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The discrete ordered median location model is a powerful tool in modeling classic and alternative

location problems that have been applied with success to a large variety of discrete location problems.

Nevertheless, although hub location models have been analyzed from the sum, maximum and coverage

point of views, as far as we know, they have never been considered under an alternative unifying point

of view. In this paper we consider new formulations, based on the ordered median objective function,

for hub location problems with new distribution patterns induced by the different users’ roles within

the supply chain network. This approach introduces some penalty factors associated with the position

of an allocation cost with respect to the sorted sequence of these costs. First we present basic

formulations for this problem, and then develop stronger formulations by exploiting properties of the

model. The performance of all these formulations is compared by means of a computational analysis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The literature of hub location covers a large variety of models
where the main goal is to minimize some globalizing function of
the operation costs. See the surveys [1,9] and the references
therein. Despite that most papers have been devoted to the
minimization of the overall transportation cost (sum) (see
[4,7,8,11,13,14,17,24–29,37,40], among others), in some cases
other objectives have also been taken into account. Among them
we mention the minimization of the largest transportation cost
and the coverage cost [5,10,20,21,23,31,38,39]. However, these
models have never been considered under alternative points of
view as required by nowadays logistics. Practitioners need, more
and more, flexible models that incorporate the different roles
of the parties in the supply chain network. Roughly speaking,
the classical hub location models try to minimize the sum of
the transportation costs of each origin–destination path, i.e. the
system is analyzed from the logistics provider point of view, see
[41]. However, depending on the driving force of the logistics
network we can distinguish alternative points of views, as for
instance, suppliers, clients or a combination of both points of
views. A first attempt to deal with this flexibility has been already
addressed with some success in certain classical location models
(see e.g. [2,15,16,18,19,41]) and it is mainly concerned with the
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differentiation of users’ roles within the supply chain network or
equivalently with the use of new or different distribution patterns
(origin–destination delivery paths) in the distribution phase. In
this paper, we elaborate on the direction mentioned above and
present a model that allows to differentiate on the role played by
the different parties in a hub-type supply chain network. First, we
incorporate flexibility through rank dependent compensation
factors. Second, we assume that the driving force in the supply
chain is shared by the suppliers and the distribution system;
suppliers support the transportation costs from the origin sites to
the first hub and the distribution system supports the transporta-
tion cost from the first hub to the destination sites.

In this paper, we introduce and analyze hub location problems
with a new type of distribution pattern induced by the different
roles of the users within the supply chain. Actually, we consider
supply chain networks where the operations within the network
consist of segmented origin–destination deliveries of known
amounts of a commodity. The goal is to simultaneously make
decisions on the location of the intermediate transhipment points
(hubs) and on the origin–destination delivery paths (distribution
patterns). We seek to establish an intermediate distribution
system with a fixed number of hubs that minimizes the overall
operation cost of the supply chain network. Moreover, we assume
that any origin–destination delivery path is composed of, at most,
two components: (1) the subpath that goes from an origin site to
the first access point (first hub) to the distribution system, and
(2) the subpath that links first hubs to final destinations. In
addition, this last component is itself divided into two parts: (2.1)
the inter-hubs link and (2.2) the link from the last hub to the final
destination. This structure allows us to distinguish between
different cost generating entities according to the roles played
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within the supply chain. On the one hand, we assume that each
origin must support the cost to reach the first hub (i.e. the
distribution system), while the intermediate distribution system
supports the remaining delivery costs, namely the cost induced
once the commodity has reached the first hub (from the first hub
to the final destination), i.e., the distribution system is the
responsible for any commodity once it reaches the first hub. It
is somewhat similar to parcel companies where urban/first level
franchises carry the commodities to the assigned distribution
centers of the parcel company and then, the company delivers the
product to its final destination.

Each one of the components of any origin–destination delivery
path described above gives rise to a cost that is weighted by
different compensation factors depending on the role of the party
that supports the cost. From an application point of view, con-
solidated deliveries within the distribution system, i.e. between
hubs, and from the last hub to the final destinations, should be
cheaper than the first component of the cost since they can be
done using larger vehicles or cheaper transportation modes (due
for instance to the larger size of the distribution system which
implies a dominant position in price negotiation). Therefore,
in our models we assume that the inter-hub links are covered by
the same type of vehicles (planes, big trucks, etc.) and the costs
associated with these links have a fixed discount 0oao1.
Moreover, we also assume that the links between last-hub and
the destination sites are also covered by a different type of vehicle
(small trucks, vans, etc.) and the associated costs have another
discount factor 0odo1. A possible reason of using two different
discount factors for the inter-hub links and the links between the
last-hub and destination sites may be due to the different loading
and unloading systems used in the hubs with respect to the ones
used in the destination sites (the location of hubs implies the
implementation of automatic loading/unloading systems that
allow to handle big trucks, while destination sites may use
traditional methods that only works with small vehicles).

In addition, deliveries from the origin sites to the distribution
system are scaled by rank dependent weights. We assume that
the commodity of each origin is transported to a single (unique)
first hub that represents the access point to the distribution
system. These weights can be seen as compensation factors that
try to diminish unfair situations of the origin sites with respect to
the distribution system. The reader may note that we are
simultaneously making decisions on placing hubs that define
the intermediate distribution system, and establishing the
delivery paths from origin sites to final destination. Thus, a
solution that is good for the system (the entire supply chain)
might not be acceptable for single parties if in that solution their
costs to reach the system are too high relative to similar costs for
other parties. In this situation some compensation to unhappy
sites may be expected to prevent those sites from not using the
system. The goal of our rank dependent weights is to compensate
unfair situations, such as those described above. For instance, if a
solution places a set of hubs so that the accessibility cost of origin
j is greater than the corresponding cost of origin ju, the model tries
to favor j with respect to ju assigning weights ljrlju. (Note that
these weights do not penalize site ju but instead they compensate
site j because these lambdas reduce the dispersion of the costs.)
In order to incorporate this ordinal information in the overall
transportation cost, the objective function applies a correction
factor to the transportation cost of the commodity that is sent
from each origin to a first hub (to reach the system) which is
dependent on the position of that cost relative to similar costs
from other origin sites. For example, a different penalty might be
applied if the transportation cost of the commodity from origin
site j was the 5th-most expensive cost rather than the 2nd-most
expensive, see [3,30,32,33,35,36]. It is even possible to neglect
some origin by assigning a zero penalty. This adds a ‘‘sorting’’-
problem to the underlying hub location problem, making formu-
lation and solution much more challenging.

Our goal is to present a unified framework to analyze these and
related models of hub location that consider ordinal information
to cope with actual requirements from logistics. Formally, the
objective is to minimize the total transportation cost of the flows
between each origin–destination pair, routed through at most two
hubs, once we have applied rank dependent compensation factors
on the transportation costs of the origin-first hub links, and fixed
scaling factors for the inter-hub and hub-final destination
transportation costs.

The rest of the paper is organized as follows: In Section 2
we describe formally the model and provide a mathematical
programming formulation using variables with three indices.
Section 3 studies alternative formulations for this hub location
problem using covering variables. In Section 4, we present a
preliminary computational analysis to determine the limits of
solving the problem with the 3-index variable and covering
variable formulations using standard MIP solvers. Section 5
develops some improvements and strengthening with respect to
the previous formulations and an alternative formulation under
the hypothesis of l-weights given in non-decreasing order. These
improvements are computationally compared in Section 6. The
paper ends with some conclusions. In the Appendix, we provide a
result stating that some constraints presented above, that in the
general case are required to get a valid formulation, are redundant
whenever the cost structure satisfies the triangular inequality.
2. The model and the 3-index formulation

Let A denote a given set of N client sites and identify these with
integers 1,y,N. Each site is collecting or gathering some
commodity that must be sent to the remaining sites. Let wjmZ0
be the amount of commodity to be supplied from the j th- to the
m th-site for all j,mAf1, . . . ,Ng and let Wj ¼

PN
m ¼ 1 wjm. In the

following, we assume without loss of generality that the set of
candidate sites for establishing hubs is identical to the set of sites
A. Let cjmZ0 denote the unit cost of sending commodity from site
j to site m (not necessarily satisfying the triangular inequality).
We assume that cjj¼0, 8j¼ 1, . . . ,N. Let prN be the number of
hubs to be located and X � A with jXj ¼ p denote a feasible set
of candidate sites. A solution for the problem is a feasible set of
candidate sites X, plus a set of paths connecting pairs (flow
patterns) of sites j, m for all j,mAf1, . . . ,Ng in such a way that each
path traverses at least one and no more than two hubs from X. To
be more precise, (i) if the origin site j and the destination site m

are not hubs, the flow must go through one or two intermediate
hubs; (ii) if either the origin or the destination sites are hubs, the
flow between them can be either directly sent or sent through an
additional hub; and (iii) if both origin and destination sites are
hubs, the flow must go directly from the origin to the destination.

In addition, this model compensates origin site-first hub
transportation costs by using parameters l¼ ðl1, . . . ,lNÞ. These
scaling factors will be assigned to the origins depending on the
order of the sequence of transportation costs of the commodity
with the same origin to the first hub. Indeed, if a solution sends
the commodity from the origin site j via a first hub k and this
delivery cost, namely Wjcjk, was ranked in the ith position among
these type of costs then this term would be scaled by li, i.e. the
corresponding objective function component would be liWjcjk. In
addition, we also consider a compensation parameter 0oao1 for
the deliveries between hubs and another parameter 0odo1,
aod for the deliveries between hubs and final destination sites.
These parameters may imply that, at times, using a second hub
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results in a cheaper connection than going directly from the first
hub to the final destination.

Observe that depending on the choices of the l-vector we can
obtain different criteria to account for the costs from the origins to
their first hubs in the objective function. For instance, if
l¼ ð0, . . . ,0,1,. . .k ,1Þ, were considered the objective function would
be the sum of the k-largest costs (k-centrum). In the following,
we illustrate the different behavior of our model for different
choices of the l-vector and the single allocation p-hub median.
For this purpose we use the CAB data set publicly available
at http://people.brunel.ac.uk/�mastjjb/jeb/info.html (see [34]),
with N¼20, p¼5, a¼ 0:7 and d¼ 1:2a. Indeed, Table 1 reports the
locations of the hub sites for different criteria (p-center,
i.e., l¼ ð0, . . . ,0,1Þ, trimmed mean with k1¼k2¼8, i.e., l¼
ð0,. . .8 ,0,1,1,1,1,0,. . .8 ,0Þ, k-centrum with k¼9, i.e., l¼
ð0, . . . ,0,1,. . .9 ,1Þ) and the locations of the hubs sites for the
single allocation p-hub median. We can check that the solutions
we obtained are different for all the considered criteria. Moreover,
we observe, from Table 1, that even in those cases where the same
site is chosen as a hub with respect to different criteria, the
allocation pattern of origin sites to hubs is different. For instance,
in the optimal solution for the center and the single allocation
p-hub median there are two hubs at sites 2 and 13. However, the
allocations are different. Indeed, 14�!2 for the center problem
and 14�!13 for the single allocation p-hub median model.
2.1. 3-Index formulation

A natural way to attack the formulation of the above model
may be using variables that keep tracks of the order of the
transportation costs from each origin to its first hub and the entire
path followed by the flow between each origin–destination pair.
This approach would give rise to a formulation with 5-index
variables, one for the order and the remaining four indices, for the
origin–destination paths. Indeed, based on the fact that any
origin–destination path cannot traverse more than two inter-
mediate hubs we can use four indices to define the flow patterns.
The first and fourth indexes stand for the origin and destination
sites whereas the second and third ones indicate the intermediate
hubs. Rather than this formulation, our first model decouples the
requirement of the sorting from the pattern followed by each flow
and then, a formulation with only 3-index variables can be stated.
In order to formulate this model we consider a set of l-weights,
where li can be seen as a correction factor to the i th-position
with i¼1,y,N. In addition, we define the following set of
variables:

ri
jk ¼

1 if the flow from the origin site j goes

first to the hub k and Wjcjk is the ith

lowest value of the transportation costs

from each origin to its first hub

0 otherwise

8>>>>>><
>>>>>>:

xk‘m ¼ flow that goes through a first hub k

and a second hub ‘ with destination m
Table 1
Hub locations and allocation pattern for the data instance of the CAB problem N¼20 a

Center Trimmed mean

2,3,14�!2 1,10,13,16�!1

4,11,15,19�!4 4,7,8,11,12,15,17�!4

8,12�!8 3,14,18�!18

7,10,13,16�!13 19�!19

1,5,6,9,17,18,20�!20 2,5,6,9,20�!20
yk ¼
1 if a hub is located at the site k

0 otherwise

�

with i,j,k,‘,m¼ 1, . . . ,N.
Thus, the 3-index formulation is

min
XN

i ¼ 1

XN

j ¼ 1

XN

k ¼ 1

licjkri
jkWjþ

XN

k ¼ 1

XN

‘ ¼ 1

XN

m ¼ 1

xk‘mðack‘þdc‘mÞ ð1Þ

s:t:
XN

i ¼ 1

XN

k ¼ 1

ri
jk ¼ 1, 8j¼ 1, . . . ,N ð2Þ

XN

j ¼ 1

XN

k ¼ 1

ri
jkr1, 8i¼ 1, . . . ,N ð3Þ

XN

i ¼ 1

XN

j ¼ 1

ri
jkrNyk, 8k¼ 1, . . . ,N ð4Þ

XN

i ¼ 1

ri
jj ¼ yj, 8j¼ 1, . . . ,N ð5Þ

XN

‘ ¼ 1

xk‘m ¼
XN

i ¼ 1

XN

j ¼ 1

ri
jkwjm, 8k,m¼ 1, . . . ,N ð6Þ

XN

j ¼ 1

XN

k ¼ 1

ri
jkcjkWjr

XN

j ¼ 1

XN

k ¼ 1

riþ1
jk cjkWj, 8i¼ 1, . . . ,N�1 ð7Þ

xk‘mr ð1�ymÞ
XN

j ¼ 1

wjm, 8k,‘,m¼ 1, . . . ,N, ‘am ð8Þ

XN

‘ ¼ 1

XN

m ¼ 1

xk‘mryk

XN

j ¼ 1

Wj, 8k¼ 1, . . . ,N ð9Þ

XN

k ¼ 1

XN

m ¼ 1

xk‘mry‘
XN

j ¼ 1

Wj, 8‘¼ 1, . . . ,N ð10Þ

XN

k ¼ 1

yk ¼ p ð11Þ

ri
jkAf0,1g, xk‘m, ykZ0, 8i,j,k,‘,m¼ 1, . . . ,N ð12Þ

The objective function accounts for the weighted sum of the
three components of the shipping cost, namely origin site to first
hub, inter-hub connections and last hub to final destination site.
The first block of shipping costs is accounted after the compensa-
tion process using the lambda parameters, whereas the second
and third blocks are scaled with the a and d parameters,
respectively. Constraints (2) ensure that each origin site j is
allocated exactly to one position in the ordered sequence of
transportation costs and all the flow from the origin site j is also
associated with a unique first hub. Constraints (3) guarantee that
any position in the sorted vector of origin site-first hub costs is
nd p¼5.

k-Centrum p-Hub median

1,14,16�!1 2,3,17,18�!2

4,5,6,9,11,13,15�!4 4,5,6,9,20�!5

7,8,10�!7 8,11,15�!11

12,19�!12 1,7,10,13,14,16�!13

2,3,17,18,20�!17 12,19�!19

http://people.brunel.ac.uk/&sim;mastjjb/jeb/info.html
http://people.brunel.ac.uk/&sim;mastjjb/jeb/info.html
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allocated to at most one. Constraints (4) ensure that one origin
may be allocated to a specific first hub only if it is open. Observe
that this family of constraints can be presented in a disaggregated
form, i.e.

XN

i ¼ 1

ri
jkryk, 8j,k¼ 1, . . . ,N

However, our computational experience shows that using the
disaggregated form provides worse computational running times
than using the original constraints (3). Therefore, we have kept
them in the aggregated form. Constraints (5) state that if an origin
j is a hub itself, then the first hub in any of its origin–destination
paths must be j.

Constraints (6) are flow conservation constraints and they
ensure that the flow that enters any hub k with final destination m

is the same that the flow that leaves hub k with destination m.
Constraints (7) give us the order relationship of the shipping costs
between the origin sites-first hubs. Constraints (8) ensure that if
the final destination site is a hub, then the flow goes at most
through one additional hub. Constraints (9) and (10) establish
that the intermediate nodes in any origin–destination path should
be open hubs. Finally, constraint (11) fixes the number of hubs to
be located.

By constraints (5), variables yk can be defined as continuous
since r-variables will force them to take 0�1 values. In fact,
variables y can be removed of this formulation using constraints
(5), but we have kept them in order to clearly distinguish the
location variables.

Note that the family of constraints (5) and (8) are redundant
whenever the cost structure satisfies the triangular inequality;
however, they are useful in reducing solution times (see the
Appendix for further details).
3. An alternative formulation based on covering variables:
covering 3-index formulation

In this section we provide an alternative formulation to the
previous one based on covering variables (see [6,12,15,22,30]). In
order to do that, we first define G as the number of different non-
zero elements of the cost sequence Wjcjk for any j,k¼1,y,N.
Hence, we can order the different values of this sequence in non-
decreasing sequence:

cð0Þ :¼ 0ocð1Þocð2Þo � � �ocðGÞ :¼ max
1r j,krN

fWjcjkg

Given a feasible solution, we can use this ordering to perform
the sorting process of the allocation costs. This can be done by the
following covering variables (i¼1,y,N and h¼1,y,G):

uih :¼
1 if the ith smallest allocation cost is at least cðhÞ

0 otherwise

�
ð13Þ

The ith smallest allocation cost is equal to c(h) if and only if uih¼1
and ui,h +1¼0.

Clearly, the first part of the objective function, as appears for
instance in (1), can be equivalently written as

XN

i ¼ 1

XG

h ¼ 1

li � ðcðhÞ�cðh�1ÞÞ � uih

In order to formulate this model, we use the following set of
variables:

rjk ¼

1 if the commodity sent from origin

site j goes first to the hub k

0 otherwise

8><
>:
Observe that the relationship between these variables and the
ri

jk-variables defined in the 3-index formulation is rjk ¼
PN

i ¼ 1 ri
jk.

Therefore the constraints that establish the link between
variables u and r are

XN

i ¼ 1

uih ¼
XN

j ¼ 1

XN

Wjcjk Z cðhÞ
k ¼ 1

rjk, 8h¼ 1, . . . ,G

These constraints state that the number of allocations with a cost
at least c(h) must be equal to the number of sites that support
shipping costs to the first hub greater than or equal to c(h).
Moreover, we impose the following group of sorting constraints
on the uih-variables:

uihruiþ1,h i¼ 1, . . . ,N�1, h¼ 1, . . . ,G

Applying the covering variables to the 3-index formulation, we
obtain the covering 3-index formulation:

min
XN

i ¼ 1

XG

h ¼ 2

liðcðhÞ�cðh�1ÞÞuihþ
XN

k ¼ 1

XN

‘ ¼ 1

XN

m ¼ 1

xk‘mðack‘þdc‘mÞ

s:t:
XN

k ¼ 1

rjk ¼ 1, 8j¼ 1, . . . ,N ð14Þ

XN

j ¼ 1

rjkrNyk, 8k¼ 1, . . . ,N ð15Þ

rjj ¼ yj, 8j¼ 1, . . . ,N ð16Þ

XN

‘ ¼ 1

xk‘m ¼
XN

j ¼ 1

rjkwjm, 8k,m¼ 1, . . . ,N ð17Þ

XN

i ¼ 1

uih ¼
XN

j ¼ 1

XN

Wjcjk Z cðhÞ
k ¼ 1

rjk, 8h¼ 1, . . . ,G ð18Þ

uihZui�1h, 8i¼ 2, . . . ,N, h¼ 1, . . . ,G ð19Þ

Constraints : ð8Þ2ð11Þ

uih,rjkAf0,1g, xk‘m, ykZ0, 8i,j,k,‘,m¼ 1, . . . ,N

Similarly to the 3-index formulation, in the above formulation,
the family of constraints (8) and (16) are redundant whenever the
cost structure satisfies the triangular inequality; however, they
are useful in reducing solution times (see the Appendix for further
details). Moreover, the family of constraints (15) can be presented
in a disaggregated form, i.e.

rjkryk, 8j,k¼ 1, . . . ,N

However, the computational experience provides worse compu-
tational running times with this alternative family of constraints.
As in the previous section, variables y can be removed from this
formulation using constraints (16), but we have kept them in
order to clearly distinguish the location variables.
4. Comparing formulations

Before trying to improve the performance of the 3-index and
covering 3-index formulations, we will compare them by means
of a simple computational study. The formulations were im-
plemented, as they have been presented in the previous sections,
in the commercial solver Xpress IVE 1.19.01, running on a
2.40 GHz PC with 2.00 GB of RAM memory. The cut generation
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option of Xpress was disabled in order to compare the relative
performance of the formulations cleanly.

We compare the performance of the two formulations
presented in the previous section, namely 3-index and covering
3-index. In order to produce a set of test instances, we generated
the data in two different ways. In our first set of instances we
draw the unit costs and the origin–destination flows at random
both in the interval [0,20], whereas the second set was also drawn
at random the costs and the flows in [0,40]. This design tries to
capture the difference between having more or less repeated data
in the (Wjcjk) matrix: the smaller the intervals the higher the
number of repetitions. These two sets of data try to test whether
the size of the parameter G, number of different cost values, is
significant in order to solve the problem with the covering
3-index formulation. We tested the two formulations on a testbed
of five instances for each combination of (i) costs matrices, (ii) N

in {10,15,20}, (iii) different values of p depending on the case, and
(iv) a¼ 0:7, d¼ 1:2a and six different l-vectors. Among them we
consider p-center (l¼ ð0, . . . ,0,1Þ, k-centrum (k¼ d0:2Ne,
l¼ ð0, . . . ,0,1,. . .k ,1Þ), k1+k2-trimmed-mean (k1 ¼ k2 ¼ d0:2Ne,
l¼ ð0,. . .k1 ,0,1, . . . ,1,0,. . .k2 ,0Þ), anti-k1+k2-trimmed-mean (k1 ¼ k2 ¼
Table 2
First set of instances with costs and flows in [0,20]� [0,20].

N p 3-Index formulation

Nodes R-GAP GAP Tim

Center

10 3 4710.20 28.98 0.00 11

10 5 12394.60 22.81 0.00 26

15 4 326715.60 28.20 0.25 17

15 8 391325.60 29.68 2.11 21

20 5 197788.40 35.15 17.87 4
20 10 159142.80 33.97 17.23 4

k-Centrum

10 3 6415.40 35.60 0.00 14

10 5 2510.60 22.38 0.00 9.7

15 4 344490.20 36.74 0.38 18

15 8 69489.80 23.11 0.00 51

20 5 183830.80 47.93 30.69 4
20 10 128686.00 32.52 9.57 4

Median

10 3 283.80 20.44 0.00 2.1

10 5 191.40 15.87 0.00 1.9

15 4 9384.80 28.24 0.00 91

15 8 3741.80 23.11 0.00 49

20 5 142778.80 40.95 15.03 4
20 10 41495.40 27.01 0.00 15

Trimmed mean

10 3 774.80 24.54 0.00 4.0

10 5 158.60 19.32 0.00 2.4

15 4 17999.40 29.70 0.00 11

15 8 2238.60 25.42 0.00 39

20 5 191894.00 35.85 4.89 4
20 10 45374.80 28.76 0.00 16

Anti-trimmed mean

10 3 5555.80 32.21 0.00 11

10 5 9261.40 29.01 0.00 19

15 4 552415.80 29.63 2.22 27

15 8 401730.00 29.40 0.89 23

20 5 184341.40 42.85 24.06 4
20 10 168067.20 34.98 16.75 4

Non-increasing

10 3 75.40 30.20 0.00 1.2

10 5 71.40 20.95 0.00 0.9

15 4 343.60 26.94 0.00 9.0

15 8 882.20 21.49 0.00 12

20 5 3225.00 32.59 0.00 13

20 10 10139.80 27.36 0.00 27
d0:2Ne, l¼ ð1,. . .k1 ,1,0, . . . ,0,1,. . .k2 ,1Þ), p-median (l¼ ð1, . . . ,1Þ) and
non-increasing lambda weights (l¼ ðl1, . . . ,lNÞ, with
l1Z . . .ZlNÞ.

Tables 2 and 3 report the results of the 3-index and covering
3-index formulations for these instances. The first column of these
tables stands for the different types of problems in the study.
Columns Nodes, R-GAP, GAP and Time stand for the averages of:
number of nodes in the B&B tree, the gap in the root node, the
final GAP (if any) after 1 h and the CPU time in seconds,
respectively. (The time was limited to 1 h of CPU.) Values
‘‘43600’’ of column Time means that Xpress requires more
than 1 h of CPU time to solve each of the five instances for the
corresponding combination of parameters whereas starred times
(*) mean that at least one of the five instances was not solved to
optimality within the time limit. In these cases, column GAP
reports the gap at the stopping time.

In both tables we observe that formulation covering 3-index
dominates in most cases formulation 3-index (with the exception
of some cases with respect to the median problem). Moreover, the
improvement of covering 3-index over 3-index increases as G

decreases. This can be observed looking at the better behavior of
Covering 3-index formulation

e Nodes R-GAP GAP Time

.14 1402.20 28.98 0.00 8.30

.84 812.60 22.81 0.00 4.81

23.59* 24945.20 28.20 0.00 282.52

91.61* 31162.00 29.37 0.00 245.48

3600 158471.20 29.73 10.14 43600

3600 212907.80 31.45 9.02 43600

.26 1261.40 35.60 0.00 6.73

4 107.00 22.38 0.00 1.83

12.32 55281.00 36.74 0.00 450.75

9.62 2761.00 27.73 0.00 44.35

3600 176535.40 42.07 20.29 43600

3600 90138.60 31.97 0.61 1791.55*

3 181.00 20.44 0.00 2.64

6 116.60 15.87 0.00 2.15

.02 22743.80 28.24 0.00 207.74

.65 2453.00 23.11 0.00 39.01

3600 183695.80 34.40 9.17 43600

90.50 34151.80 27.01 0.00 675.22

5 215.80 24.54 0.00 2.30

6 101.40 19.32 0.00 1.63

7.30 4329.00 29.70 0.00 44.87

.01 1645.80 25.42 0.00 27.78

3600 47821.40 33.83 0.00 785.20

34.72 13215.00 28.76 0.00 316.20

.45 1722.60 32.21 0.00 8.35

.83 562.20 29.01 0.00 3.41

46.05* 22274.00 29.02 0.00 231.25

75.21* 9063.00 29.39 0.00 93.37

3600 128408.80 35.33 7.60 2901.55*

3600 183725.60 34.31 6.38 43600

5 89.40 30.20 0.00 0.83

3 65.40 20.95 0.00 0.62

9 371.40 26.94 0.00 7.33

.33 666.60 21.49 0.00 8.20

7.71 3153.80 32.59 0.00 101.18

4.99 8262.60 27.36 0.00 183.55



Table 3
Second set of instances with costs and flows in [0,40]� [0,40].

N p 3-Index formulation Covering 3-index formulation

Nodes R-GAP GAP Time Nodes R-GAP GAP Time

Center

10 3 5629.40 27.38 0.00 12.73 1106.40 27.35 0.00 7.19

10 5 9450.80 26.81 0.00 20.36 794.20 26.81 0.00 5.38

15 4 256355.20 34.45 0.48 1344.37 30681.60 34.45 0.00 339.48

15 8 459198.20 37.00 1.36 2688.13* 112346.40 36.98 0.00 743.97

20 5 185962.60 40.28 19.55 43600 121978.00 34.63 14.52 43600

20 10 165672.60 33.32 17.69 43600 178061.40 39.29 14.29 43600

k-Centrum

10 3 4473.80 33.59 0.00 11.16 1021.40 33.59 0.00 5.65

10 5 1436.20 26.55 0.00 6.61 239.80 26.55 0.00 2.35

15 4 279503.00 41.55 0.00 1331.24 33547.20 41.55 0.00 319.93

15 8 68444.40 32.36 0.00 514.79 5528.60 32.36 0.00 80.50

20 5 191195.80 52.40 34.50 43600 153636.20 40.53 15.53 43600

20 10 123926.60 35.51 10.55 43600 86029.60 34.67 1.30 2136.19*

Median

10 3 679.80 25.97 0.00 3.23 485.40 25.97 0.00 3.53

10 5 232.00 16.05 0.00 1.87 235.00 16.05 0.00 1.89

15 4 8573.80 31.23 0.00 74.27 27922.00 31.23 0.00 258.37

15 8 2955.40 26.64 0.00 37.50 2450.60 26.64 0.00 40.45

20 5 127737.20 36.26 9.24 3089.65* 126135.60 35.14 7.37 3006.37*

20 10 23267.20 28.49 0.00 960.57 52692.00 28.49 0.00 880.28

Trimmed mean

10 3 727.40 29.38 0.01 3.94 252.40 29.38 0.00 2.77

10 5 139.00 18.88 0.01 2.57 98.20 18.88 0.00 1.93

15 4 17202.00 32.50 0.00 110.28 10487.20 32.50 0.00 100.20

15 8 1713.80 26.55 0.00 33.49 1085.80 26.55 0.00 22.87

20 5 229109.40 36.08 1.33 43600 121019.20 35.82 2.11 2301.74

20 10 30722.00 29.68 0.00 1109.77 16320.00 29.68 0.00 455.58

Anti-trimmed mean

10 3 5445.20 36.13 0.00 11.78 1220.60 36.13 0.00 7.24

10 5 8580.20 34.42 0.00 18.28 763.80 34.42 0.00 4.56

15 4 328888.74 42.50 1.55 2069.58* 39290.40 42.25 0.00 380.00

15 8 447332.60 37.83 1.57 2697.39* 15652.40 37.83 0.00 139.11

20 5 199909.20 45.19 25.36 43600 129636.40 38.04 12.30 43600

20 10 165004.80 38.72 19.91 43600 179333.60 37.23 11.09 43600

Non-increasing

10 3 48.60 26.16 0.00 1.01 46.60 26.16 0.00 0.67

10 5 41.80 19.82 0.00 1.28 41.40 19.82 0.00 0.61

15 4 668.60 37.08 0.00 13.69 637.80 37.08 0.00 10.51

15 8 881.40 30.05 0.00 14.27 795.00 30.05 0.00 10.30

20 5 4867.00 35.58 0.00 202.48 5525.40 35.58 0.00 171.03

20 10 13831.80 31.21 0.00 366.12 11827.00 31.21 0.00 302.44
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covering 3-index on the instances of Table 2 where the number of
repetitions is greater than in the instances of Table 3 and
consequently, the value of G is lower. This fact reinforces our
claim that covering 3-index is a better formulation as G decreases;
recall that the number of variables and constraints of this
formulation depends on G. (The reader can check that the number
of integer variables and constraints of formulation 3-index is N3

and N3+N2+7N+1, respectively, whereas the same figures for the
covering 3-index formulation are N2+NG and N3+N2+(N+1)G
+5N+1, see Table 6.) It is also of interest to look at the gap at the
root node. Both formulations provide similar gaps at the root node
(therefore their linear relaxation is almost identical).

Moreover, Tables 2 and 3 show, as a general trend, that the
CPU time increases similarly, for all choices of the l-vector, with
the size of the instances. Formulation 3-index proves to be unable
to reach optimality for instances of size N¼20, except for the
cases of the median problem (p¼10) and l-weights given in non-
increasing order. This latter choice of lambdas resulted in a
specially easy problem. This effect may be due to the fact that the
components of the l-weights are different, thus avoiding
degeneracy. A similar behavior is observed with regard to
formulation covering 3-index, although in this case the resulting
gaps are significantly smaller.

We have also done the same analysis for a¼ 0:2 and d¼ 0:84,
obtaining similar results, although, in general, this model needed
more time to be solved. Moreover, since in this case the inter-hub
transportation costs have a larger discount, the number of origin–
destination paths crossing two different hubs has increased
around 8%.
5. Improvements

This section is devoted to present some improvements and
strengthenings of the previous formulations as well as an
alternative formulation, only valid for non-decreasing lambdas,
that in some cases give good results in order to reduce the CPU
time. The goal pursued with these new approaches is to reduce
the CPU times needed to solve the problems with our earlier
formulations.
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5.1. An alternative formulation: OT-3-index

This section describes an alternative formulation, that is only
valid under the hypothesis that l-weights are in non-decreasing
order, that is, 0 :¼ l0rl1r � � �rlN . Although, it is more restric-
tive than the general formulations given above it covers most of
the classical problems in the literature of hub location and
moreover it is rather efficient in order to speed up the computing
times. The rationale of this approach is based on the work by
Ogryczak and Tamir [33]. We have adapted their formulation for
the ordered median problem to our case as follows.

Taking into account the variables rjk defined in the covering
3-index formulation, we define the variables vj ¼Wj

PN
k ¼ 1 cjkrjk.

Following the idea of Ogryczak and Tamir, we look for the sum of
the q largest v-values. v(i) represents the values vi sorted in non-
increasing order.

For any integer q, 1rqrN, consider the following function
defined in ½0,þ1Þ:

fqðzÞ :¼ qzþ
XN

k ¼ 1

XN

i ¼ 1

maxf0,vj�zg

This is a convex piecewise linear function with slopes moving
from q�N to q in integer steps, whose minimum is reached either
when the slope is 0 or, if this is not the case, when the slope
changes from negative to positive, i.e., when z equals the qth
maximum value of the vector v, namely v(q). Thus, the minimum
value of f is

fqðvðqÞÞ ¼ qvðqÞ þ
XN

j ¼ 1

maxf0,vj�vðqÞg ¼ qvðqÞ þ
Xq

j ¼ 1

ðvðjÞ�vðqÞÞ ¼
Xq

j ¼ 1

vðjÞ

i.e., the sum of the q maximum values. Therefore, minimizing the
sum of the q-largest v-values can be linearized as

min qzqþ
XN

i ¼ 1

Diq s:t: DiqZ0 8i, DiqZvj�zq 8j¼ 1, . . . ,N

In the following we add the index q in variables D and z because
we are interested in solving this problem for each value q from 1
to N�1 and combine the latter linearization with the constraints
used in the former formulations to get the values of the vj

variables in our formulations.
Therefore, taking into account the above discussion, the

OT-3-index formulation is

min
XN

i ¼ 1

ðlN�iþ1�lN�iÞ iziþ
XN

j ¼ 1

XN

j ¼ 1

Dij

0
@

1
A

þ
XN

k ¼ 1

XN

‘ ¼ 1

XN

m ¼ 1

ðack‘þdc‘mÞxk‘m

s:t: DijZ

XN

k ¼ 1

XN

m ¼ 1

Wjcjkrjk�zi, 8i,j¼ 1, . . . ,N

DijZ0, 8i,j¼ 1, . . . ,N

zi, unrestricted, 8i¼ 1, . . . ,N

Constraints : ð8Þ2ð11Þ; ð14Þ2ð17Þ

rjk,ykAf0,1g, xk‘mZ0, 8i,j,k,‘,m¼ 1, . . . ,N
5.2. Variable fixing

This section addresses the description of some preprocessing
steps that we propose to reduce the size of our covering 3-index
formulation. Due to the definition of the variables in covering
3-index formulation, one can expect that many u-variables in the
right-hand part of the matrix of u-variables will take value 0 in
the optimal solution. Indeed, uih¼0 means that the ith sorted
allocation cost is less than or equal to c(h) which is very likely to be
true if h is sufficiently large and i is perhaps not that large. The
same type of arguments also suggest that one may expect that
uih¼1 whenever i is large and h is small to medium size because
this would mean that the ith sorted allocation cost would not
have been done at cost less than c(h). With these strategies, the
size of the formulation could be reduced if some (hopefully many)
of these variables were fixed beforehand. In this subsection we
describe a number of variable fixing possibilities for the set of
u-variables which are useful in the overall solution process.

First of all, it is clear that since cjj¼0, 8j¼ 1, . . . ,N we have that

ui1 ¼ 1, 8i¼ 1, . . . ,N

ui2 ¼ 0, 8i¼ 1, . . . ,p ð20Þ

Moreover, whenever Wjcjka0 if and only if jak then we can
also fix

ui2 ¼ 1, 8i¼ pþ1, . . . ,N

5.2.1. Fixing u-variables to 1

In order to fix uih-variables to 1 for a given hAf1, . . . ,Gg, we
will deal with an auxiliary problem that maximizes the number of
origin-first hub allocations satisfying Wjcjkrcðh�1Þ which is
equivalent to the maximum number of variables uih that can
assume a zero value. Let

zjk ¼
1 if origin site j is assigned to hub k

0 otherwise

�

Using these variables, the formulation of this problem is

max H1h :¼
XN

j ¼ 1

XN

k ¼ 1

zjk

s:t: zjkcjk

XN

m ¼ 1

wjmrcðh�1Þ, 8j,k¼ 1, . . . ,N

XN

k ¼ 1

zjkr1, 8j¼ 1, . . . ,N

zjkryk, 8j,k¼ 1, . . . ,NXN

k ¼ 1

ykrp

zjk,ykAf0,1g, j,k,m¼ 1, . . . ,N

If H 1h is the optimal value of problem above, since there are
N origin-first hub allocations, the number of allocations satisfy-
ing Wjcjk4cðhÞ must be necessarily greater than or equal to
N�H1h+1, or equivalently, in any feasible solution of covering
3-index formulations

uih ¼ 1, 8i¼H1h, . . . ,N

5.2.2. Fixing u-variables to 0

Under a similar rationale to the one used in the previous
section, we try to fix as many uih-variables to 0 as possible, for a
given hAf1, . . . ,Gg. In this case, we deal with an auxiliary problem
that maximizes the number of origin-first hub allocations satisfy-
ing WjcjkZcðhÞ. In conclusion, this auxiliary problem provides the
minimum number of zeros that the hth column of the u-matrix
must have

max H2h :¼
XN

j ¼ 1

XN

k ¼ 1

zjk

s:t: cjk

XN

m ¼ 1

wjmZzjkcðhÞ, 8j,k¼ 1, . . . ,N
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XN

k ¼ 1

zjkr1, 8j¼ 1, . . . ,N

zjkryk, 8j,k¼ 1, . . . ,NXN

k ¼ 1

ykrp

yk,zjkAf0,1g, 8j,k¼ 1, . . . ,N

Therefore, if H2h is the optimal value of problem above, the hth
column of the u-matrix must have at least N�H2h zeros, i.e., in
any feasible solution of the covering 3-index formulations:

uih ¼ 0, 8i¼ 1, . . . ,N�H2h

5.3. Valid inequalities

Next, we discuss some valid inequalities that strengthen
the covering 3-index formulation. First, we present a family of
valid inequalities that are a straightforward consequence of the
definition of the u-variables (see (13)), but that help a lot in
Table 4
First set of instances with costs and flows in [0,20]� [0,20].

N p OT-3-index

Nodes R-GAP GAP Time

Center

10 3 73.00 22.29 0.00 0.41

10 5 102.60 17.02 0.00 0.43

15 4 771.40 24.84 0.00 6.75

15 8 1291.40 25.49 0.00 8.11

20 5 4162.20 26.32 0.00 69.52

20 10 11323.60 28.41 0.00 139.44

k-Centrum

10 3 164.20 31.40 0.00 0.39

10 5 61.00 19.66 0.00 0.32

15 4 651.40 33.44 0.00 5.40

15 8 692.20 25.27 0.00 4.82

20 5 7362.20 39.86 0.00 108.15

20 10 8593.80 29.55 0.00 110.90

Median

10 3 32.60 20.44 0.00 0.25

10 5 43.00 15.87 0.00 0.26

15 4 753.40 28.24 0.00 5.62

15 8 775.40 23.11 0.00 5.27

20 5 6301.40 33.60 0.00 84.94

20 10 11705.80 27.01 0.00 142.53

Trimmed mean

10 3
10 5
15 4
15 8
20 5
20 10

Anti-trimmed mean

10 3
10 5
15 4
15 8
20 5
20 10

Non-increasing

10 3
10 5
15 4
15 8
20 5
20 10
solving the problem (see Tables 4 and 5):

uihZuihþ1, h¼ 1, . . . ,G�1 ð21Þ

Note that (21) states that if an allocation is done at cost c(h), then
it will not be done at larger cost. Based on this set of inequalities
and using (20), we can also fix the following variables to 0:

uih ¼ 0, 8i¼ 1, . . . ,p, h¼ 2, . . . ,G ð22Þ

The last family of valid inequalities state disjunctive implica-
tions on the origin-first hub allocation costs. The first one ensures
the following implications: (1) if there are no hubs open to
allocate origin site j at a cost less than c(h) then origin site j must
be allocated to a first hub at a cost at least c(h), and (2) if origin site
j is allocated at a cost less than c(h) then at least one open hub
must satisfy WjcjkocðhÞ:

XN

k ¼ 1:Wjcjk Z cðhÞ

rjkþ
XN

k ¼ 1:Wjcjk o cðhÞ

ykZ1, 8j¼ 1, . . . ,N, h¼ 1, . . . ,G

ð23Þ

Swapping the roles of the r- and y-variables in the
above inequality, we obtain the following complementary
Pre-covering 3-index

Nodes R-GAP GAP Time Fixed var.

220.20 21.97 0.00 3.20 39.94

176.60 15.00 0.00 2.22 48.59

2324.80 25.27 0.00 67.01 33.60

2797.80 25.19 0.00 41.68 51.45

12074.00 27.26 0.00 770.49 31.51

26828.80 28.58 0.00 858.51 49.01

196.60 25.46 0.00 2.16 38.65

63.00 15.08 0.00 0.91 48.76

1966.60 28.89 0.00 47.84 34.42

768.20 21.88 0.00 13.19 51.07

30714.00 36.09 0.00 1501.95 31.26

7767.20 27.53 0.00 237.74 48.58

59.00 18.91 0.00 1.16 37.11

55.80 15.66 0.00 1.05 48.44

1624.40 27.05 0.00 33.15 33.68

1080.20 22.93 0.00 18.07 51.42

12204.40 31.81 0.00 581.18 25.83

13672.20 26.95 0.00 378.88 48.81

85.80 20.24 0.00 1.18 37.65

58.20 16.20 0.00 0.95 48.60

1024.20 25.87 0.00 22.76 33.48

772.60 23.47 0.00 13.85 51.55

5444.00 30.33 0.00 236.80 30.95

7022.60 27.08 0.00 207.12 48.68

328.60 27.05 0.00 3.53 37.35

207.40 22.96 0.00 1.98 48.55

2816.20 24.96 0.00 67.72 33.75

2733.40 24.56 0.00 36.49 51.03

31927.60 31.13 0.00 1546.92 31.52

46558.60 30.56 0.00 1376.21 48.87

86.20 27.98 0.00 0.77 37.27

58.60 20.65 0.00 0.60 47.73

335.80 25.92 0.00 7.24 33.01

676.60 21.40 0.00 8.67 51.54

3437.40 31.44 0.00 110.97 31.22

8733.40 27.36 0.00 196.60 48.63



Table 5
Second set of instances with costs and flows in [0,40]� [0,40].

N p OT-3-index Pre-covering 3-index

Nodes R-GAP GAP Time Nodes R-GAP GAP Time Fixed var.

Center

10 3 57.00 22.25 0.00 0.39 218.60 20.85 0.00 3.46 38.99

10 5 81.40 20.94 0.00 0.41 147.00 20.24 0.00 2.31 49.15

15 4 444.20 29.96 0.00 4.86 1362.20 31.08 0.00 59.83 33.82

15 8 2165.00 33.42 0.00 12.67 4058.80 33.18 0.00 66.98 51.53

20 5 2329.80 29.73 0.00 45.05 10140.40 30.96 0.00 845.07 31.17

20 10 119922.00 35.29 5.78 2276.80 30918.20 35.56 0.00 1164.23 48.97

k-Centrum

10 3 55.00 30.30 0.00 0.40 82.60 25.71 0.00 1.72 37.80

10 5 66.60 22.42 0.00 0.37 82.60 19.33 0.00 1.01 49.51

15 4 700.20 38.23 0.00 5.70 2182.40 35.27 0.00 73.92 33.44

15 8 742.20 29.44 0.00 5.49 820.20 26.87 0.00 16.72 51.69

20 5 3939.80 36.97 0.00 67.88 18786.40 33.77 0.00 1126.53 31.33

20 10 43973.40 32.71 1.01 823.28 10091.20 30.52 0.00 317.69 49.15

Median

10 3 65.00 25.97 0.00 0.31 99.00 23.36 0.00 1.63 37.93

10 5 55.80 16.05 0.00 0.29 69.80 15.98 0.00 0.99 49.17

15 4 449.00 31.23 0.00 3.88 1439.00 29.47 0.00 36.69 34.48

15 8 849.40 26.64 0.00 5.58 936.60 26.63 0.00 18.76 52.35

20 5 8691.00 33.32 0.00 142.01 13151.60 32.62 0.00 729.93 31.35

20 10 6856.60 28.49 0.00 84.95 9276.00 28.48 0.00 282.83 49.20

Trimmed mean

10 3 80.20 25.51 0.00 1.48 37.34

10 5 64.20 16.86 0.00 1.02 48.88

15 4 719.40 29.09 0.00 20.45 33.82

15 8 581.00 24.83 0.00 12.82 51.95

20 5 5533.80 32.80 0.00 283.45 31.16

20 10 7870.60 28.44 0.00 272.70 49.24

Anti-trimmed mean

10 3 545.40 29.67 0.00 4.70 38.44

10 5 265.00 28.49 0.00 2.32 48.91

15 4 2856.20 38.01 0.00 79.01 33.46

15 8 3555.00 33.43 0.00 50.04 51.98

20 5 22297.80 34.10 0.00 1255.70 31.42

20 10 56598.20 33.28 0.00 1551.59 49.45

Non-increasing

10 3 69.00 24.09 0.00 0.81 38.51

10 5 52.20 19.57 0.00 0.62 49.25

15 4 621.40 35.29 0.00 11.05 34.29

15 8 943.80 30.05 0.00 11.69 52.18

20 5 4789.80 33.68 0.00 162.28 31.08

20 10 13228.40 31.21 0.00 307.14 49.33
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inequalities:

XN

k ¼ 1:Wjcjk Z cðhÞ

ykþ
XN

k ¼ 1:Wjcjk o cðhÞ

rjkZ1, 8j¼ 1, . . . ,N, h¼ 1, . . . ,G

ð24Þ

The families of valid inequalities (21)–(24) have been included,
together with the preprocessing for variable fixing presented in
Section 5.2, under the name of pre-covering 3-index in order to be
compared with the previous formulations. The results are
reported in Section 6.
6. Comparing improved formulations

This section reports on the computational comparison
between pre-covering 3-index, the strengthening of formulation
covering 3-index given by the preprocessing phase described in
Section 5.2 and the valid inequalities of Section 5.3, and
OT-3-index formulations. For this analysis we follow the same
pattern as in Section 4. We consider the same two sets of
instances with costs and flows randomly generated in [0,20]
and [0,40] and the same six families of problem types: center,
k-centrum, median, k1+k2-trimmed-mean, anti-k1+k2-trimmed-
mean and non-increasing l-weights. As for the presentation of
results we also follow the same structure as in Section 4. Tables 4
and 5 report the results for first and second sets of instances,
respectively. Each table has three blocks of columns. The first block
includes the name of the problem and the sizes of the instances
(N and p). Then, the next two blocks show the results obtained by
the OT-3-index and pre-covering 3-index formulations. In both
blocks, we report the same information as in Tables 2 and 3, i.e. the
averages of: number of nodes of the B&B tree (Nodes), gaps a
the root node (R-GAP), final gaps (GAP) and CPU times in seconds
(Time). In addition, in the third block we report the percentage of
integer variables that are fixed by our preprocessing on the
pre-covering 3-index formulation (Fixed var.). Note that the empty
blocks in Tables 4 and 5 appear because OT-3-index is not
applicable to the corresponding problems (the components of the
l-vector are not given in non-decreasing order).

We observe that both formulations are more efficient than the
most efficient one considered previously, namely covering



Table 6
Comparison of different formulations.

Constraints Continuous variables Integer variables

3-Index formulation N3+N2+7N+1 2N3 N3

COV-3-index formulation N3+N2+(N+1)G+5N+1 N3+N2+NG N2+NG

OT-3-index formulation N3+2N2+5N+1 N3+N2+N N2+N
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3-index, in almost all cases. The only exceptions appear in the
problems with non-increasing lambdas, although in these cases
the CPU are almost similar. This can be seen by comparing the
CPU times of Tables 2 and 4 for the first set of instances and
Tables 3 and 5 for the second set of instances. We also remark the
efficiency of our preprocessing, which is illustrated by the number
of fixed integer variables.

Moreover, the OT-3-index formulation (recall that this model is
only applicable for non-decreasing l-weights) gets extremely good
results for the first set of instances (Table 4), in fact, the maximum
average time needed to solve a battery of five instances of any type
of analyzed problem is 142.53 s (median problem with N¼20,
p¼10). The formulation pre-covering 3-index is not as good,
although it can be applied to any configuration of l-weights.
Nevertheless, the comparison is not as neat on the second set of
instances (see Table 5). In this case, OT-3-index solves easily all
instances up to size N¼15 but it fails to solve several instances for
sizes N¼20, p¼10 (3 out of 5 of the center and 1 out of 5 of the
k-centrum) whereas pre-covering 3-index solves all instances.
Concerning the gap at the root node there are no significative
difference between both formulations in any of the two set of
instances. We have also tried larger instances. In these cases,
already for N¼23, the number of instances that runs out of
memory increases rapidly. It is remarkable to report that for N¼26
all tested instances run out of memory in both formulations. In any
case, both formulations improve the behavior of covering 3-index.

Finally, in Table 6, we provide a summary of the number of
constraints, number of continuous and integer variables of the
different formulations that we have proposed in this paper.
3-Index formulation has the fewest number of constraints but it is
the formulation with the largest number of continuous and
integer variables. On the opposite side, OT-3-index formulation
has the largest number of constraints but it is the formulation
with the fewest continuous and integer variables.
7. Conclusions

This paper can be considered as an attempt to deal with new
flexible formulations for hub location problems. Although, we
focus mainly on modeling issues, we also report computational
tests comparing the performance of the different formulations.
These results aim to establish the limits, both on CPU-time and
size, of the exact resolution of the different models using standard
MIP-solvers. Our preliminary analysis shows that ‘‘ad hoc’’
methods are required to solve even small size instances of these
problems. Thus, this paper provides a starting point for the
development of exact and heuristic solution methods for all the
models that have been introduced.
Appendix A

In this section, we present a structural result about the linear
programming representation of the feasible set of our problem. It
states that some constraints, that in the general case are required
to get a valid formulation, are redundant whenever the cost
structure satisfies the triangular inequality.

Proposition A.1. If the cost structure satisfies the triangular

inequality, arli for any i¼1,y,N and ard then
(i)
 Inequality (5) is redundant.

(ii)
 Inequality (8) is redundant.
Proof. We distinguish two cases. If yj¼0 the inequality (5) follows
from (4). In the case where yj¼1, we argue by contradiction to
prove that

PN
i ¼ 1 ri

jj ¼ 1. If rjj
i
¼0 for all i¼1,y,N then by (2) there is

an index k�ða jÞ, such that, ri
jk�
¼ 1 for some i¼1,y,N. For any

destination site m, the flow (j,m) should have one of the following
patterns: ðj,k�,‘�ðmÞ,mÞ or (j,k*,k*,m), for some k�,‘�ðmÞ sites in
{1,y,N} that are open hubs (observe that for the case ym¼1, we
have that ‘�ðmÞ ¼m). The first one stands for a path going through
two different hubs ðk�,‘�ðmÞÞ, whereas the second one means going
via a single hub k*. Therefore, this solution should be cheaper than
the one with path ðj,j,‘ðmÞ,mÞ and (j,j,j,m) for any open hub ‘ðmÞ.
Therefore, the following inequality would be satisfied:
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However, since the triangular inequalities hold and arli for any
i¼1,y,N, we obtain that
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The proof of the second assertion is similar to the first one and

therefore it is omitted. &



Table 7
Applying Proposition A.1.

N p Covering 3 index Covering 3-index Proposition A.1

Nodes R-GAP GAP Time Nodes R-GAP GAP Time

10 3 350.00 15.71 0.00 2.28 718.20 33.95 0.00 2.98

10 5 146.40 10.32 0.00 1.19 666.60 22.47 0.00 2.28

15 4 5357.80 14.79 0.00 56.73 109670.20 31.96 1.92 1005.76*

15 8 147.00 6.59 0.00 6.09 12921.80 13.61 0.00 76.63

20 5 46315.20 15.16 1.12 1643.18* 195142.80 31.90 15.56 43600

20 10 2810.00 5.89 0.00 112.17 282035.40 15.89 6.79 43600
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Similarly to the 3-index formulation, Proposition A.1 is also
valid for the covering 3-index formulation applied to constraints
(8) and (16). In the case that we are under the conditions of
Proposition A.1, despite that constraints (5) and (8), as well as, (8)
and (16) are redundant for the 3-index and covering 3-index
formulations, respectively, our computational experience shows
that it is much better to add them to the model, as valid
inequalities, to reduce CPU time in solving the problem. Indeed,
Table 7 reports on the average of five instances of different
combinations of N in {10,15,20}, p depending on the value N and
cost structure satisfying the triangular inequality (costs
proportional to ‘1 distances between randomly generated
integer coordinate points in [0,50]� [0,50]), for a set of lambdas
generated randomly in ½dþ1,dþ2�, d¼ 1:2a and a¼ 0:7. Looking
at Table 7, we first observe that the R-GAP column, the one that
gives the value of the linear relaxation of the problem, is much
better adding inequalities (8) and (16), and reducing the gap at
the root node almost by one-half. Moreover, the average number
of nodes in the B&B tree is considerably lower for the formulation
with constraints (8) and (16). Thus, one can conclude that in all
cases adding these constraints helps in solving the problems.
Therefore, although both set of constraints are redundant, pro-
vided that the triangular inequality holds, it is useful to consider
them as valid inequalities in any resolution scheme. It is worth
mentioning that the same behavior, concerning the inclusion of
the two groups of constraints (5) and (8), is also observed under
the 3-index formulation although we do not include the compu-
tational results for the sake of brevity.
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