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INTRODUCTION: In most areas of human
performance, from sport to engineering, the
path to a major accomplishment requires a
steep learning curve and long practice. Science
is not that different: Outstanding discoveries
are often preceded by publications of less mem-
orable impact. However, despite the increas-
ing desire to identify early promising scientists,
the temporal career patterns that character-
ize the emergence of scientific excellence remain
unknown.

RATIONALE: How do impact and productiv-
ity change over a scientific career? Does im-
pact, arguably the most relevant performance
measure, follow predictable patterns? Can
we predict the timing of a scientist’s out-
standing achievement? Can we model, in
quantitative and predictive terms, scientific
careers? Driven by these questions, here we
quantify the evolution of impact and pro-
ductivity throughout thousands of scientific
careers. We do so by reconstructing the publi-

cation record of scientists from seven disci-
plines, associating to each paper its long-term
impact on the scientific community, as quan-
tified by citation metrics.

RESULTS: We find that the highest-impact
work in a scientist’s career is randomly dis-
tributed within her body of work. That is, the
highest-impact work can be, with the same
probability, anywhere in the sequence of papers
published by a scientist—it could be the first
publication, could appear mid-career, or could

be a scientist’s last publica-
tion. This random-impact
rule holds for scientists in
different disciplines, with
different career lengths,
working in different dec-
ades, and publishing solo

or with teams and whether credit is assigned
uniformly or unevenly among collaborators.
The random-impact rule allows us to dev-

elop a quantitative model, which systematically
untangles the role of productivity and luck
in each scientific career. The model assumes
that each scientist selects a project with a
random potential p and improves on it with
a factor Qi, resulting in a publication of im-
pact Qip. The parameter Qi captures the
ability of scientist i to take advantage of the
available knowledge in a way that enhances
(Qi > 1) or diminishes (Qi < 1) the potential
impact p of a paper. The model predicts that
truly high-impact discoveries require a combi-
nation of highQ and luck (p) and that increased
productivity alone cannot substantially enhance
the chance of a very high impact work. We
also show that a scientist’s Q, capturing her
sustained ability to publish high-impact papers,
is independent of her career stage. This is in
contrast with all current metrics of excellence,
from the total number of citations to the h-
index, which increase with time. The Qmodel
provides an analytical expression of these tra-
ditional impact metrics and allows us to
predict their future time evolution for each
individual scientist, being also predictive of
independent recognitions, like Nobel prizes.

CONCLUSION: The random-impact rule
and the Q parameter, representing two fun-
damental characteristics of a scientific career,
offer a rigorous quantitative framework to ex-
plore the evolution of individual careers and
understand the emergence of scientific excel-
lence. Such understanding could help us better
gauge scientific performance and offers a path
toward nurturing high-impact scientists, po-
tentially informing future policy decisions.▪
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Random-impact rule. The publication history of two Nobel laureates, Frank A. Wilczek (Nobel
Prize in Physics, 2004) and John B. Fenn (Nobel Prize in Chemistry, 2002), illustrating that the
highest-impact work can be, with the same probability, anywhere in the sequence of papers
published by a scientist. Each vertical line corresponds to a research paper.The height of each line
corresponds to paper impact, quantified with the number of citations the paper received after 10
years. Wilczek won the Nobel Prize for the very first paper he published, whereas Fenn published
his Nobel-awarded work late in his career, after he was forcefully retired by Yale. [Image of Frank A.
Wilczek is reprinted with permission of STS/Society for Science & the Public. Image of John B.
Fenn is available for public domain use on Wikipedia.org.]

The list of author affiliations is available in the full article online.
*Corresponding author. Email: alb@neu.edu
Cite this article as R. Sinatra et al., Science 354, aaf5239 (2016).
DOI: 10.1126/science.aaf5239

ON OUR WEBSITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aaf5239
..................................................

 o
n 

N
ov

em
be

r 
3,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


RESEARCH ARTICLE
◥

SCIENCE COMMUNITY

Quantifying the evolution
of individual scientific impact
Roberta Sinatra,1,2 Dashun Wang,3,4 Pierre Deville,1,5
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Despite the frequent use of numerous quantitative indicators to gauge the professional
impact of a scientist, little is known about how scientific impact emerges and evolves in
time. Here, we quantify the changes in impact and productivity throughout a career in
science, finding that impact, as measured by influential publications, is distributed
randomly within a scientist’s sequence of publications. This random-impact rule allows us
to formulate a stochastic model that uncouples the effects of productivity, individual
ability, and luck and unveils the existence of universal patterns governing the emergence of
scientific success.The model assigns a unique individual parameter Q to each scientist, which
is stable during a career, and it accurately predicts the evolution of a scientist’s impact, from
the h-index to cumulative citations, and independent recognitions, such as prizes.

P
roductivity, representing the number of
publications authored by a scientist over
time, and impact, often approximated by
the number of citations a publication re-
ceives (1–4), are frequently used metrics

to gauge a scientist’s performance. Despite their
widespread use, we lack a quantitative understand-
ing of the patterns these metrics follow during
a scientist’s career (5). This is particularly alarm-
ing (6–11), given that they are increasingly adopted
for academic assessment (4, 11) and serve as
the input for numerous indicators, like the h-
index and its variants, which are frequently
used to compare individual performance (12–14).
Given the increasing interest in predicting the
value of these indicators (5, 15), here we ask:
How do impact and productivity change over
a typical scientific career? Does impact, arguably
the most relevant performance measure, follow
predictable patterns? Can we predict the timing
of a scientist’s outstanding achievement? Can we
untangle the role of impact, productivity, and luck
within a scientific career?
To address these questions, we reconstruct the

publication profile of scientists from multiple
disciplines and associate each of their publica-

tions with an impact, as captured by c10, the
number of citations 10 years after publication
(Fig. 1A; see Methods and section S1).
Motivated partly by the exceptional aware-

ness of a scientist’s highest-impact work (16, 17),
like radioactivity for Marie Curie and the double
helix for Watson and Crick, we identified for
each researcher her most-cited paper, c10* , that is,
the paper with the highest number of citations
10 years after its publication. The distribution
Pðc10* Þ for the studied scientists indicates that
only 5% have c10* ≥ 200; hence, most scientific
careers have limited maximal impact. To system-
atically distinguish the careers on the basis of
their peak impact, we group each scientist in-
to high maximum impact (top 5%, c10* ≥ 200),
low maximum impact (bottom 20%, c10* ≤ 20),
and medium maximum impact (middle 75%,
20 < c10* < 200) categories (Fig. 1B and section S2).

Productivity and impact patterns
in scientific careers

The total number of papers scientist i publishes
up to time t after her first publication, Ni(t),
asymptotically follows NiðtÞ ∼ tgi (Fig. 1C) (18).
Hence, yearly productivity, ni(t), follows the
same scaling with exponent (gi − 1) (fig. S5).
Yet, the scaling exponent is different for low-,
medium-, and high-impact scientists (Fig. 1C).
We find that for low-impact scientists, hgi =
1.55, indicating on average a steady increase
in their productivity. The increase is much
faster for high-impact researchers, for whom
hgi = 2.05 (Fig. 1D). These trends are also con-
firmed by changes in the yearly productivity
hn(t)i: For high-impact scientists, productivity
increases almost threefold during their career,
whereas the increase is modest for low-impact
scientists (Fig. 1E). Together, Fig. 1 (D and E)
indicates that productivity changes through-
out a scientific career. We find, however, that

this trend is modulated by impact: Productivity
growth is more pronounced for high-impact sci-
entists and is modest for low-impact scientists
(Fig. 1, C to E).
As Fig. 2A indicates, impact appears to follow

similar patterns to productivity (Fig. 1E): Although
c10 increases during a high-impact scientist’s
career, an increase is hardly noticeable for av-
erage and low-impact individuals. Yet, we ob-
serve a markedly different pattern if we examine
the impact in the vicinity of t*, the publication
time of the most-cited work c10* . Plotting hc10i for
the sequence of papers before and after an in-
dividual’s most-cited paper, c10* (Fig. 2B), we do
not see a gradual increase in impact as a sci-
entist approaches t*, nor do we observe elevated
citations after this breakthrough. Instead, the
observed pattern exhibits a singular behavior.
This singularity could be a simple result of
averaging random-impact fluctuations present
in careers. We find, however, that the result is
robust if we use a moving average or consider
only the publication with maximum impact in a
rolling window (section S2.1 and fig. S6) and is
validated using the fitting hypothesis ci10ðtÞ ∼ ait,
lacking differences in ai before or after t* (section
S2.2 and fig. S7) (19). Also, the papers published
before and after t* show no discernible differences
in their average number of citations (Fig. 2C).
Finally, we randomize each career by leaving all
productivity measures [total number of papers,
Ni, and ni(t)] unchanged but shuffling the impact
of each paper within each career (Fig. 2C). The
lack of differences between the original and
the randomized careers supports our overall con-
clusion: There are no detectable changes in im-
pact leading up to or following a scientist’s
highest-impact work. We tested the robustness
of this measure for different samples of scientists
(figs. S8 and S9), for different definitions of im-
pact (section S1.6 and fig. S10), and in data sets
where we attribute different impact shares to
each author of a paper (section S6 and fig. S11),
arriving at the same conclusion. Yet, we can-
not exclude that there are other choices of im-
pact variables or data-set selection that can detect
patterns before or after the highest-impact paper.
To understand when a scientist publishes her

most important work, we measured the proba-
bility P(t*) that the highest-impact paper is pub-
lished at time t* after a scientist’s first publication
(Fig. 2D). The high P(t*) between 0 and 20 years
indicates that most scientists publish their highest-
impact paper early or midcareer. The drop in
P (t*) after 20 years suggests that it is unlikely
that a scientist’s most-cited work will come late
in her career, a result well documented by the
literature about creativity (see section S3.1) (20, 21).
To understand the origin of this pattern, we
shuffled c10 among all papers published by the
same scientist, preserving the scientist’s time-
dependent productivity and paper-by-paper im-
pact and randomizing only the order of her
publications. The fact that P(t*) for these synthetic
careers is indistinguishable from the original data
(Fig. 2D) indicates that variations in P(t*) are not
due to specific impact sequences or other features
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but are entirely explained by year-by-year var-
iations in productivity throughout a career (fig.
S12) (20, 21).
These results prompted us to explore the po-

sition N* of the highest-impact paper in the
sequence of N publications of a scientist by
measuring P(N*/N), that is, the probability that
the most-cited work is early (N*/N small) or late
(N*/N ≃ 1) within the sequence of papers pub-
lished by a scientist. We find that P(N*/N) is flat
(Fig. 2E, inset), a finding supported by the cu-
mulative P(≥N*/N) (Fig. 2E), which decreases
independently of impact as (N*/N)−1, in line
with a uniform P(N*/N). Together, we arrive
at a rather unexpected conclusion, representing
our main empirical finding: Impact is randomly
distributed within a scientist’s body of work,
regardless of publication time or order in the
sequence of publications. We call this the
random-impact rule because it indicates that
the highest-impact work can be, with the same
probability, anywhere in the sequence of N papers
published by a scientist. We find that the random-
impact rule holds for scientists in different dis-
ciplines, with different career lengths, working in
different decades, and publishing solo or with
teams and whether credit is assigned uniformly
or unevenly among collaborators (sections S1.4
and S6.1) (22).
The random-impact rule can explain the grow-

ing impact during a scientist’s career (Fig. 2A).
To see this, we again randomly shuffle the im-
pact of the papers within each career, leaving the
individual productivity unchanged. The variations

of impact of the randomized careers are indis-
tinguishable from the original data for both high-
and low-impact individuals (Fig. 2A). Hence, the
growing average impact documented in Fig. 2A is
the result of combining the increasing average
productivity (Fig. 1E) with the heavy-tailed nature
of the citation distribution (6, 23–25). hc10i is not
stable but increases with the number of publica-
tions, resulting in the observed growing impact
(Fig. 2A). Hence, growing productivity, rather
than increasing ability or excellence, can account
for the growth in average impact during a career
in science.
The defining role of productivity in the timing

of the highest-impact work persists if we extend
the analysis to different samples of scientists,
not only those with at least 20 years of pub-
lication record. We considered different selec-
tions of scientists, such as (i) grouping them
by different career lengths (figs. S13 and
S14), (ii) grouping them by decade of active
career (figs. S15 and S16), (iii) removing multi-
authored papers (fig. S17), (iv) including only
papers published in one subarea of physics
(fig. S38), (v) creating no filter and including
all scientists (figs. S18 and S19), (vi) using
different definitions of impact (figs. S20, S21,
and S37), or (vii) considering the six different
disciplines in data set (ii) (figs. S22 and S23). In
all these cases, the location of the peak of the
highest-impact work probability changes, but
we never observe a difference with the random-
ized careers. Hence, the specific shape of P(t*) is
only a function of the selection of scientists and

of their temporal productivity patterns, whereas
impact is always randomly distributed within a
scientist’s sequence of publications.
The documented random-impact rule raises

an important question: What is the role of a
researcher’s own ability, if any, in scientific ex-
cellence? We propose two quantitative models
to answer this question.

Random-impact model (R-model)

We can rely on the random impact rule to build
a null model of scientific careers: We assume
that each scientist publishes a sequence of pa-
pers whose impact is randomly chosen from the
same impact distribution P(c10). Consequently,
the only difference between two scientists is their
overall productivity N. With the observed P(c10)
and P(N) distributions (Fig. 3, A and B) as input,
the obtained R-model (section S4.2) accurately
reproduces the randomness of the impact se-
quence P (N*/N) (Fig. 2E), but it also makes
two predictions that are at odds with the data.
(a) Productivity alone begets success: If

each paper’s impact is randomly drawn from
the same P(c10), a productive scientist (high N)
will more likely score a high c10* (see eqs. S7 and
S18) (26, 27). However, the R-model does not
correctly reproduce the observed increase of hc10* i
as a function of N (Fig. 3C).
(b) Divergent impact: The higher the aver-

age impact of a scientist’s publications with-
out the most-cited publication hc10−* i (Fig. 1A), the
higher the impact of the most-cited paper, c10*

(Fig. 3D). Hence, papers with truly high impact
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Fig. 1. Patterns of
productivity during a
scientific career.
(A) Publication history of
Kenneth G.Wilson (Nobel
Prize in Physics, 1982).
Horizontal axis indicates
the number of years
after the scientist’s first
publication, and each
vertical line corresponds
to a research paper. The
height of each line cor-
responds to c10, that is,
the number of citations
the paper received after
10 years (sections S1.3
and S1.6). The highest-
impact paper of Wilson
was published in 1974,
9 years after his first
publication, and it is the
17th of his 48 papers;
hence, t* = 9, N* = 17,
and N = 48. (B) Distri-
bution of the highest-

impact paper Pðc10� Þ across all scientists.We highlight in blue the bottom 20% of
the area, corresponding to low maximum impact scientists ðc10� ≤ 20Þ; red area
indicates the high maximum impact scientists (top 5%, c10

� ≥ 200); yellow cor-
responds to the remaining 75% medium maximum impact scientists ð20 <

c10
� < 200Þ. These cutoffs do not change if we exclude review papers from our

analysis (see figs. S4 and S36). (C) Number of papersN(t) published up to time t

for three scientists with low, medium, and high impact but with comparable final
number of papers throughout their career. (D) Distribution of the productivity
exponents g (18). The productivity of high-impact scientists grows faster than does
that of low-impact scientists. (E) Dynamics of productivity, as captured by the
average number of papers hn(t)i published each year for high-, average-, and low-
impact scientists. t = 0 corresponds to the year of a scientist’s first publication.
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* i diverges
when h log ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ
where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp^; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0
@

1
A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0
@

1
A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10* i on productivity

SCIENCE sciencemag.org 4 NOVEMBER 2016 • VOL 354 ISSUE 6312 aaf5239-3

Fig. 2. Patterns of
impact during a
scientific career.
(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)i for
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10i of papers
published before and
after the highest-

impact paper c10
� of

high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10� i and hc10i before and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10� i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10

� is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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N (section S4.10) and on the average impact of
the other papers published by the same sci-
entist hc10−*i (see S4.10). The model prediction for
hlog c10* iðNÞ and hlog c10* iðhc10−*iÞ is in excellent
agreement with the data (Fig. 3, C and D, and
fig. S30), indicating that the hidden parameter
Q and variations in the productivity N can ex-
plain the empirically observed impact differences
between scientists, correcting the shortcomings
of the R-model.
In summary, the Q-model allows us to generate

synthetic sequences of publications, by assigning
to each scientist an individual parameter Q and
a productivity N, extracted from the distribution
P (Q, N). Each paper in the sequence is assigned
an impact calculated as p × Q, where p is ran-
domly drawn from the distribution P(p), identi-
cal for all scientists.

The measurement and accuracy
of the hidden parameter Q

The model allows us to calculate the parameter
Qi from the sequence of publications c10,ia of each
scientist (section S4.5), obtaining for large Ni

(see eq. S28 for finite Ni and fig. S28 for the
relation between the two estimations of the Q
parameter)

Qi ¼ eh log c10;ii−mp ð3Þ

Given its dependence on log c10,ia, Q is not
dominated by a single high-impact (or low-

impact) discovery but captures instead a sci-
entist’s sustained ability to systematically turn
her projects into high-impact (or low-impact)
publications. For example, although the three
scientists in Fig. 3E have the same productivity
N ≃ 100, Eq. 3 predicts widely different Q values
for them, namely, Q = 9.99, 3.31, and 1.49. These
values accurately reflect persistent differences in
their sequence of publications: The Q = 9.99
researcher consistently publishes high-impact
papers, whereas the publications of the Q = 1.49
researcher are consistently of limited impact.
Hence, the parameter Q captures a scientist’s
differentiating ability to take random projects
p and systematically turn them into high-impact
(or low-impact) publications.
The Q-model makes the unexpected predic-

tion that despite the obvious differences in in-
dividual career paths, differences in the impact
of individual papers should disappear if we use
the reduced variable pa = c10,ia/Qi, a rescaling
standard in statistical physics (28, 29). Although
the individual P(c10,ia) distributions differ greatly,
the P(c10,ia/Qi) distributions for all scientists collapse
into a single universal curve P(p) (Fig. 4B), confirm-
ing the universal nature of impact across all
careers (30). Finally, the log-normal P (Q) (Fig.
3G) confirms the model’s mathematical self-
consistency.
A fundamental limitation of all metrics used

in science is their nonstationarity: Productivity,
the cumulative number of citations, and the h-

index all grow in time, making it difficult to
compare individuals at different stages of
their career. In contrast, we find that the Q
parameter is independent of the career stage.
To show this, we used a DN = 30 paper window
to measure changes in Q during the career of a
scientist, observing that the Q parameter fluc-
tuates narrowly throughout each career, without
systematic changes (Fig. 5A). The magnitude of
these fluctuations is explained for 75% of
scientists by the stochastic nature of Q (section
S4.9), because the estimated Q parameter lies
within the uncertainty envelope provided by the
model. In the remaining 25% of the cases, the
variation in Q is slightly higher than the vari-
ation predicted by the stochastic nature of the
model (Fig. 5B). However, the magnitude of this
surplus variation never exceeds 15%, and the aver-
age relative error is always below 10% (section
S4.9 and figs. S31 and S32).
Finally, to test the stability of the Q param-

eter throughout the overall career, and not as a
function of productivity, N, we consider careers
with at least 50 papers and calculate their early
and late Q parameters (Qearly and Qlate, respec-
tively) using Eq. 3 on the first and second half of
their papers, respectively. In this case, the sto-
chastic uncertainty explains the differences be-
tween Qearly and Qlate for the large majority of
scientists (95.1%, Fig. 5C). Together, these mea-
surements indicate that the Q parameter is
generally stable throughout a career, allowing
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Fig. 3. The Q-model.
(A) Distribution of the
paper impact c10 across
all publications in the
data set. The gray line
corresponds to a
log-normal function
with average m = 1.93
and SD s2 = 1.05 (R2 =
0.98). (B) Distribution
of the total number
of papers published by
a scientist (productivity).
The gray line is a log-
normal with m = 3.6
and s2 = 0.57 [weighted
Kolmogorov-Smirnov
(KS) test, P = 0.70].
(C) Citations of the
highest-impact paper,

c10
� , versus the number

of publications N during
a scientist’s career. Each gray point of the scatterplot corresponds to a scientist.
The circles are the logarithmic binning of the scattered data. The cyan curve
represents the prediction of the R-model, assuming that the impact of each
paper is extracted randomly from the distribution P(c10) of Fig. 2A.The red curve
corresponds to the analytical prediction (see eq. S35) of the Q-model (R2 =
0.97; see section S4.6 and fig. S29 for goodness of the fit). (D) logc10� ver-
sus hlog c10

−* i. Each gray point in the scatterplot corresponds to a scien-
tist, where hlog c10

−* i is the average logarithm of her paper impact, excluding
the most-cited paper c10* . We report in cyan the R-model prediction and in red
the analytical prediction (see eq. S36) of the Q-model (R2 = 0.99; see section
S4.6 and fig. S29 for goodness of the fit). (E) Cumulative impact distribution

of all papers published by three scientists with the same productivity, N ≃ 100,
but different Q. (F) Distribution Pðp^Þ across all publications. For each paper a
of scientist i, we have log pa = log c10,ia − log Qi, where log Qi ¼ hc10;ii − hp^i.
Therefore, the distribution of p^ ¼ log p, except for a common translational
factor mp, corresponds to the distribution of log c10,ia − h log c10,ii, which is
a normal with m = 0 and s2 = 0.95 (KS test, p = 0.48). (G) Distribution of
parameter Q, P(Q), for all scientists. The gray line corresponds to a log-
normal function with m = 0.93 and s2 = 0.46 (weighted KS test, p = 0.59).
(H) Cumulative distribution of the rescaled impact c10,ia/Qi for the three
scientists in (E). The black line corresponds to the universal distribution P(p).
The collapse is predicted by Eq. 1.
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us to offer quantitative predictions on the evo-
lution of a scientific career.

The predictive power of the hidden
parameter Q

The true value of the Q parameter comes in its
predictive power:
(i) The Q parameter allows us to estimate the

number of papers a scientist needs to write so
that her highest-impact paper gathers c10* cita-
tions (Fig. 6B). We find that scientists with low
Q (≃1.2) must write at least 100 papers so that
one of them gathers on average 30 citations.
Yet, a scientist with the same productivity but
Q = 10 is expected to author a c10* = 250 paper.
Doubling productivity will enhance only with
seven citations the highest-impact paper of the
low-Q scientist (Q = 1.2), whereas it will boost
with more than 50 citations c10* for the high-Q
scientist. Overall, Fig. 6B documents that for
low-Q scientists, increased productivity cannot
boost substantially the chance of publishing a

high-impact work; hence, it is very unlikely that
they “get lucky.”
(ii) A scientist’s h-index, indicating that her

h most-cited papers gather at least h citations
(12, 15), is jointly determined by the Q param-
eter and the productivity N (section S4.11). This
analytical prediction reproduces not only the
observed h-index of all scientists (fig. S33B) but
also the evolution of the h-index during a sci-
entist’s career (Fig. 6, C and D, and fig. S34A).
Similar equations describe the cumulative num-
ber of citations (Fig. 6D and figs. S33, D to F,
and S34B) and the g-index (section S4.11), indi-
cating that the traditional performance measures
are uniquely determined by Q. Given that Q is
constant in time, we conclude that productivity
only can account for career-wide changes in these
measures (Fig. 6, C and D).
(iii) By determining the value of Q during the

early stages of a scientific career, we can use it
to predict future career impact. The estimation
error DQ of Q decreases with the number of pub-

lished papers N and drops below 10% already
after N = 20 publications (section S4.12). We can
therefore estimate Q based on a scientist’s first
N0 published papers in Eq. 3 and then use the
analytical expression of the h-index and of the
total number of citations to predict the future
impact of a scientist (section S4.12 and fig. S35).
Given the stochastic nature of the Q-model, an
uncertainty envelope accompanies the most likely
value of each impact metric. In Fig. 6E, for two
scientists, we show the h-index prediction up to
N = 150 after we estimated Q from the first N0 =
20 (top) and N0 = 50 (bottom) papers. Although
the initial h-index overlaps for the two scientists,
their long-term impact diverges, a difference ac-
curately predicted by the Q-model. Generalizing
for a larger sample of scientists, we find a strong
correlation between the predicted and observed
h-index (Fig. 6F). To quantify the Q model’s over-
all predictive accuracy, we measured the fraction
of times that the h-index falls within the envelope
for scientists with at least 100 papers. The zN
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Fig. 4. Careers and
their Q parameter.
(A) Left: Analytically
predicted cumulative
impact distributions
for different Q. The
plot also highlights
the impact distribution
of the three scientists
shown in Fig. 2E. The
detailed publication
record of each scientist
is reported on the
right, documenting the
notable differences
between them, given
their different Q.
(B) Left: Individual
cumulative impact
distributions P(c10,i).
Given the modest
number of pub-
lications N character-
izing most scientists
and the impossibility
to compute statisti-
cally meaningful dis-
tributions for many of
them, each distribution
is computed across
all publications of all
scientists with the
same Qi.The color code
captures their Q
parameter, as shown in
(A). Right: Cumulative
distributions of the
rescaled impact c10,i/Qi

for the scientists, indi-
cating that the individ-
ual distributions
collapse on the univer-
sal distribution P(p).
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score for each scientist captures the number
of SDs the real h-index deviates from the most
likely h-index after N publications. We find
that 71% of scientists have z40 ≤ 2 based on N0 =
20, which improves to 81% for N0 = 50 and z70
(Fig. 6G). Together, we conclude that the es-
timation of the Q parameter at early stages
has the capability to unveil the long-term career
impact.
(iv) To test whether Qi correlates with out-

standing impact, we ranked scientists on the
basis of Q, N, Ctot, c10* , and their h-index. To val-
idate these rankings, we use a receiver operat-
ing characteristic (ROC) plot that measures the
fraction of Nobel laureates at the top of the
ranked list (Fig. 6A). We find that the Q-based
ranking predicts Nobel-winning careers most
accurately, offering the highest area of all rank-
ing measures (Fig. 6A) and the highest precision
and recall (section S7 and fig. S45). Equally no-
table is the finding that the predictive powers of
Ctot, c10* , and the h-index are indistinguishable
from each other and that the productivity N is
the least predictive. Similar results are obtained
if we use Qi to detect Dirac and Boltzmann
medalists (figs. S46 and S47). The early-career
Q has also the best accuracy in predicting Nobel
laureates (section S7.1 and fig. S48).
High-impact discoveries often result from col-

laborative work (31–33), mixing scientists with
different Qi. To explore the influence of collab-
orators (34, 35), we used a credit allocation al-
gorithm (22, 36) to attribute different impact
shares to each author. We then repeated our
entire analysis, finding that the Q-model, with
slightly revised parameters, can explain the re-
sults (section S6.1 and figs. S40 to S43). Further,
we find that Qi is robust to the omission of in-
dividual collaborators (section S6.2 and fig. S44).
Hence, although collaborative and team effects
modulate the success of a particular publication,

individual collaborators have only limited influ-
ence on Qi.

Summary and discussion

In summary, we offer empirical evidence that
impact is randomly distributed within the se-
quence of papers published by a scientist, im-
plying that temporal changes in impact during
a scientific career can be explained by temporal
changes in productivity, luck, and the heavy-
tailed nature of a scientist’s individual impact
distribution. This finding allowed us to system-
atically untangle the role of productivity, luck,
and a scientist’s Q, predicting that truly high-
impact papers require a combination of high
Q and luck (high p) and that high productivity
alone has only a limited effect on the like-
lihood of high-impact work in a scientific career,
if it is not associated with high Q. The mea-
surable Q parameter represents a scientist’s
sustained ability to publish high-impact (or
low-impact) papers.
Virtually, all currently used metrics of per-

formance change during the career of a scien-
tist, capturing progression, not sustained ability.
In contrast, Q is constant throughout a scientist’s
career for most scientists (76%), and it is not dom-
inated by a single paper or collaborator, being
a measure intrinsically linked to an individual.
The fundamental nature of the Q parameter is
supported by the fact that the currently used
metrics of success, from the h-index to cumulative
citations, can be calculated from it. Q predicts not
only the value but also the time evolution of the
traditional impact metrics (Fig. 6, C to F).
All findings presented above are based on a

subset of 2887 physicists with a career spanning
at least 20 years and a persistent publication
record. These scientists have reached a mid- or
late-career stage and hence can be considered
successful as they survived many selection pro-

cesses in academia. Although our findings hold
in at least six more different disciplines (see
section S1.2) and are robust to relaxing the se-
lection criteria (see section S1.4), the studied data
sets do not feature young scientists who have left
academia early and hence have published only a
few papers.
Throughout this work, we have treated long-

term impact, as captured by c10* , as an exogenous
variable. It seems reasonable, however, that pro-
ductivity and impact could influence each other.
From amechanistic perspective, for example, some
early promising publications might help attract the
resources leading to further productivity growth.
Early-career impact, quantified with the average
hc10i for the first 10 papers of a scientist, is as-
sociated with career longevity, indicating that
the probability to stay in academia is slightly
influenced by the impact of a scientist’s early
publications (fig. S49). The Q-model also indi-
cates that the overall number of papers in a
career weakly correlates with high Q (Eq. 2).
Although the Q-model and the predictions pro-
vided here are immune from a possible coupling
between early impact and overall productivity
(section S5), these preliminary findings call for
more measurements and models that can accu-
rately capture the coevolution of short-term early
impact and productivity (37).
Although Q can accurately predict a career

impact, the dependence of Q on exogenous fac-
tors, such as the quality of the education and cur-
rent institution (38, 39), size of the research
community (24, 40), gender (41, 42), dynamics
of subfields (43, 44), or publication habits, re-
mains unknown. Mathematically speaking, the
model remains the same if the Q parameter re-
flects other factors that characterize a scientist.
The various robustness checks we performed to
discover possible confounding factors, such as
career length, decade, team effects, and the analysis
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Fig. 5. Stability of
the Q parameter.
(A) Time variation of
the Q parameter during
individual careers. For
scientists with at least
100 papers and Q ≃
1.2, Q ≃ 3.8, and Q ≃
6.5, we report Q(DN),
measured in a moving
window of DN = 30
papers. For 75% of
the scientists, the
fluctuations are
because we have a
finite number of papers in the moving window, the magnitude of the
changes being comparable to that predicted by the model with a constant
Q (section S4.9). (B) Fluctuations of the Q parameter in model and data.

We study the distribution of the uncertainty,
QðDNÞ

Q
, in both data and syn-

thetic careers with constant Q (DN = 5). For 74.7% of the scientists, the
fluctuations are comparable to those of the model. For the remaining 25.3%,
the SD is slightly higher than the one predicted by the model. (C) Comparison
between early and late Q parameter.We compare the Q parameter at early-

career (Qearly) and late-career (Qlate) stage of 823 scientists with at least
50 papers. We measured the two values of the parameters using only the
first and second half of published papers, respectively. We perform these
measurements on the real data (circles) and on randomized careers, where
the order of papers is shuffled (gray shaded areas). For most of the careers,
95.1%, the changes between early- and late-career stages fall within the
fluctuations predicted by the null model with randomized paper order, indicating
that the Q parameter is stable throughout a career. The observed fluctuations
are explained by the finite number of papers in a scientist’s career.
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of different disciplines and data sets, have failed to
offer a simple, straightforward explanation for
the origin of the different Q values scientists
have. Most likely, the Q parameter is affected by
multiple factors, rather than a single one, and
more information about its nature might be un-
veiled once other detailed career information,
such as grants and awards, will be available and
included in the analysis. Nevertheless, the key
differentiating factor of Q from luck is that it
has to be sustained. Q is not determined by a
single paper, a lucky draw, but by a sustained
high performance, throughout the scientist’s
career. This is reflected in the hlog c10i term in

Eq. 3, indicating that a single very high impact
paper has only a small impact on Q. A scientist
needs multiple high c10 papers to ensure a high
Q. Uncovering the origin of the Q parameter is a
promising future goal, which not only could offer
a better understanding of the emergence and
evolution of scientific excellence but also might
improve our ability to train and nurture high-
impact scientists.

Methods
Data sets

We explore two types of data sets: (i) the pub-
lication record of 236,884 physicists publishing

in the journal family Physical Review from 1893
to 2010 [American Physical Society (APS) data
set, see section S1.1 and figs. S1 and S2] and (ii)
the combination of 24,630 Google Scholar ca-
reer profiles with Web of Science (WoS) data,
covering 514,896 publications in biology, chem-
istry, cognitive sciences, ecology, economics, and
neuroscience (WoS data set, described in section
S1.2 and fig. S3). The results shown in this article
refer to 2887 scientists, whose publication record
spans at least 20 years, who have at least 10 pub-
lications and have authored at least one paper
every 5 years, derived from the APS data set (see
section S1.3).
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Fig. 6. Relation
between Q and other
impact indicators.
(A) ROC plot
capturing the ranking
of scientists based on
Q, Ctot, h-index, c10* ,

and N. Each curve
represents the frac-
tion of Nobel lau-
reates versus the
fraction of other sci-
entists for a given
rank threshold. The
diagonal (no-
discrimination line)
corresponds to ran-
dom ranking; the area
under each curve pro-
vides our accuracy to
rank high Nobel lau-
reates. The ranking
accuracy is reported in
the legend, 1 being the
maximum. Precision
and recall as a function
of rank are discussed
in section S7. (B)
Expected citations to
the highest-impact

paper, c10* , for a scien-
tist with parameter Q
and N publications.The
plot illustrates the very
low chance of a low Q
researcher to publish a
high-impact paper. (C)
Observed versus pre-
dicted growth of the h-
index for scientists with different Q. The plot documents the agreement
between the analytically predicted h-index (eq. S38, continuous line) and
the observed value 〈h(N)〉, obtained by averaging the h-index for scientists
with the same Q (circles). (D) Top: Growth of the h-index for two scientists
with at least 200 papers and different Q as a function of the productivity N
(blue circles), compared with the prediction of eq. S38 (red line). Bottom: For
the two scientists in the top panels, we measure the cumulative number of
citations as a function of N, Ctot (N), and compare with the prediction of eq.
S39. The close agreement between observation and prediction in (C) and
(D) shows that the time-independent Q captures an intrinsic property of a
scientist and that other indicators, like the h-index or cumulative citations,
are uniquely determined by Q and productivity. (E) For two scientists, we show

the h-index prediction as a function of N using only early-career information,
namely, N0 = 20 (top) and N0 = 50 (bottom), to estimate the Q parameter.
Although the initial h-index up to N0 = 20 highly overlaps for the two
scientists, their long-term impact diverges, a difference accurately predicted
by the Q-model. (F) Scatterplots of predicted and real h-index at N = 60
based on Q estimated at N0 = 20. The error bars indicate prediction
quartiles (25 and 75%) in each bin and are colored green if y = x lies between
the two quartiles in that bin and red otherwise. The circles correspond to
the average h-index in that bin. (G) The zN score for each scientist cap-
tures the number of SDs the real h-index deviates from the most likely
h-index after N publications. zN ≤ 2 indicates that the real data are within the
prediction envelope.
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Note that the APS data set contains only cita-
tions within the Physical Review corpus (see section
S1.1); for this reason, the specific number citation
numbers are systematically smaller compared to
the citations reported by the WoS database.
Our findings are also supported by the anal-

ysis of different samples of scientists in the APS
data set, selected using a number of different
criteria (see section S1.4), and by the analysis of
all other disciplines in the WoS data set, which
are reported in the Supplementary Materials
and referenced throughout the article.

Citation measures

Citation-based measures of impact are affected
by three major problems: (i) citations follow dif-
ferent dynamics for different papers (6, 45), (ii)
the average number of citations changes over time
(24) and (iii) citation count is subfield-dependent
(24). To overcome (i) for each paper, we use the
cumulative number of citations the paper received
10 years after its publication, c10, as a measure
of its scientific impact (6, 45). We can correct for
(ii) and (iii) by normalizing c10 by the average hc10i
of papers published in the same year. Because
these corrections do not alter our conclusions
for the APS data set, we report results without
normalization. For the WoS data set, we instead
used normalized citation counts.

Q-model

The stochastic process behind the Q-model is
determined by the joint probability P (p,Q,N).
The model assumes that a scientist i has a pro-
ductivity Ni and a parameter Qi sampled from
the marginal distribution P (Q,N), and then ex-
tracts Ni values of p from the conditional dis-
tribution P(p|Q,N). By assuming that P (p,Q,N)
follows a trivariate log-normal distribution with
parameters m and S, we can write the likelihood
function Li that a scientist i with Qi and Ni has
a sequence of papers {a} with impact {Qipa}
(see Eq. 1). Finally, with numerical optimization
methods, we identify the maximum of the over-
all log-likelihood function log L = Si Li, which
provides the numerical estimate of m and S re-
ported in Eq. 2 (see also sections S4.3 and S4.4).
This approach also estimates Qi, obtained by
maximizing the likelihood function Li for each
scientist. The maximization provides an analytical
expression for Qi, which, for large productivity
Ni, converges to Eq. 3 (see section S4.5)
This procedure and the measured parame-

ters allow us to generate synthetic sequences
of publications: We first extract an individual
parameter Q and a productivity N from the
distribution P (Q,N). Then, each paper in the
synthetic sequence is assigned an impact pQ,
where p is randomly drawn from the distribution
P(p), identical for all scientists.
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