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ABSTRACT 

The purpose of this study is to investigate forced vibration analysis of functionally graded porous deep beams 

under dynamically load. Mechanical properties of the functionally graded deep beam change in the thickness 

direction with porosity. The beam theories fail to satisfy in the calculation and the boundary conditions of deep 

beams. So, the plane solid continua model is used in the calculation of deep beams in order to obtain more 

realistic results. The governing equations of the problems are obtained by using the Hamilton procedure. In the 

solution of the problem, finite element method is used within the plane solid continua model. The effects of 

porosity parameters, material distribution and porosity models on the forced vibration responses of functionally 

graded deep beams are examined and discussed with porosity effects. Numerical results show that porosity plays 

very important role in the dynamic responses of the functionally graded deep beam. Choosing the suitable 

functionally graded material distribution, negative effects of the porosity can be decreased. It is necessary to use 

the plane solid continua model in modelling the deep beams. 

Keywords: Forced Vibration; Functionally Graded Materials; Porosity; Deep Beams; Finite Element Method. 

1. INTRODUCTION

During the processing in the fabrication of functionally graded materials, it can occur micro-voids and porosities 

in the material body due to technically problems, curing or poor quality productions. Especially, the part of 

ceramic in the functionally graded materials occurs voids more frequently. It is known that the porosity is 

defined a measure of voids, and is a fraction of the volume of voids on the total volume. The volume of voids 

over the total volume varies between 0 and 1. The porosity is very important issue in the mechanical behavior of 

structures because materials can lose their strength after a certain porosity ratio. Therefore, understanding the 

mechanical behavior of structural elements with porosity is importance in designs.  

In the present study, the forced vibration of a functionally graded deep beam under dynamically load studied 

with porosity effect. In the literature, much more attention has been given to the vibration analysis of 

functionally graded beam structures (Chakraborty et al. [1], Lu and Chen [2],  Aydogdu and Taskin [3], Ying et 

al. [4], Li et al. [5], Azadi [6], Alshorbagy et al. [7], Fallah and Aghdam [8], Şimşek et al. [9], Akgöz and 
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Civalek [10,11], Akbaş [12,13,14], Zahedinejad [15], Zamanzadeh et al. [16], Bourada et al. [17], Mohanty et al. 

[18], Ebrahimi et al. [19], Mohanty et al. [20], Satouri et al. [21], Ebrahimi and Dashti [22], Hadji and Bedia 

[23], Khan et al. [24], Bennai et al. [25], Jahwari and Naguib [26], Ebrahimi et al. [27], Akgöz and Civalek [28], 

Sayyad et al. [29], Bounouara et al. [30], Bouafia et al. [31], Hebali et al. [32], Meziane et al. [33], Mahi and 

Tounsi [34], Boukhari et al. [35], Besseghier et al. [36], Bellifa et al. [37], Akbaş [38,39,40,41],   Bouderba et al. 

[42], Zidi et al. [43] , Bennoun et al. [44], Belabed et al. [45]). However, mechanical behaviors of functionally 

graded deep beams have not been broadly investigated. In the open literature, studies of functionally graded deep 

beams are as follows; Sahraee and Saidi [46] investigated buckling and vibration of functionally graded deep 

beams. Shahsiah vd. [47] and Sabzikar Boroujerdy and Eslami [48] studied thermal instability of functionally 

graded deep spherical shells. Kurtaran [49] investigated large deflections of functionally graded deep curved 

beams by using generalized differential quadrature method. Hosseini and Rahmani [50] studied vibration of 

functionally graded deep curved nanobeams by using Navier method within Timoshenko beam theory. Ye et al. 

[51] investigated three-dimensional (3D) vibration of functionally graded sandwich deep beams. Pandit et al. 

[52] investigated wave propagation of functionally graded layers over porous half-space. 

In the literature, studies of the porosity effect in the functionally graded structures are as follows; 

Wattanasakulpong and Ungbhakorn [53] examined vibration analysis of functionally graded beams with porosity 

effects. Mechab et al. [54,55] examined dynamics of a functionally graded porous nano-plate resting on 

foundations. Atmane et al. [56] studied vibration of functionally graded beams with different beams theories. 

Chen et al. [57] investigated bending and buckling of functionally graded beams. Şimşek and Aydın [58] 

examined forced vibration of functionally graded microplates with porosity effects based on the modified couple 

stress theory. Vibration characteristics of functionally graded beams with porosity effect and various thermal and 

mechanical loadings are investigated by (Ebrahimi and Jafari [59], Yahia et al. [60], Atmane et al. [61], Akbaş et 

al. [62,63,64]). Chen et al. [65] investigated free and forced vibration analysis of functionally graded porous 

beams within Timoshenko beam theory and Ritz method. Barati et al. [66] examined the buckling of functionally 

graded piezoelectric plates with porosity effect. 

In the open literature, forced vibration of  functionally graded porous deep beams has not been investigated 

broadly. The main purpose of this study is to fill this gap for functionally graded deep beams. Another distinctive 

feature of this study is the using the plane solid continua model which is greatly superior to the beam theories in 

order to obtain more realistic results for the beam. The considered problem is solved by using the finite element 
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model of plane piecewise solid continua. In the finite element model, twelve-node plane element is used. Five-

point Gauss rule is used in the numerical calculation. The effects of material parameters and porosity parameters 

on the forced vibration responses functionally graded deep beams are investigated with different porosity 

models. Also, the difference between of the porosity models is investigated in detail. 

2. THEORY AND FORMULATION

A simply supported functionally graded deep beam a dynamically distributed load q(t) as shown in figure 1 

according to coordinate system (X,Y,Z) that L is length, b is width and h is height.  

Figure 1. A simply supported functionally graded deep beam with porosity subjected dynamic distributed load. 

The mechanical properties of the functionally graded deep beam, P, are assumed varying along the height 

direction with the following function (a power-law): 

���� = ��� − ��� 	

�

+ ��� + ��  (1) 

where n is the volume fraction index which defines the material distribution through Y direction, PT and PB are 

the material properties of the top and the bottom surfaces of the functionally graded deep beam. The functionally 

graded deep beam becomes a fully top surface material when n is set to zero. In the porosity effect of the 

functionally graded deep beam, two porosities models (even and uneven) are used which given by 

Wattanasakulpong and Ungbhakorn [53] for the power law distribution. In the even porosity model, the porosity 

spread uniformly though height direction. In the uneven porosity model, the porosity spread functionally though 

height direction. The distributions of the even and uneven porosity distributions are shown in Figure 2. 

Figure 2. Porosity models for functionally graded material. 
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For the even porosity model, the effective material property given as follows 

���, �� = ��� − ��� 	

�

+ ��� + �� − ��� + ����  (2) 

where a (a<<1) is the volume fraction of porosities. When a=0 , the beam becomes perfect functionally graded 

material.  The effective material property of uneven porosity distribution can be expressed in the equation (3). 

���, �� = ��� − ��� 	

�

+ ��� + �� − ��� + ��� � 	1 − |
|� �  (3) 

In the comparison of the two porosity models: In uneven porosity model, the voids stack in the neutral of the 

beam. So, the stiffness of the beam is less effected from negative influences of the porosity because the neutral 

axis and its adjacent areas have low stress. However, voids stack uniformly in the whole area of the beam in 

even porosity model. Hence, the stiffness of the cross-section seriously decreases in the even model. As result, 

the rigidity of the beam in even porosity model is lower than the rigidity of the beam in uneven porosity model. 

In the solution of the functionally graded deep beam, the plane model is used in order to obtain more realistic 

results. It is known that the dimensions (Length and height) of the deep beams close to each other. So, the beam 

theories fail to satisfy in the calculation of deep beams. Also, the boundary conditions of the deep beams can not 

be satisfied in the beam theories. Therefore, the plane elasticity model must be considered in the deep beams.  

For the plane elasticity problem, the strain- displacement relations are expressed as; 

��� = ���� ,			�

 = ���
 , 2��
 = ���
 +	 ����  (4) 

where u, v are displacements in the X and Y directions respectively. ��� and �

 are normal strains and ��
 is

shear strain. The strain- displacement relations for linear elastic material given in matrix form as follows: 

  � ����

2��
� =
�  
 ! ��� 00 ��
��
 ���#$

$$% &'()  (5) 

*�+ = ,-.*/+  (5b) 

where ,-. is the differential operator between deformation and displacement, */+ is the displacement vector. The

constitutive relation of the problem is given as follows; 

  �0��0

0�
� = 12����, �� 2���, �� 02���, �� 2��, �� 00 0 233��, ��4 � ����

2��
�  (6a) 

*0+ = ,2.*�+  (6b) 
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where ,2. is the reduced constitutive tensor, and its components 2��, 2�, 2, 233  that a function of Y and a

according to equations 2 and 3 are given as follows; 

2����, �� = 2��, �� = 5�
,���67�
,��8	 , 2���, �� = 2���, �� = 9��, �� 5�
,���67�
,��8 	,			233��, �� = 5�
,����:7�
,���  (7) 

where E and ν indicate Young’s modulus and Poisson’s ratio respectively. 

In the deriving the governing equations of the problem, the Hamilton’s procedure is used. The virtual work 

equation of the plane solid continua model with dynamic effect is given as follows; 

; <�0��=��� + 20�
=��
 + 0

=�

 + >��, ��'? =' + >��, ��(?=(�/@ − ;<�A�=' + A
=(�/B
C

	
D

 

−; E �F�=' + F
=(�D /@ = 0  (8) 

> is the mass density, A�  and A
  are the boundary forces in the X and Y directions respectively. F�  and F
 are the

body forces in the X and Y directions respectively. In equation 8, '?  and (?  indicate the second derivative with 

respect to time. In the finite element solution, Twelve-node plane element is used as shown in Figure 3. 

Figure 3. Twelve -node plane element. 

In figure 3, Lx and Ly indicate the finite element length in the horizontal and vertical directions respectively. The 

displacement vector in terms of the node displacements are expressed as: 

*/+ = ,Ø.*/�+  (9a) 

,Ø. = ,Ø�	Ø … . Ø�.  (9b) 

*/�+ =

IJ
JJ
K
JJ
JL

'�'..'�(�(..(�MJ
JJ
N
JJ
JO

 (9c) 
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' = �'�∅� + '∅ + 'Q∅Q + 'R∅R + 'S∅S + '3∅3 + 'T∅T + 'U∅U + 'V∅V + '�W∅�W
+'��∅�� + '�∅��                                                                                                                                   (9d)

( = �(�∅� + (∅ + (Q∅Q + (R∅R + (S∅S + (3∅3 + (T∅T + (U∅U + (V∅V + (�W∅�W
+(��∅�� + (�∅��                                                                          (9e)

where */�+ is the node displacement vector and its components are ui and vi. ∅X indicates the shape functions

which given for twelve-node plane element as follows; 

∅� = �Q 	1 − �YZ�[1 − 
Y\] ^−10 + 9[R�8
YZ8 + R
8

Y\8]`,  ∅ = VQ 	1 − �YZ�[1 − R
8
Y\8] [1 − 3
Y\] 

∅Q = VQ 	1 − �YZ�[1 − R
8
Y\8] [1 + 3
Y\] ,      ∅R = �Q	1 − �YZ�[1 + 
Y\] ^−10 + 9 [R�8

YZ8 + R
8
Y\8]  ̀

∅S = VQ [1 − 
Y\]	1 − R�8
YZ8� 	1 − 3�YZ� ,      ∅3 = VQ [1 + 
Y\]	1 − R�8

YZ8�	1 − 3�YZ� 

∅T = VQ [1 − 
Y\]	1 − R�8
YZ8� 	1 + 3�YZ� ,     ∅U = VQ [1 + 
Y\] 	1 − R�8

YZ8�	1 + 3�YZ� 

∅V = �Q 	1 + �YZ�[1 − 
Y\] ^−10 + 9[R�8
YZ8 + R
8

Y\8]` ,     ∅�W = VQ 	1 + �YZ� [1 − R
8
Y\8][1 − 3
Y\] 

∅�� = VQ 	1 + �YZ�[1 − R
8
Y\8] [1 + 3
Y\] ,     ∅� = �Q 	1 + �YZ� [1 + 
Y\]^−10 + 9[R�8

YZ8 + R
8
Y\8]`  (10) 

Substituting equations (5b), (11) and (13) into equation (6), the constitutive relation can be rewritten as follows: 

*0+ = ,2.,-.,Ø.*/�+=,2.,a.*/�+  (11) 

where 

,a. = ,-.,Ø.  (12) 

The virtual displacements and virtual strains can be expressed in matrix as follows: 

*=/+ = ,Ø.*=/�+,    b=/?c = ,Ø.b=/�? c,    *=�+ = ,a.*=/+  (13) 

Substituting equations (5) and (9) into equation (8), the virtual work equation can be rewritten as follows; 

; E *=/�+�d,a.�,2.,a.*/�+ + >��, ��,Ø.�,Ø.b=/?ce/@	D
-; E *=/�+�,Ø.� &A�A
) /B − ;E *=/�+�,Ø.� fF�F
gD /@C = 0                    (14a)

*=/�+�d,h.*/�+ + ,i.b/?c − *A+ − *j+e = 0                                                      (14b)

In equation (14b), =/� is an arbitrary values. So, the parenthesis in equation (14b) should be zero and gives the

equation of motion:  

,h.*/�+ + ,i.b/�? c = *k+  (15) 



7

where ,h.  is element stiffness matrix, ,i.  is the element mass matrix, *k+ is the load vector, */�+  is the

displacement vector, b/�? c is the acceleration vector, *j+ is the body force vector, *A+ is the surface load vector.

The details of components of the finite element equation are given as follows: 

,h. = ;E ,a.�,2.,a./@D  (16a) 

,i. = ; E >��, ��,Ø.�,Ø./@D  (16b) 

*k+ = *A+ + *j+  (16c) 

*A+ = E ,Ø.� &A�A
) /BC  (16d) 

*j+ = E ,Ø.� fF�F
gD /@  (16e) 

Implementing assembly procedure for the finite elements, the system stiffness and mass matrixes are obtained 

from the element stiffness and mass matrixes. The dimension of the finite element matrixes are equal to the 

number of the freedom degree.  For the forced vibration problem, the distributed dynamic load is considered as a 

harmonic function as follows; 

l�m� = lWsin	�qrm�                                        (17)

where lW is the amplitude of the dynamic load and qr  is the frequency of the dynamic load. In the solution of the

forced vibration problem, the displacement vector is assumed according to the property of the dynamic load as 

following form: 

*/�+ = */s+sin	�qrm�                                                     (18)

where  */s+ indicates the amplitude of the displacements. Substituting the equation (18) into the equation (15),

the equation of motion in the finite element model can be rewritten in the steady-state form as follows; 

*/s+�,h. − qr,i.� = *k+                                        (19)

For the free vibration problem, the load vector *k+ is set to zero in the equation (15) and lead to the following an

eigenvalue problem: 

,h.*/�+ + ,i.b/?c = 0  (20a) 

�,h. − t,i.�b/u�c = 0  (20b) 

where t is the fundamental frequency and /u� is the mode vector.

3. NUMERICAL RESULTS

In the numerical examines, the forced vibration responses of the simply supported functionally graded deep 

beam are calculated and presented in figures in the steady-state case for different porosity parameters, porosity 



8

models and material distributions. The difference between of the porosity models is investigated. The 

functionally graded porous deep beam considered is made of Aluminum (Al; E=70 GPa, ν=0.3, ρ=2702 kg/m3) 

and Zirconia (E=151GPa, ν=0.3, ρ=3000 kg/m3) in numerical examples. The top surface material of the 

functionally graded deep beam is Zirconia, the bottom surface material of the functionally graded deep beam is 

Aluminum. The dimensions of the deep beam are considered as follows: b = 0.2 m, h = 2 m, L = 4 m. In 

numerical process, five-point Gauss rule is used for calculation of the integration. 

In order to obtain the optimum number of the finite element for the numerical calculations, the convergence 

study is performed in figure 4. In figure 4, the maximum vertical displacements (at the middle of the beam) of 

the functionally graded porous deep beam are calculated for different numbers of finite elements, the power-law 

exponent n=3, the porosity parameter a=0.2 for even porosity model for the amplitude of the dynamic load 

lW = 200000	Fv/x and the frequency of the dynamic load qr=2 rd/sn. It is noted that the finite element of the

functionally graded deep beam is chosen to be equal in X and Y directions in order to obtain sensitive results. In 

figure 4, mX and mY indicate the number of finite element in X and Y directions, respectively. Figure 4 shows that 

the dimensionless fundamental frequencies converge perfectly after the finite element mX = mY =30. So, the 

finite element number is taken as 30 in both X and Y directions.   

Figure 4. Convergence study for the maximum vertical displacements (vmax) of the functionally graded porous deep beam. 

In order to confirm the accuracy of presented method, a validation study is presented. In the validation study, the 

dimensionless fundamental frequencies ( yr = tz>�{R |�	�} ) with different porosity parameters a, material

distrubition parameters n and different porosity models are calculated and compared with those of Ebrahimi and 

Jafari [59] according to Reddy beam theory in Table 1. The material and geometry parameter are used in 
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Ebrahimi and Jafari [59]; steel (bottom surface) and silicon nitride (top surface), L/h=20 for the material 

properties without temperature effect (∆T=0). It is seen from table 1, the present results are close to the results of 

Ebrahimi and Jafari [59].  

Table 1.  Comparison study: dimensionless fundamental frequencies of porous simple supported beam for L/h=20. 

Porosity Models a 
n=0.5 n=2 

Present Ebrahimi and Jafari [59] Present Ebrahimi and Jafari [59] 

Even model 
0 4.52911 4.51585 3.5661 3.55529 

0.1 4.5953 4.58213 3.5202 3.50825 
0.2 4.6761 4.66783 3.4606 3.44947 

Uneven  model 
0 4.5391 4.51585 3.5643 3.55529 

0.1 4.6182 4.60304 3.5912 3.58170 
0.2 4.7184 4.70024 3.6381 3.61002 

In figure 5, the effect of the material distribution parameter n on the maximum vertical displacements (at the 

middle of the beam) of the porous functionally graded deep beam is presented for different porosity parameters 

and porosity models for lW = 200000	Fv/x and qr=10 rd/sn. It is obvious from this figure that increasing the

material distribution parameter n yields increasing of the maximum vertical displacements for all porosity 

models. With increase in the n, the beam gets to fully Aluminum according to equation (2-3). The Young 

modulus of the Zirconia Oxide is bigger than Aluminum. As it is expected, with increase the n, the elasticity 

modulus and bending rigidity of the beam decrease according to equation (2) and (3). So, the strength of material 

decreases and the displacements increases naturally. Another result of the figure 5 that with increase the material 

distribution parameter n, the difference between of porosity models increases considerably. The material 

distribution parameter n is very effective in the porosity. It is seen from figure 5 that the increase in porosity 

parameter a causes increase in the displacements significantly. It is known that increase in the porosity, the 

strength of the material decreases and the displacements of the beam increase naturally because of increasing 

voids. With these negative effects of the porosity, the strength of  beam may be lost after a certain value of 

porosity parameter. In figure 5, the displacements decrease with decreasing the material distribution parameter n 

as the porosity parameter a is keep constant. The negative effects of the porosity on the functionally graded 

structures can be reduced with the suitable choice of material distribution parameter. 
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Figure 5. The relationship between of the maximum vertical displacements (vmax) and the material distribution parameter n 
for different porosity models and parameters for a) a=0, b) a=0.1 and c) a=0.2. 

Figure 6 displays the relationship between of porosity parameter a and the maximum vertical displacements of 

the functionally graded porous deep beam for the different material distribution parameters and porosity models 

for lW = 200000	Fv/x and qr=10 rd/sn. It is observed from figure 6 that the results of the even porosity

model are bigger than the in uneven porosity model's. It is mentioned before that, the rigidity of the beam in even 

porosity model is lower than the rigidity of the beam in the uneven porosity model. So, the maximum vertical 

displacements in even porosity model are bigger than uneven model's. Also, as seen from figure 6 that increase 

in the porosity parameter a, the difference between of porosity models increases considerably. In higher values of 

porosity parameter a, the difference of porosity models is quite large. It shows that the porosity parameters play a 

critical role on the mechanical behavior of the functionally graded porous deep beam.  

Figure 6. Effect of porosity parameter (a) and porosity models on of the maximum vertical displacements (vmax) of the 
functionally graded porous beam for different the material distribution parameter; a) n=0.1, b) n=1 and c) n=10. 
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Figure 7 and figure 8 display the relationship between the frequency of the dynamic load (qr) and maximum 

vertical displacements of the functionally graded porous deep beam for porosity parameter and material 

distribution parameter respectively, for lW = 200000	Fv/x	 for different porosity models.

As seen from figure 7 and 8 that, the displacements rise suddenly at the resonance points where the frequency of 

the dynamic load (qr) equal to the fundamental frequency of the beam. It is observed from figure 7 and 8 that the 

resonance frequency in the uneven porosity model is bigger than the resonance frequency in the even porosity 

model. It is stated before that the functionally graded deep beam is more less strength in even porosity model in 

comparison with uneven model. Hence, the resonance frequency in even porosity model are smaller than uneven 

model's. 

In figure 7, the peak of the resonance increases with increase in the porosity parameters. It is observed from 

figure 7 that the peak value of the resonance in the uneven porosity parameter is bigger than the peak value of 

the even'. Also, the difference between of even and uneven porosity models in the peak value of the resonance 

increase significantly with increased porosity.  

In figure 8, the peak value of the resonance in the even porosity parameter is bigger than the peak value of the 

uneven' in the small values of n. With increased the material distribution parameter n up to a certain value, the 

difference between of even and uneven porosity models decrease. In the higher values of n, the peak value of the 

resonance in the uneven porosity parameter is bigger than the peak value of the even'. Another results of the 

figure 8 that the resonance frequency decrease significantly with increased the material distribution parameter n. 

It is concluded from figure 7 and 8 that the porosity parameter a and the material distribution parameter n play a 

important role on the resonance of the functionally graded porous deep beams.  
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Figure 7. The relationship between of the maximum vertical displacements (vmax) and the frequency of the dynamic load (qr) 
for different porosity parameters and models for n=3 for a) a=0, b) a=0.1 and c) a=0.2. 

Figure 8. The relationship between of the maximum vertical displacements (vmax) and the frequency of the dynamic load (qr) 
for different material distribution parameters and porosity models for a=0.2 for a) n=0.1, b) n=0.8 and c) n=5. 

Figure 9 shows that the effect of parameter a on the deflected shape of the functionally graded porous deep beam 

for even porosity model for lW = 400000	Fv/x, qr=500 rd/sn and n=0.6. It is seen from figure 9 that the

deflections of the functionally graded deep beam increase significantly with increase in the a.  

In figure 10, the effect of parameter a on the time responses of the functionally graded porous deep beam are 

shown for different porosity parameters and models for lW = 200000	Fv/x, qr=3 rd/sn and n=2. As seen from

figure 10 that the difference between of even and uneven porosity models in the time responses increase with 

increase in the porosity parameter a.  
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Figure 9. The effect of porosity parameter a on the deflected shape of the functionally graded porous deep beam for a) a=0, 
b) a=0.1 and c) a=0.2.

Figure 10. Time responses of the functionally graded porous deep beam for; a) a=0, b) a=0.1 and c) a=0.2. 

In order to investigate the effects of the aspect ratios (L/h) on the dynamic responses of the functionally graded 

porous beams, the maximum vertical displacements are presented for different aspect ratios, porosity parameters 

and porosity models for lW = 100000	Fv/x , n=0.1 and qr=10 rd/sn in figure 11. It is seen from figure 11 that

the increase in the aspect ratios (L/h) causes increase in the difference between even and uneven porosity models 

significantly. This difference becomes more apparent in higher aspect ratios and porosity parameters. The 

porosity is more effective in the higher aspect ratios in comparison with the smaller aspect ratios, namely deep or 

thick beams. 
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Figure 11. The relationship between of the maximum vertical displacements (vmax) and the aspect ratios (L/h)for different 
porosity models and parameters for a) a=0.1, b) a=0.2 and c) a=0.3. 

4. CONCLUSIONS

Forced vibration of a functionally graded deep beam are investigated with porosity effect under a harmonic 

external distributed load by using the finite element method. In solution modeling of the problem, the plane 

piecewise solid continua model is implemented. The effects of porosity parameters, material distribution and 

porosity models on the forced vibration responses of the functionally graded deep beam are investigated. It is 

observed from the investigations, the main conclusions are as follows: 

• The porosity has a very important role on the dynamic of the functionally graded deep beam.

• Increase in the porosity parameter a, the difference between the porosity models increases considerably.

• It is necessary to use the plane solid continua model in modelling the deep beams in order to obtain

more realistic results.

• The material distribution plays determining role on the forced vibration responses of the porous

functionally graded deep beam.

• Choosing the suitable material distribution parameter, harmful effects of the porosity can be decreased.
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