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Abstract Clustering analysis is one of the most commonly used data processing algo-
rithms. Over half a century, K-means remains the most popular clustering algorithm
because of its simplicity. Recently, as data volume continues to rise, some researchers
turn to MapReduce to get high performance. However, MapReduce is unsuitable
for iterated algorithms owing to repeated times of restarting jobs, big data reading
and shuffling. In this paper, we address the problems of processing large-scale data
using K-means clustering algorithm and propose a novel processing model in MapRe-
duce to eliminate the iteration dependence and obtain high performance. We analyze
and implement our idea. Extensive experiments on our cluster demonstrate that our
proposed methods are efficient, robust and scalable.

Keywords K-means ·MapReduce · Sampling · Performance

1 Introduction

Clustering data is a fundamental problem in a variety of areas of computer science
and related fields, such as machine learning, data mining, pattern recognition, etc.
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Meanwhile, many complex algorithms also use clustering to do preprocess such as
data partitioning, index creating, etc.

In recent years, cluster analysis has undergone vigorous development. There are
several types of clustering [1,2], hierarchical clustering, density-based clustering, grid-
based clustering, model-based clustering and partitional clustering. Each clustering
type has its own style and optimization methods. In this paper, we major in the effi-
ciency optimization of partitional clustering algorithm, K-means, to get high clustering
performance.

As we know, solving clustering problem exactly is NP-hard, even with just two clus-
ters [3]. Regarding the expansion of the data size and the limitation of a single machine,
a natural solution is to consider parallelism in a distributed computational environment.
MapReduce [4] is a programming framework for processing large-scale datasets by
exploiting the parallelism among a cluster of computing nodes. MapReduce gains pop-
ularity for its simplicity, flexibility, fault tolerance and scalability soon after its birth.
It is appreciable that some researchers use MapReduce for big data clustering [5,6].

In [7], Weizhong Zhao and his colleagues proposed parallel Kmeans clustering
using MapReduce and gave a detailed description for the algorithm, and Alina Ene
et al. [8] give the first analysis that shows several partitional clustering algorithms in
MapReduce. However, not all big data processing problems can be efficient by par-
allelism; a research shows that partitional clustering algorithm requires exponentially
many iterations [9]. Meanwhile, job exponential creation time and time of big data
shuffling are hard to swallow especially when data size is huge, so just parallelism is
not enough, only by eliminating the partitional clustering algorithms dependence on
the iteration can we implement high performance.

In this paper, we propose a novel processing model in MapReduce, use sampling
to eliminate the iteration dependence of K-means and obtain high performance. In
particular, we summarize the contributions of the paper as follows.

Firstly, we indicate that the iteration dependence of K-means is the biggest bottle-
neck when we process big data in MapReduce.

Secondly, we present a novel method to optimize K-means clustering algorithms
using MapReduce, which eliminates the dependence of iteration and reduces the com-
putation cost of algorithms. The implementation defines the mapper and reducer jobs
and requires no modifications to the MapReduce framework.

Thirdly, we propose two sample merging strategies for our processing model and
conduct extensive experiments to study the effect of various parameters using two real
datasets and one synthetic dataset. The results show that our proposed methods are
efficient and scalable.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 gives details of K-means clustering in MapReduce framework and
strategies for center merging. Section 4 reports the experimental results and Sect. 5
concludes the paper.

2 Related work

K-means algorithm is based on specifying an initial number of groups, and iteratively
reallocates objects among groups to convergence. We are given an integer k and a set
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of n data points D ⊂ Rd . We wish to choose the collection of k centers C , so as to
minimize the potential function

ϕ =
∑

x∈D

min
c∈C
||x − c||2 . (1)

The algorithm assigns each point to the cluster whose center is nearest. The center’s
coordinates are the arithmetic mean for each dimension separately over all the points
in the cluster. Suppose i tr is the convergent boundary, the pseudo code of Algorithm 1
is to explain how it works.

Algorithm 1: K-means(D,k)

Let i=Float.MAXVALUE; j=11

Choose k centers from D, let C (0) = c( j)
1 , c( j)

2 , ..., c( j)
k2

while i > i tr do3

form k clusters by assigning each points in X to its nearest center4

find new centers of the k clusters c(++ j)
1 , c(++ j)

2 , ..., c(++ j)
k5

i ←
k∑

m=0
||c j

m − c j−1
m ||2

6

output C ( j)7

Some researchers aim at initial phase to optimize clustering accuracy. David Arthur
and Sergei Vassilvitskii [10] obtain an algorithm that is named K-means++ and
O(logk)-competitive with the optimal clustering by carefully seeding, and Zhou Aiwu
et al. [11] also aimed at optimizing initial clustering center to get better accuracy. let
D(x) denote the shortest distance from a data point x to the closest center we have

already chosen, px = D(x ′)2
∑

x∈D D(x)2 , then the following algorithm is the K-means++

initialization.

(a) Choose an initial center c1 uniformly at random from D.
(b) Choose the next center ci , selecting ci = x ′ ∈ D with probability px .
(c) Repeat Step b until we have chosen a total of k centers.

Furthermore, other researchers seek various optimization methods to speed up the clus-
tering, these method can be divided into two categories. The methods which produce
approximate solution, and the methods which produce the same solution as obtained
using the conventional K-means clustering method.

There are several approximate methods. One approach to speed up the K-means
clustering method is by bootstrap averaging [12]. Later Farnstrom et al. [13] improved
this idea to speed up K-means method. Domingos et al. [14] proposed a fast K-means
algorithm which gives a better approximate solution, with statistically bounded loss
in the clustering quality.

There are other improvements to speed up the K-means method without compro-
mising the quality. Fahim et al. [15] used a simple structure to keep some information
in each iteration to be used in the next iteration and enhanced K-means clustering
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algorithm. While Kanungo et al. [16] made use of kd-tree to get a filtering algorithm
over K-means.

In [17], Bahmani proposed kmeans|| algorithm, which parallelized the initial phase
of Kmeans++ to get higher performance and implemented it using MapReduce.
kmeans|| initial algorithm uses an oversampling factor l and proceeds in constant
iterations, for each iteration it samples each point x with probability lpx , while px

is the same as Kmeans++, then set the number of points in original dataset D closer
to x than any other point as the weight of x , and recluster the weighted points into k
clusters to get k initial centers.

In this paper, we focus on improving the speed of clustering of large-scale dataset
using MapReduce.

3 Handing K-means using MapReduce

The major research problems for clustering big data with MapReduce are: (a) how
to minimize the I/O cost; (b) how to minimize the network cost among processing
nodes. In this section, we introduce our implementation of K-means optimization
using MapReduce, which can reduce both I/O cost and network cost.

In the following pages, we set D as the original dataset, k as the number of the
clusters we want to get, i and j are all integers, while i from 1 to 2k and j from 1 to
k, ci is the i th center, Ci is the collection of points belong to center ci .

As shown in Fig. 1, MapReduce job will read disk where the large-scale datasets
stored repeatedly and the large-scale data will be shuffled over the whole clusters each
time. Therefore the I/O cost and network cost are very expensive.

To estimate the iteration, we come up with an idea that use sampling to get some
subsets of the big data. By processing these subsets, we obtain the center sets which
can be used to cluster original datasets. Figure 2 illustrates the working flow of our
clustering algorithm, which consists of three MapReduce jobs. f ci represents the final
i th center, while ni is the number of points belong to center ci . Next, we will introduce
details of it.

3.1 Probability sampling

The first MapReduce job is sample selection. We sample on the original large dataset
using k and probability px = 1

ε2 N
, where ε ∈ (0,1) and controls the size of the sample

Initial
D, k

Map Reduce
k centers 

D 

Repeat Until Convergence 

Map Output

Key Value
cj point

Key Value
j Cj

k new centers 

Fig. 1 Traditional K-means clustering in MapReduce
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Key Value
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Sample Map Reduce Map Reduce

Map Output

Output

Key Value 
1 ci ni

Reduce Output

Key Value
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Map Output 

Key Value
fcj point

Key Value
j Cj

Fig. 2 An overview of optimized clustering in MapReduce

while N is the number of points, and then we generate some samples small enough to
be processed in a single machine. In experiment, we set ε= 0.005.

Algorithm 2: Probability Sampling
Input : D, k
Output: key: ki , the sample file id;

value: Ci , the collection of points for sample file i ;
i from 1 to 2k

map(k1,v1)1

for each mapper, for i = 1 to 2k do2

sample each point x in D with probability px = 1
ε2 N3

context.write(i , x)4

reduce(k2,v2)5

for each v ∈ values do6

Ci .add(v)7

output(ki ,Ci )8

One simple rule of thumb sets the number to k is with n as the number of objects,
where n ≈ 2k2. So we prefer to produce 2k small-sized sample, then after clustering
each sample, respectively, using k, we can get 2k2 center points in total and use them
to generate final k centers. It is worth mentioning that if k is so large that 2k2 points
cannot be processed in a single machine, the number of samples should be reduced
according to the actual conditions. Algorithm 2 shows how to sample the input datasets
using MapReduce. For each mapper we do sampling and then shuffle these samples
to corresponding reducers, and finally we can obtain 2k samples, each of them can be
processed by a single machine.

3.2 Sample clustering and merging

After sampling, we can get 2k small-sized sample files. In the second job, mappers
cluster each sample file using k and get 2k2 centers in total. We shuffle these centers
to only one reducer and merge them into k final centers, which are used to obtain final
clustering result.
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Algorithm 3 describes the detailed procedure. Ci is the collection of i th sample’s
cluster centers, Ni is the collection of points’ number of Ci , Pi is the collection of
points for each center of Ci . Specially, in the center initial step of the 2 for each map,
we first choose two specified points to make sure the distance between them is largest
so that the clustering result of each map is global optimal [10].

Algorithm 3: Sample Clustering and Merging
Input : k

the samples of the original dataset;
Output: ci , i from 1 to k, k final centers;
map(k1,v1)1

do clustering for each sample by Kmeans++ initial strategy;2

output(1,(Ci , Ni , Pi ))3

reduce(k2,v2)4

merge sequence (Ci , Ni , Pi )5

output(c1,c2,...,ck)6

To merge 2k2 center points into k clusters with statistics, we present two novel
merging methods which can make our algorithm more stable and general.

3.2.1 Weight-based merge clustering (WMC)

Given a situation S in which we will merge two clusters, A and B, whose centers are
point ca and point cb, respectively, and A has m points while B has n points. If we
use simple merging strategy, the new center of the merging result is the midpoint of
ca and cb, but this is inaccurate, as a common sense, if m > n, the real new center of
A and B will be more closer to the range of A and ca , according to this theorem, we
come up with WMC strategy.

In the second MapReduce job, after sample clustering in each mapper, we collect
the number of points assigned to each center points, which will be used to weight the
centers. Algorithm 4 shows the details on how to merge intermediate clustering results
using WMC strategy in the reducer of the second MapReduce job.

Algorithm 4: Weight-based merge clustering

Input : 2k2 intermediate centers and their weight W ;
ci , the i th center; wi , the weight of ci , i = 1 to 2k

Output: k final centers;
reduce(k2,v2)1

choose k centers using Kmeans++ initial strategy2

assign input points to appropriate centers3

compute the weighted arithmetic mean of points for each cluster using ci and wi4

repeat 2,3,4 until satisfied the convergence condition.5

output final centers (c1,c2,...,ck)6
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3.2.2 Distribution-based merge clustering (DMC)

As we know, with rational sampling, each sample file can represent the whole dataset
very well. Meanwhile, the clustering result of each map in 2 of Algorithm 3 is global
optimal by carefully seeding. So we come up with a merge idea to separate the 2k2

centers into k groups, each group has 2k centers and consists of one and only one center
from each sample clustering results. Here we first select an intermediate clustering
result randomly whose k centers are recognized as the first member of k different
groups, and then we choose members from the rest of intermediate clustering results
for each group according to the distances between centers. Algorithm 5 shows the
details on our DMC strategy.

In step 5, we have to make sure that each group has one and only one center from
Ci , the collection of centers from sample i , while Gi is the i th group of centers, and
gi is the center of points in Gi .

Algorithm 5: Distribution-based merge clustering

Input : 2k2 intermediate centers and their statistical information;
Output: k final centers;
reduce(k2,v2)1

choose C1 randomly from samples2

assign k centers in C1 to k different groups3

for i = 2 to 2k do4

assign centers of Ci to the nearest group to them5

computer the center for each group6

for i = 1 to k do7

compute the central point gi of points for Gi8

output final centers (g1,g2,...,gk)9

Finally, we start the third MapReduce job to generate Voronoi diagram using k
points we have obtained from Sect. 3.2, partition the original dataset and finally obtain
the clustering result.

4 Experiments and results

In order to evaluate our optimized algorithm in practice, we present the experimental
setup for evaluating. We set up a cluster of 16 Server PC machines, each of them has a
Dual Core AMD Opteron 2.00 GHz CPU, 73GB hard drive, Inter 82551 10/100 Mbps
Ethernet Controller, 2GB memory and Ubuntu10.10 server OS. All nodes are con-
nected to a 100 Mbps Ethernet switch. We use Cloudera Hadoop 0.20.2 and compile
the source codes under JDK 1.6.0-24 in Eclipse 3.6.2. One TaskTracker and DataNode
daemon run on each slave. A single NameNode and JobTracker run on the master.

Next, we describe the datasets and baseline algorithms that will be used for com-
parison.
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4.1 Data sets

We use three datasets to evaluate the performance of our optimized partitional clus-
tering algorithm. The first dataset, Gauss Distribution Set, is synthetic. We generate
10,000 three-dimensional points with gauss distribution. The mean of generated points
from this Gauss distribution is 350 and the sigma is 100.

The other two datasets considered are from real-world settings and are publicly
available from the UC Irvine Machine Learning repository. The Bag of Words Data
Set(BoW) consists of 2,351,710,420 points in 3 dimensions and represents features
available to (docID, wordID, count). The Individual household electric power con-
sumption Data Set (House) consists of 4,296,075,259 points in 9 dimensions.The
Gauss dataset is studied in a single machine and the other two datasets are studied
with the parallel implementation in the Hadoop framework.

4.2 Baselines

We compare the performance of our optimized K-means algorithm against the tradi-
tional K-means algorithm and Kmeans|| algorithm using MapReduce and stand-alone
Kmeans++ algorithm. we use Gauss dataset in a single machine to explore the iteration
times for K-means, Kmeans++ and Kmeans||, and for large-scale datasets BoW and
House, it becomes infeasible and parallelization becomes necessary, the two baseline
algorithms and our WMC/DMC algorithms are implemented using MapReduce in
cloud environment and we tested kmeans|| with l = 2k and r = 5.

4.3 Performance evaluation

In this subsection, we describe the experimental results based on the setup in the
beginning of Sect. 4. To evaluate the clustering cost of our optimized algorithm model,
we compare it against the baseline approaches. For Gauss, we set k ∈ {20,50,100},
and for BoW and House, we set k ∈ {50,100}.

We first turn our attention to the convergence time of the iteration for different
initializations in K-means, Kmeans++ and Kmeans||, we implement baselines in a
single machine to get the number of iterations till convergence of the baselines. Table 1
shows our experimental result. From the table, we can come to a conclusion that the
number of iteration for partitional algorithms is very large.

We now illustrate that our WMC/DMC model can get higher performance than
K-means and Kmeans|| when implemented to run in parallel. Figure 3a, b shows the
experimental result for BoW and House dataset, and we can see the total running time
of these algorithms. Both WMC and DMC are much faster than baselines.

Table 1 Number of iterations
till convergence for Gauss
(averaged over 10 runs)

Algorithm k = 20 k = 50 k = 100

K-means 32.4 63.2 54.2

Kmeans++ 20.2 31.5 41.7

Kmeans|| 25.7 41.3 50.6
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(b) Running time for House (a) Running time for BoW

Fig. 3 Comparison of time measured by various methods

(b) Running time for DMC(a) Running time forWMC

Fig. 4 Running time with reducers from 2 to 16

Next, we study the efficiency of WMC/DMC clustering and baselines by varying
the number of reducers, from 2 up to 16. Figure 4 illustrates the effect of node number
on the time of clustering on BoW and House datasets for k = 500. The result shows
that our optimized model is scalable.

4.4 Clustering validation

Cluster validity issued by and large concerned with determining the optimal number
of clusters and checking the fineness of clustering results. Assessment of clustering
results is commonly referred to as cluster validation [18]. Many different indices of
cluster validity have been already proposed [19]. In this section, we discuss briefly
the Davies–Bouldins index (DBI) which we have used in our proposed clustering
algorithm for examining the soundness of our clusters.

Davies–Bouldins index [20] is a function of the ratio of the sum of within-cluster
distribution to between-cluster separation. The distance function, dispersion measure,
and characteristic vector were chosen

123



X. Cui et al.

Table 2 Comparison of K-means, Kmeans++, Kmeans||, WMC and DMC clustering algorithms by
considering DBI on different sized data sets

Algorithm Bow (k = 50) Bow (k = 100) House (k = 50) House (k = 100)

K-means 0.0185 0.0167 0.0175 0.0124

Kmeans++ 0.0161 0.0152 0.0166 0.0113

Kmeans|| 0.0182 0.0161 0.0176 0.0116

WMC 0.0193 0.0171 0.0186 0.0133

DMC 0.0187 0.0166 0.0179 0.0128

Si =
⎧
⎨

⎩
1

Ti

Ti∑

j=1

|x j − Ai |q
⎫
⎬

⎭

1/q

. (2)

Mi j =
{

N∑

k=1

|aki − akj |p
}1/p

. (3)

where Ti is the number of vectors in cluster i , Ai is the centroid of cluster i , aki is the
kth component of the n-dimensional vector ai , which is the centroid of cluster i .

Here we set p = q = 2, then Si is the standard deviation of the distance of samples
in a cluster to the respective cluster center, Mi j is the Euclidean distance between

centroids and Ri j ≡ Si+S j
Mi j

is the reciprocal of the classic Fisher similarity measure

calculated for clusters i and j. The partition with smaller R ≡ 1
N

∑N
i=1 Ri is the

superior, where Ri is maximum of Ri j when i �= j .
Table 2 gives a comparative analysis of the DBI compared result for BoW dataset

and House dataset. It shows that our clustering methods produce good quality of
clustering as compared to traditional K-means.

5 Conclusion

In this paper, we presented that the iteration of K-means algorithm was the important
factor which affected the performance of clustering, and proposed a novel efficient
parallel clustering model. Experimental results on large real-world datasets and syn-
thetic dataset demonstrate that our optimized algorithm is efficient and performs better
compared with parallel K-means, Kmeans|| and stand-alone Kmeans++ algorithms.
Clustering validation shows that the quality of our clustering methods are as well as
K-means.
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