛿(𝑤′

𝑖,𝑗 , 𝑤
′
𝑖′𝑗′ ).

Therefore, we can rewrite 𝐻(𝐱′) as follows.

𝐻(𝐱′) =
∑

(𝑖,𝑗)∈𝑃
𝜃{𝑖,𝑗}(𝑤′

𝑖,𝑗 ) + 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁
𝛿(𝑤′

𝑖,𝑗 , 𝑤
′
𝑖′𝑗′ ) = 𝐹 (𝐰′). □

Lemma 2. Let 𝐱∗ = arg min𝐱 𝐻(𝐱). 𝐱∗ is feasible.

Proof. For ease of reference, we rewrite 𝐻(𝐱) as follows:

𝐻(𝐱) = 𝛼(𝐱) + (𝐱),

where

(𝐱) =
∑

(𝑖,𝑗)∈𝑃

(

1 −
∑

𝑑∈𝐷
𝑥𝑖,𝑗,𝑑

)2

,

(𝐱) =
∑

(𝑖,𝑗)∈𝑃

∑

𝑑∈𝐷
𝜃{𝑖,𝑗}(𝑑)𝑥𝑖,𝑗,𝑑

+ 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁

∑

𝑑1∈𝐷

∑

𝑑2∈𝐷
𝛿(𝑑1, 𝑑2)𝑥𝑖,𝑗,𝑑1𝑥𝑖′ ,𝑗′ ,𝑑2 .

Towards a contradiction, suppose that 𝐱∗ is not feasible. In this case,
(𝐱∗) ≠ 0 and it is non-negative. Therefore,

𝐻(𝐱∗) = 𝛼(𝐱∗) + (𝐱∗). (6)

Given a feasible 𝐱′, (𝐱′) = 0, and we have

𝐻(𝐱′) = (𝐱′). (7)

Since 𝐱′ is feasible, (𝐱′) adds penalty values up to a maximum of
(

∑

(𝑖,𝑗)∈𝑃 max{𝜃𝑖,𝑗 (𝑑) ∣ 𝑑 ∈ 𝐷}
)

+ 𝜆|𝑁|. Considering (7), we have

𝐻(𝐱′) ≤
(

∑

(𝑖,𝑗)∈𝑃
max{𝜃𝑖,𝑗 (𝑑) ∣ 𝑑 ∈ 𝐷}

)

+ 𝜆|𝑁|. (8)

We know that 𝛼 >
(

∑

(𝑖,𝑗)∈𝑃 max{𝜃𝑖,𝑗 (𝑑) ∣ 𝑑 ∈ 𝐷}
)

+ 𝜆|𝑁|, (𝐱∗) is
non-zero and non-negative, and (𝐱∗) is non-negative. Considering (6),
we can write

𝐻(𝐱∗) = 𝛼(𝐱∗) + (𝐱∗) (9)

>

(

∑

(𝑖,𝑗)∈𝑃
max{𝜃𝑖,𝑗 (𝑑) ∣ 𝑑 ∈ 𝐷}

)

+ 𝜆|𝑁|. (10)

The following statement is true by (8) and (9): 𝐻(𝐱′) < 𝐻(𝐱∗), which
is a contradiction. Therefore, 𝐱∗ is feasible. □

Theorem 1. Given 𝐰∗ as the corresponding labeling of 𝐱∗, 𝐰∗ minimizes
the global Stereo Matching energy function 𝐹 defined in (3).

Proof. Towards a contradiction, we suppose that 𝐰∗ does not minimize
𝐹 . In this case, there must be a feasible 𝐱′ for which its correspond-

′ ′ ∗
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ing labeling 𝐰 minimizes 𝐹 . Therefore, we have 𝐹 (𝐰 ) < 𝐹 (𝐰 ).
Since 𝐱′ and 𝐱∗ are both feasible (see Lemma 2), we have 𝐻(𝐱′) <
𝐻(𝐱∗) by Lemma 1. This is a contradiction because in this case 𝐱∗ ≠
arg min𝐱 𝐻(𝐱). □

Eq. (5) is versatile and can be adapted for a variety of CV label-
ing problems by replacing 𝑃 with any desired set of image features
and replacing 𝐷 with an appropriate set of labels depending on the
application. Then, the first and second terms in Eq. (3) can be defined
accordingly. The modified QUBO remains consistent with the QUBO
model described in Eq. (5). This adaptability showcases the broader
applicability of the model, making it a flexible tool for addressing a
range of CV labeling challenges.

Example 1. We provide a simple example to show how our quantum
model (5) can be modeled and minimized via QA. Fig. 2(a) and Fig. 2(b)
show a pair of (3×4)-sized stereo images with 𝐷 = {0, 1}. The intensity
values for the left and right images are shown on the pixels. The
corresponding pixel coordinates are illustrated in Fig. 2(c). Without
loss of generality, we ignore the first column of pixels in the left image
since 𝑑𝑚𝑎𝑥 is 1, and we would obtain negative coordinates to match this
column in the right image. The main goal is to compute the disparity
map allocated to the shown red square in Fig. 2(a). Fig. 2(d) shows the
ground truth disparity map.

Considering (1) and (2), we first define 𝑃 and 𝑁 follows:

𝑃 ={(1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (3, 1), (1, 2),

(2, 2), (3, 2)}

𝑁 ={{(1, 0), (2, 0)}, {(1, 0), (1, 1)}, {(2, 0), (3, 0)},

{(2, 0), (2, 1)}, {(3, 0), (3, 1)}, {(1, 1), (2, 1)},

{(1, 1), (1, 2)}, {(2, 1), (3, 1)}, {(2, 1), (2, 2)},

{(3, 1), (3, 2)}, {(1, 2), (2, 2)}, {(2, 2), (3, 2)}}.

The numbers of pixels and disparities are 9 and 2, respectively. There-
fore, We define a vector of 18 binary variables as 𝐱 = {0, 1}18:

𝐱 = (𝑥1,0,0, 𝑥1,0,1, 𝑥2,0,0, 𝑥2,0,1, 𝑥3,0,0, 𝑥3,0,1, 𝑥1,1,0,

𝑥1,1,1, 𝑥2,1,0, 𝑥2,1,1, 𝑥3,1,0, 𝑥3,1,1, 𝑥1,2,0, 𝑥1,2,1,

𝑥2,2,0, 𝑥2,2,1, 𝑥3,2,0, 𝑥3,2,1).

We set 𝜆 = 10 and 𝛼 = 200 by which we have
𝛼 >

(

∑

(𝑖,𝑗)∈𝑃 max{𝜃𝑖,𝑗 (𝑑)|𝑑 ∈ 𝐷}
)

+ 𝜆|𝑁|. The QUBO model (5) is
formulated as follows:

𝐻(𝐱) = 200
∑

(𝑖,𝑗)∈𝑃

(

1 −
∑

𝑑∈𝐷
𝑥𝑖,𝑗,𝑑

)2

+
∑

(𝑖,𝑗)∈𝑃

∑

𝑑∈𝐷
𝜃𝑖,𝑗 (𝑑)𝑥𝑖,𝑗,𝑑

+ 10
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁

∑

𝑑1∈𝐷

∑

𝑑2∈𝐷
𝛿(𝑑1, 𝑑2)𝑥𝑖,𝑗,𝑑1𝑥𝑖′ ,𝑗′ ,𝑑2 .

The QUBO model 𝐻(𝐱) has three terms denoted by 𝐻1, 𝐻2, and 𝐻3 from
left to right, respectively. The following shows each term’s expansion
separately. We then add them all at the end. We start with the first
term denoted by 𝐻1.

𝐻1(𝐱) = 200( − 𝑥1,0,0 − 𝑥1,0,1 + 2𝑥1,0,0𝑥1,0,1 + 1

− 𝑥2,0,0 − 𝑥2,0,1 + 2𝑥2,0,0𝑥2,0,1 + 1

− 𝑥3,0,0 − 𝑥3,0,1 + 2𝑥3,0,0𝑥3,0,1 + 1

− 𝑥1,1,0 − 𝑥1,1,1 + 2𝑥1,1,0𝑥1,1,1 + 1

− 𝑥2,1,0 − 𝑥2,1,1 + 2𝑥2,1,0𝑥2,1,1 + 1

− 𝑥3,1,0 − 𝑥3,1,1 + 2𝑥3,1,0𝑥3,1,1 + 1

− 𝑥1,2,0 − 𝑥1,2,1 + 2𝑥1,2,0𝑥1,2,1 + 1

− 𝑥2,2,0 − 𝑥2,2,1 + 2𝑥2,2,0𝑥2,2,1 + 1

− 𝑥3,2,0 − 𝑥3,2,1 + 2𝑥3,2,0𝑥3,2,1 + 1)
Next, we expand the second term as 𝐻2.
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𝐻

Fig. 2. (a) the left stereo image, (b) the right stereo image, (c) the pixel coordinates, (d) the corresponding disparity map.
2(𝐱) =
= |𝐼𝑙(1, 0) − 𝐼𝑟(1, 0)|𝑥1,0,0 + |𝐼𝑙(1, 0) − 𝐼𝑟(0, 0)|𝑥1,0,1
+ |𝐼𝑙(2, 0) − 𝐼𝑟(2, 0)|𝑥2,0,0 + |𝐼𝑙(2, 0) − 𝐼𝑟(1, 0)|𝑥2,0,1
+ |𝐼𝑙(3, 0) − 𝐼𝑟(3, 0)|𝑥3,0,0 + |𝐼𝑙(3, 0) − 𝐼𝑟(2, 0)|𝑥3,0,1
+ |𝐼𝑙(1, 1) − 𝐼𝑟(1, 1)|𝑥1,1,0 + |𝐼𝑙(1, 1) − 𝐼𝑟(0, 1)|𝑥1,1,1
+ |𝐼𝑙(2, 1) − 𝐼𝑟(2, 1)|𝑥2,1,0 + |𝐼𝑙(2, 1) − 𝐼𝑟(1, 1)|𝑥2,1,1
+ |𝐼𝑙(3, 1) − 𝐼𝑟(3, 1)|𝑥3,1,0 + |𝐼𝑙(3, 1) − 𝐼𝑟(2, 1)|𝑥3,1,1
+ |𝐼𝑙(1, 2) − 𝐼𝑟(1, 2)|𝑥1,2,0 + |𝐼𝑙(1, 2) − 𝐼𝑟(0, 2)|𝑥1,2,1
+ |𝐼𝑙(2, 2) − 𝐼𝑟(2, 2)|𝑥2,2,0 + |𝐼𝑙(2, 2) − 𝐼𝑟(1, 2)|𝑥2,2,1
+ |𝐼𝑙(3, 2) − 𝐼𝑟(3, 2)|𝑥3,2,0 + |𝐼𝑙(3, 2) − 𝐼𝑟(2, 2)|𝑥3,2,1

𝐻2(𝐱) = 50𝑥1,0,0 + 50𝑥2,0,1 + 50𝑥2,1,0
+ 50𝑥3,1,1 + 50𝑥1,2,0 + 50𝑥2,2,1.

Finally, we compute the third term as 𝐻3:

𝐻3(𝐱) =
= 10(𝑥1,0,0𝑥2,0,1 + 𝑥1,0,1𝑥2,0,0
+ 𝑥1,0,0𝑥1,1,1 + 𝑥1,0,1𝑥1,1,0 + 𝑥2,0,0𝑥3,0,1
+ 𝑥2,0,1𝑥3,0,0 + 𝑥2,0,0𝑥2,1,1 + 𝑥2,0,1𝑥2,1,0
+ 𝑥3,0,0𝑥3,1,1 + 𝑥3,0,1𝑥3,1,0 + 𝑥1,1,0𝑥2,1,1
+ 𝑥1,1,1𝑥2,1,0 + 𝑥1,1,0𝑥1,2,1 + 𝑥1,1,1𝑥1,2,0
+ 𝑥2,1,0𝑥3,1,1 + 𝑥2,1,1𝑥3,1,0 + 𝑥2,1,0𝑥2,2,1
+ 𝑥2,1,1𝑥2,2,0 + 𝑥3,1,0𝑥3,2,1 + 𝑥3,1,1𝑥3,2,0
+ 𝑥1,2,0𝑥2,2,1 + 𝑥1,2,1𝑥2,2,0 + 𝑥2,2,0𝑥3,2,1
+ 𝑥2,2,1𝑥3,2,0).

Adding the three terms together, we have the main QUBO model as
follows:

𝐻(𝐱) = − 150𝑥1,0,0 − 200𝑥1,0,1 − 200𝑥2,0,0 − 150𝑥2,0,1
− 200𝑥3,0,0 − 200𝑥3,0,1 − 200𝑥1,1,0 − 200𝑥1,1,1
− 150𝑥2,1,0 − 200𝑥2,1,1 − 200𝑥3,1,0 − 150𝑥3,1,1
− 150𝑥1,2,0 − 200𝑥1,2,1 − 200𝑥2,2,0 − 150𝑥2,2,1
− 200𝑥3,2,0 − 200𝑥3,2,1
+ 400𝑥1,0,0𝑥1,0,1 + 400𝑥2,0,0𝑥2,0,1
+ 400𝑥3,0,0𝑥3,0,1 + 400𝑥1,1,0𝑥1,1,1
+ 400𝑥2,1,0𝑥2,1,1 + 400𝑥3,1,0𝑥3,1,1
+ 400𝑥1,2,0𝑥1,2,1 + 400𝑥2,2,0𝑥2,2,1
+ 400𝑥3,2,0𝑥3,2,1 + 1800

+ 10𝑥1,0,0𝑥2,0,1 + 10𝑥1,0,1𝑥2,0,0 + 10𝑥1,0,0𝑥1,1,1
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+ 10𝑥1,0,1𝑥1,1,0 + 10𝑥2,0,0𝑥3,0,1 + 10𝑥2,0,1𝑥3,0,0
+ 10𝑥2,0,0𝑥2,1,1 + 10𝑥2,0,1𝑥2,1,0 + 10𝑥3,0,0𝑥3,1,1
+ 10𝑥3,0,1𝑥3,1,0 + 10𝑥1,1,0𝑥2,1,1 + 10𝑥1,1,1𝑥2,1,0
+ 10𝑥1,1,0𝑥1,2,1 + 10𝑥1,1,1𝑥1,2,0 + 10𝑥2,1,0𝑥3,1,1
+ 10𝑥2,1,1𝑥3,1,0 + 10𝑥2,1,0𝑥2,2,1 + 10𝑥2,1,1𝑥2,2,0
+ 10𝑥3,1,0𝑥3,2,1 + 10𝑥3,1,1𝑥3,2,0 + 10𝑥1,2,0𝑥2,2,1
+ 10𝑥1,2,1𝑥2,2,0 + 10𝑥2,2,0𝑥3,2,1 + 10𝑥2,2,1𝑥3,2,0.

Giving 𝐻(𝐱) to the D-Wave Ocean SDK for the QPU minimization, we
obtain the optimal solution 𝐱∗ = arg min𝐱 𝐻(𝐱) as follows:

• 𝑥∗1,0,0 = 0,
• 𝑥∗1,0,1 = 1,
• 𝑥∗2,0,0 = 1,
• 𝑥∗2,0,1 = 0,
• 𝑥∗3,0,0 = 1,
• 𝑥∗3,0,1 = 0,

• 𝑥∗1,1,0 = 0,
• 𝑥∗1,1,1 = 1,
• 𝑥∗2,1,0 = 0,
• 𝑥∗2,1,1 = 1,
• 𝑥∗3,1,0 = 1,
• 𝑥∗3,1,1 = 0,

• 𝑥∗1,2,0 = 0,
• 𝑥∗1,2,1 = 1,
• 𝑥∗2,2,0 = 1,
• 𝑥∗2,2,1 = 0,
• 𝑥∗3,2,0 = 1,
• 𝑥∗3,2,1 = 0,

We used the D-Wave default parameter settings for the hardware
properties and initialized the number of sample-reads as 1000. Given a
pixel (𝑖, 𝑗) ∈ 𝑃 , if 𝑥∗𝑖,𝑗,𝑑 = 1 for 𝑑 ∈ 𝐷, then 𝑑 is the allocated disparity
to the pixel (𝑖, 𝑗). Therefore, we have the following disparities for the
pixels:

• (1, 0) ← 1
• (2, 0) ← 0
• (3, 0) ← 0
• (1, 1) ← 1
• (2, 1) ← 1

• (3, 1) ← 0

• (1, 2) ← 1

• (2, 2) ← 0

• (3, 2) ← 0

which match the corresponding ground-truth disparities shown in
Fig. 2(d). Fig. 3 illustrates the corresponding D-Wave minor embedding
for the defined QUBO, obtained by the D-Wave Inspector tool.

5. Evaluation and experimental results on stereo image patches

5.1. Qubit complexity

D-Wave quantum computers have showcased remarkable potential
in solving optimization problems. However, one significant challenge
they face is the limited availability of qubits. D-Wave QPUs employ QA
to find/estimate the global minimum of a QUBO/Ising model. While
effective for specific problem types, this approach often requires a
large number of qubits, and the current generation of D-Wave QPUs
have constraints on the number of qubits that can be utilized. Conse-
quently, proposing a QUBO model with fewer variables is paramount
as it addresses the current limitations in qubit availability, enables
the solution of larger and more complex problems, widens access to

QA, and enhances the robustness and practicality of QA technology
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Fig. 3. D-Wave minor embedding for the given QUBO example. (a) the QUBO graph,
and (b) the QPU graph.

in solving real-world optimization challenges. Recall 𝑃 as the set of
ixels for a pair of stereo images with size 𝑛 × 𝑚, and 𝐷 as the set of
ossible disparities values, where |𝑃 | = 𝑛𝑚 and |𝐷| = 𝑘 denotes the

number of elements in 𝑃 and 𝐷, respectively. Given the defined vector
f binary variables in (5), the number of QUBO variables in our general-

purpose quantum model is 𝑛𝑚𝑘. Table 1 compares our quantum model
with the existing labeling-based quantum solutions that can be utilized
for Stereo Matching. Cruz-Santos et al. [39] and Heidari et al. [40]
models are based on the minimum cut problem, and Heidari et al. [51]
pproach reduces a CV labeling problem to the minimum multi-way cut
roblem. Specifically,

• Cruz-Santos et al. [39] formulated a specific type of Stereo Match-
ing problem as a quantum model. They first modeled the Stereo
Matching problem as a labeling problem. Inspired by classical
Stereo Matching approaches, the authors constructed a graph
for which the minimum cut provided the optimal solution for
minimizing the defined objective function. Classically, finding the
minimum cut on an arbitrary undirected weighted graph is trivial,
and the cut with the minimum cost can be precisely calculated in
polynomial time.

• Heidari et al. [40] improved Cruz-Santos et al. quantum model
[39] in terms of number of required variables. They used an
existing quantum model in the literature to find the minimum cut
on an arbitrary weighted graph and then incorporated the model
to solve a Stereo Matching problem. Likewise, the minimization
was to solve a trivial problem, finding the minimum cut on an
undirected weighted graph.

• Inspired by solving a more complex CV problem using QA, Hei-
dari et al. [51] introduced the first quantum model to find the
minimum multi-way cut on an arbitrary weighted graph, which
is known to an NP-Hard problem, and at least by current algo-
rithmic means, cannot be solved in polynomial time on a Turing
Machine. They then defined a CV labeling problem and minimized
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the corresponding quantum model using QA. Their method is
Table 1
Qubit-complexity comparison of the proposed quantum Stereo Matching models.

Model Qubit complexity

[39] 7𝑛𝑚𝑘 + 9𝑛𝑚 − 2𝑛𝑘 − 2𝑚𝑘 − 2𝑛 − 2𝑚 + 2
[40] 𝑛𝑚𝑘 + 𝑛𝑚 + 2
[51] 𝑛𝑚𝑘 + 𝑘2

Ours 𝑛𝑚𝑘

capable of handling Stereo Matching problems. Therefore, we
include their method in our qubit complexity comparisons.

The aim of comparing qubit complexities was to illustrate the supe-
riority of our approach over existing potential quantum solutions. Given
the same Stereo Matching energy function, minimizing these quantum
models is expected to yield identical results due to the same minimiza-
tion approach (QA), with differences only arising from the number of
required variables. Thus, we include a set of classical minimization
methods in our comparison in the next section.

5.2. Experimental results

Once a QUBO model is prepared, it needs to be embedded within the
QPU hardware architecture for the minimization process. Embedding is
the crucial step of mapping QUBO variables onto the available qubits
on the hardware. Embedding can be challenging due to the relatively
limited qubits and the restricted hardware connectivity. Consequently,
it is common to chain two or more qubits together on the QPU to
represent a single QUBO variable. While many real-world applications
can successfully run on the D-Wave QPUs, there are cases where the
input data is too large to be directly solved by QA, primarily because
of the qubit scarcity. To overcome this size limitation, hybrid solvers
combine classical and quantum approaches for problem-solving. D-
Wave hybrid solvers can handle problems with a significantly higher
number of variables than those directly solvable by a D-Wave QPU,
offering a reliable estimate of the future accuracy of D-Wave QPUs once
more qubits become available on the hardware. As a proof of concept,
we utilize the Constrained Quadratic Model (CQM) D-Wave hybrid
solver to minimize the proposed quantum Stereo Matching model. This
solver has the capability of handling up to 500,000 QUBO variables,
but it still poses restrictions on the size of the input stereo images and
the number of disparities that can be processed. Therefore, we had
to use cropped pairs of stereo images to analyze the performance of
the Stereo Matching quantum model. We chose four pairs of stereo
images from 2001-Middlebury image datasets [52], namely Venus and
Bull, Sawtooth, and Barn. We could not use the latest stereo datasets
because of their high disparity range. Given a pair of cropped regions
from recent Middlebury stereo datasets (see Fig. 4), the majority of
regions in both cropped stereo images would be occluded due to a
large disparity range, resulting in only a small portion of the scene
being visible in both images. This makes them not suitable to evaluate
our quantum model due to the simplicity of the defined global Stereo
Matching energy function in (3).

To identify a more common region of interest in both stereo images,
we selected our pairs of stereo images from the 2001 Middlebury image
dataset [52], as well as two ‘‘natural’’ images (Tree and Castle) from
the real world with low disparity ranges to incorporate complex scene
structures into our prepared dataset. Fig. 5 illustrates our prepared
stereo dataset with the corresponding ‘‘ground truths’’. We did not have
ground truths for the natural images since they were not created in con-
trolled laboratory settings like 2001-Middlebury image datasets [52].
Therefore, we incorporated a deep-learning-based model [54] to get
fairly accurate disparity maps to be used as the corresponding ground
truths. Note that we used the gray-scale versions of the shown stereo
images.

We also selected the best-performing and state-of-the-art classi-
cal minimization algorithms commonly used in CV, so that we can
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Fig. 4. A pair of stereo images from 2014-Middlebury image datasets: (a) the
quarter-resolution version of the Australia stereo dataset from 2014-Middlebury image
atasets [53], and (b) the cropped regions of 150 × 150 pixels from the left and right

stereo images, respectively. Most regions in both cropped stereo images are occluded
due to a high disparity range, making them unsuitable for evaluating our minimization
models with the classical counterparts.

compare our quantum model with the classical counterparts. The se-
lected classical algorithms include two move-making methods and two
message-passing methods.

• Move-making methods break down the minimization problem
into sub-problems over subsets of the label space. A move is
defined as a change from one labeling solution to another. These
methods typically start with a random labeling solution and
then iteratively improve the initial labeling solution until no
improvement can be achieved. We selected two well-performing
move-making methods, Swap move [8] and Expansion move [8].

– Swap move algorithm begins with an arbitrary labeling
solution, where each pixel has a label from a set of possible
disparity values. Given a pair of disparities 𝛼, 𝛽 ∈ N, a
move is called a swap move if it takes some subsets of
pixels currently given the disparity 𝛼 and allocates them to
the disparity 𝛽 (and vice versa). The swap move algorithm
terminates at a local minimum where no swap move can
produce a lower energy labeling solution. For each pair
of disparities, minimization is performed by solving the
minimum-cut problem on a specially structured graph.

– Likewise, the Expansion move algorithm starts with an ar-
bitrary labeling. Given a disparity 𝛼 ∈ N, a move is called
an expansion move if it extends the set of pixels with the
disparity 𝛼. This algorithm finds a local minimum such that
there is no expansion move for the disparity 𝛼, by which
a labeling solution with lower energy can be produced.
Similar to the Swap move, minimization is performed based
on finding the minimum cut over a specially structured
graph.

• Message-passing methods are based on graphical models where
messages are defined on the edges of the graph and updated based
on other messages. These messages effectively re-parameterize
the model, enabling local optimizations to converge towards a
globally consistent solution. We selected two well-performing
message-passing methods, Max product Loopy Belief Propagation
(LBP) [13], and Improved Tree Re-weighted Message Passing
(TRW-S) [55].

– Belief Propagation (BP) was initially proposed to solve the
inference problem in a probability distribution, which can
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be defined over different graphical models (such as MRF,
Bayesian networks, or factor graphs) without cycles. BP
equations do not depend on the way that a graphical model
is structured; therefore, nothing can stop us from defining
it for graphical models with cycles. Standard LBP methods
can be categorized into two types based on their message
update rules: sum–product and max-product LBP. The max-
product LBP is more prevalent in Stereo Matching problems
because it can be transformed into a min-sum problem in
negative-log space, consistent with most Stereo Matching
energy functions.

– An alternative message-passing approach is TRW, which is
comparable to LBP techniques. The TRW algorithm requires
a coefficient calculated based on a set of trees from a neigh-
borhood graph of each pixel. When this coefficient is equal
to one, the TRW method becomes equivalent to the standard
LBP. The TRW method uniquely provides a lower bound
estimate for the energy function. This lower bound can be
utilized to assess the proximity of the energy of an optimal
solution. Similar to LBP techniques, TRW can be utilized for
any CV/Stereo-Matching energy function. The initial TRW
method underwent significant improvement [55] and now
is referred to as TRW-S.

We utilized the Middlebury software framework for our classical
mplementations [56]. Considering the global Stereo Matching energy
unction defined in (3), we established an initial 𝜆 = 20 for all the

benchmark minimization algorithms to ensure a fair comparison. Fig. 6
shows the computed disparity maps by the benchmark minimization
algorithms. Next, we define two widely-used metrics [57] to evaluate
the accuracy of our results in comparison to the corresponding ground
truths: the root-mean-squared error (𝑟𝑚𝑠) and the percentage of mis-
matched/bad pixels (bad-𝛽). Given a disparity map  and a ground
truth  defined by 𝑛×𝑚 matrices of integers, 𝑟𝑚𝑠 and bad-𝛽 are defined
as (11).

𝑟𝑚𝑠 =

√

√

√

√

1
𝑛𝑚

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

𝑖,𝑗 − 𝑖,𝑗
)2, (11)

𝑏𝑎𝑑-𝛽 =

(

1
𝑛𝑚

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

|𝑖,𝑗 − 𝑖,𝑗 | > 𝛽
)

)

× 100 (12)

where 𝛽 ∈ R+ is the disparity error tolerance. In the following evalua-
tion, we set 𝛽 to 0.5 and 1.0, named bad-0.5 an bad-1.0, respectively.
Table 2 compares the performance of each minimization algorithm
based on the defined metrics. Given the cropped stereo images, the
results suggest that the quantum model outperformed the classical
counterparts on the Bull, Sawtooth. and Tree datasets, and performed
competitively on the Venus, Barn, and Castle datasets. Our findings
show that QA can offer promising results in CV applications compared
to the state-of-the-art CV minimization inference algorithms. Due to the
scarcity of available qubits on the current D-Wave QPUs, we were not
able to use a pure QA minimization, and we used a D-Wave hybrid
solver, which offers a reliable estimate of the future accuracy of D-Wave
QPUs once more qubits become available on the hardware. Since our
model (5) is a direct equivalent to the global Stereo Matching energy
function (3), its energy solution can be compared with that of the
iterative classical minimization algorithms. Fig. 7 shows the energies of
the solutions obtained by each minimization model over the provided
stereo datasets. According to the findings, our approach demonstrated
a capacity to obtain solutions of lower energy in comparison to the iter-
ative classical minimization methods for each provided stereo dataset.
This observation underscores the effectiveness of QUBOs when solved
by D-Wave hybrid solvers. We do not provide a comparison in terms
of running time, as the classical iterative minimization algorithms were
significantly faster than the D-Wave hybrid solver when minimizing the
corresponding QUBO models. The reason is because of the way that a
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Table 2
Numerical evaluation for the prepared stereo dataset.

Dataset Method rms bad-0.5 (%) bad-1.0 (%)

Venus

Ours 2.25 40.44 10.45
Swap 2.09 47.57 10.23
Expansion 1.94 43.81 9.76
BP-M 1.96 47.09 9.30
TRW-S 1.92 44.07 9.54

Bull

Ours 2.33 36.07 7.08
Swap 2.38 37.43 7.40
Expansion 2.38 37.28 7.36
BP-M 2.39 37.42 7.25
TRW-S 2.38 37.06 7.32

Sawtooth

Ours 2.27 22.54 10.26
Swap 2.44 22.76 10.27
Expansion 2.41 22.85 10.44
BP-M 2.41 23.59 10.30
TRW-S 2.36 22.67 10.36

Barn

Ours 2.27 14.37 7.41
Swap 2.23 16.11 7.51
Expansion 2.21 16.09 7.55
BP-M 2.38 20.21 8.25
TRW-S 2.23 15.54 7.33

Tree

Ours 2.99 24.99 13.22
Swap 3.32 33.85 14.39
Expansion 3.27 31.73 13.23
BP-M 3.16 33.45 13.91
TRW-S 3.12 31.81 13.22

Castle

Ours 2.74 34.52 17.62
Swap 2.83 32.85 17.25
Expansion 2.76 33.68 16.94
BP-M 2.99 41.12 21.21
TRW-S 2.66 33.36 16.62

D-Wave hybrid solver works. A D-Wave hybrid solver is based on the
D-Wave Hybrid Solver Service (HSS). Once a QUBO is provided to the
HSS, it activates one or more heuristic solvers that run in parallel, either
on a CPU or a GPU platform, to identify high-quality solutions. Each
heuristic solver comprises a classical heuristic module that navigates
the search space, and a quantum module is responsible for formulating
quantum queries directed to the D-Wave Advantage QPU. Solutions
retrieved from the QPU assist the heuristic modules in pinpointing
more viable search space regions or refining the current solutions. Each
heuristic solver forwards its top solution to the HSS solver. The HSS
solver then determines the best solution from the collective outputs
of the heuristic solvers and relays this optimal solution back to the
user [58]. Therefore, the running time is not derived from a direct
QPU minimization to be compared with the classical minimization
methods. We utilized a D-Wave hybrid solver due to the limited avail-
ability of qubits on the hardware. If we were to directly employ the
actual QPU, we would be constrained to testing the minimization
process on very small patches. Stereo Matching conducted on small
patches would not encompass enough complex disparity estimation
scenarios, such as occluded regions, to effectively compare against
classical approaches. Moreover, classical methods typically perform
well on small patches, with their drawbacks becoming apparent as
input images grow larger, resulting in a larger search space within the
underlying MRF graph structure (the defined 4-neighborhood system).
Hence, we opted to work with input images of an acceptable size, en-
suring they encompassed enough complexities representative of various
stereo-vision scenarios. In addition to mathematically demonstrating
the correctness of the QUBO model, we employed the hybrid D-Wave
solver to showcase a proof of concept that the QUBO model is viable
in practice. However, the actual minimization process on the QPU
should be evaluated once sufficient qubits are available on the QPU.
Our primary objective in utilizing the D-Wave hybrid solver was to
demonstrate that minimizing the QUBO model yields results consistent
61

with minimizing the original objective function, as expected.
Fig. 5. The prepared stereo datasets, (a) Venus, (b) Bull, (c) Sawtooth, (d) Barn, (c)
Tree, and (d) Castle. In each row of images, we have the left stereo image, the right
stereo image, and the corresponding ground truth for the left stereo image. The white
squares show the cropped regions for our experiments.

6. Generalization

Preceding the study’s conclusion, we show the general applica-
bility of the proposed quantum model for a different CV minimiza-
tion problem, Image Restoration. Image Restoration is a family of
inverse problems to recover an original high-quality image from a
corrupted input image. There are some reasons that corruption may
occur, such as the image capture process (e.g., noise, lens blur), post-
processing (e.g., JPEG compression), or photography in non-ideal con-
ditions (e.g., haze, motion blur). Image Restoration can be modeled by
a labeling problem where a set of pixels is labeled by some quantities.
In Image Restoration, the main goal is to recover the image’s original
pixel intensities as much as possible. Therefore, the set of labels should
contain the actual intensities (as opposed to Stereo Matching, where the
set of labels is considered as disparity values). In the following, we first
model the Image Restoration as a discrete minimization problem, and
then we adapt our quantum model to it. In the following, we initially
model Image Restoration as a discrete minimization problem and then
integrate our quantum model. In the most general form, a digital image
is a function 𝐼 ∶ 𝑃 → 𝐻 where is the set of two-dimensional spatial
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Fig. 6. Computed disparity maps by the benchmark minimization algorithms.
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Fig. 7. A comparison between energies obtained by our model and the benchmarking
classical minimization.

coordinates as defined in (1) and 𝐻 = {0,… , ℎ − 1} is a set of signal
alues. The coordinate (𝑖, 𝑗) ∈ 𝑃 is referred to as a pixel, and 𝐼(𝑖, 𝑗)
s called the intensity of the image at pixel location (𝑖, 𝑗). Let 𝑁 as
efined in (2) be a 4–neighborhood system on a regular lattice by
hich each pixel in 𝑃 has at most four neighboring pixels. We define
= {0,… , ℎ − 1} as the set of labels. The main goal here is to label

ach pixel in 𝑃 with a value in 𝐿. Let 𝐰 be a vector of integer variables
uch that 𝐰 = (𝑤𝑖,𝑗 )(𝑖,𝑗) ∈ 𝑃 where 𝑤𝑖,𝑗 ∈ 𝐿. Given 𝐼 as the input noisy
mage, Image Restoration can be represented by the energy function
′ ∶ 𝐿𝑛×𝑚 → R as follows [8].
′(𝐰) =

∑

(𝐼(𝑖, 𝑗) −𝑤𝑖,𝑗 )2 + 𝜆
∑

𝛿(𝑤𝑖,𝑗 , 𝑤𝑖′ ,𝑗′ ), (13)
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(𝑖,𝑗)∈𝑃 {(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁
(𝑤𝑖,𝑗 , 𝑤𝑖′ ,𝑗′ ) =
{

0, if 𝑤𝑖,𝑗 = 𝑤𝑖′ ,𝑗′ ;
1, otherwise,

here 𝜆 is a positive integer. The first term, defined as the Sum of
quared Differences (SSD), is to compute the cost of allocating a label
𝑖,𝑗 ∈ 𝐿 to a pixel (𝑖, 𝑗) ∈ 𝑃 . When (𝐼(𝑖, 𝑗) −𝑤𝑖,𝑗 )2 is zero, the intensity
(𝑖, 𝑗) at pixel (𝑖, 𝑗) is more likely to be 𝑤𝑖,𝑗 . The second term encodes
preference for the labels of the neighboring pixels, ensuring that

he intensities of a neighborhood of pixels present some coherence
nd generally do not change abruptly. Given (𝑖, 𝑗) and (𝑖′, 𝑗′) as two
eighboring pixels, 𝛿(𝑤𝑖,𝑗 , 𝑤𝑖′ ,𝑗′ ) penalizes the solution if the allocated
abels 𝑤𝑖,𝑗 and 𝑤𝑖′ ,𝑗′ are different.

Considering the Image Restoration objective function in (13) and
he Stereo Matching objective function in (3), they are both discrete
nergy functions derived from MRFs, and therefore, we can use a
imilar approach to represent the corresponding QUBO model to (13)
or QA purposes. We first allocate |𝐿| binary variables to each pixel
𝑖, 𝑗) ∈ 𝑃 , where |𝐿| is the number of elements in 𝐿, 0 ≤ 𝑖 ≤ 𝑛 − 1, and
≤ 𝑗 ≤ 𝑚−1 for an 𝑛×𝑚 input image. For such an allocation, we define
∈ {0, 1}𝑛𝑚|𝐿| as a vector of 𝑛𝑚|𝐿| binary variables such that 𝐱 = (𝑥𝑖,𝑗,𝑙)

or all (𝑖, 𝑗) ∈ 𝑃 and 𝑙 ∈ 𝐿. Let our QUBO model be defined as (14).

𝐻 ′(𝐱) = 𝛼
∑

(𝑖,𝑗)∈𝑃

(

1 −
∑

𝑙∈𝐿
𝑥𝑖,𝑗,𝑙

)2

+
∑

(𝑖,𝑗)∈𝑃

∑

𝑙∈𝐿
(𝐼(𝑖, 𝑗) − 𝑙)2𝑥𝑖,𝑗,𝑙 (14)

+ 𝜆
∑

{(𝑖,𝑗),(𝑖′ ,𝑗′)}∈𝑁

∑

𝑙1∈𝐿

∑

𝑙2∈𝐿
𝛿(𝑙1, 𝑙2)𝑥𝑖,𝑗,𝑙1𝑥𝑖′ ,𝑗′ ,𝑙2 ,

where 𝛼 >
(

∑

(𝑖,𝑗) ∈ 𝑃 max{(𝐼(𝑖, 𝑗) − 𝑙)2 ∣ 𝑙 ∈ 𝐿}
)

+ 𝜆|𝑁|, and |𝑁| is the
∗ ′
number of elements in 𝑁 . We set 𝐱 = arg min𝐱 𝐻 (𝐱) and define a
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vector of nm integer values as 𝐰∗ = (𝑤∗
𝑖,𝑗 )(𝑖,𝑗) ∈ 𝑃 , where 𝑤∗

𝑖,𝑗 = 𝑙 if
𝑥∗𝑖,𝑗,𝑙 = 1. Then, 𝐰∗ minimizes the Image Restoration energy function
defined in (13). The proof of correctness follows the same approach
discussed in Section 4. We refer interested readers to Heidari et al.
solution [51] to Image Restoration on small image patches, which uses
the same idea, but minimizes the same energy function based on a
multi-way graph cut approach.

7. Conclusion

CV labeling algorithms play a pivotal role in the domain of low-
level vision. For decades, it has been known that these problems
can be elegantly formulated as discrete energy-minimization problems
derived from probabilistic graphical models. Despite recent advances in
inference algorithms, the resulting energy-minimization problems are
generally viewed as intractable. In this study, we presented a QA-based
method for solving CV discrete optimization problems, specifically for
Stereo Matching. However, our proposed quantum model is not limited
to Stereo Matching and can be applied to various CV labeling problems
such as Image Segmentation, Image Restoration, Image Registration,
Optical Flow, Object Detection, and Image Inpainting. We provided
proof of correctness to demonstrate the equivalence of the proposed
quantum model to the original discrete minimization energy function.
Due to the limited availability of qubits on the quantum hardware,
we were not able to minimize the Stereo Matching energy function
directly on the QPU. Instead, we utilized a D-Wave hybrid solver
to show the feasibility of our proposed quantum model. Our results
showed promising solutions with lower energies compared to the best
classical minimization algorithms in the literature. When there are
enough qubits available, it may be a subject for future research to
determine if a quantum-based CV inference offers any advantages over
classical minimization methods in terms of accuracy and speed.
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