
COMBINATIONS OF PROPORTIONATE ADAPTIVE FILTERS IN ACOUSTICS:
AN APPLICATION TO ACTIVE NOISE CONTROL

Jerónimo Arenas-Garcı́a‡, Marı́a de Diego†, Luis A. Azpicueta-Ruiz‡,
Miguel Ferrer†, and Alberto Gonzalez†

† Institute of Telecom. and Multimedia App. ‡Dept. Signal Theory and Commun.
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ABSTRACT

Proportionate adaptive schemes have been proposed to exploit spar-
sity and accelerate filter convergence in acoustic echo cancellation.
Recently, combinations of adaptive filters have been extended to op-
erate with proportionate schemes, in order to achieve more robust
operation when the actual degree of sparsity of the optimal solution
is unknown. Furthermore, it is possible to exploit the asymmetric
distribution of adaptation energy in proportionate schemes to reduce
the overall steady-state misadjustment. In this contribution, we ex-
plain how these novel adaptive filtering structures, which have been
proposed and tested mainly for echo cancellation, can also be ef-
fectively extended to improve the usual performance trade-offs that
appear in active noise control scenarios by introducing some mi-
nor modifications. Experimental results in realistic scenarios show
that the proposed schemes provide an interesting alternative to the
traditional use of a single adaptive filter.

1. INTRODUCTION

Active noise control (ANC) is a field of growing interest that com-
bines digital signal processing techniques with traditional acoustics.
The use of adaptive algorithms for ANC [1] has been subject of
continuous study and research since the 1980s. ANC systems at-
tempt to reduce the noise by generating an antinoise that cancels
out the primary noise [2]. Fig. 1 shows a typical configuration of an
ANC system. The signal produced by the noise source propagates
through a primary echo path towards the point where noise is to be
cancelled, producing, after the addition of noise e0(n), the distur-
bance signal d(n). The input to the noise control system, x(n), is
correlated with the noise source, and thus can be used to generate
a signal y(n) which, after propagating through an unavoidable sec-
ondary path with impulse response h, is added to the disturbance
signal, producing an error signal e(n). The objective of the adaptive
algorithm is to iteratively estimate the filter weights in such a way
that a function of the error signal e(n) is minimized.

There are some fundamental differences between an ANC con-
figuration and the standard setup for channel identification [2].
First, the disturbance signal can never be accessed directly, as it
is only possible to measure the error after noise cancellation. Such
error is obtained as the acoustical combination of d(n) and the adap-
tive filter output filtered by h, whereas in a standard identification
scenario, a subtraction is typically considered. Second, and more
importantly, the presence of a secondary path between the adap-
tive filter output [y(n)] and the noise sensor [where e(n) is mea-
sured] makes necessary the introduction of ad hoc configurations
for ANC. The usual way to take into account this response h con-
sists of filtering the input signal x(n) through a previous estima-
tion of this response (ĥ), providing the conventional filtered-x (FX)
scheme depicted in Fig. 2 [3]. As an alternative to the FX scheme,

The work of J. Arenas-Garcı́a and Luis A. Azpicueta-Ruiz was partly
supported by MEC project TEC2008-02473. The work of the remaining
authors was partly supported by TEC2009-13741, PROMETEO 2009/0013
and GV/2010/027.

-
µ´
¶³

+

+

+

?

6

d(n)
e(n)

-

¾

¢¢

¢¢̧

w(n)

-

x(n) y(n)
- h

Adaptive
Algorithm

Figure 1: Block diagram of an active noise control system.
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Figure 2: Conventional filtered-x (FX) structure for ANC.

the modified filtered-x (MFX) structure allows recovery of the dis-
turbance signal, d′(n) in Fig. 3, and provides the best convergence
performance compared to other filtering structures for ANC [4, 5].

As it occurs in other acoustic applications, there is a require-
ment for long adaptive filters in ANC. It is a well-known result in
the adaptive filtering literature that stochastic gradient algorithms,
such as least-mean-square (LMS) or normalized LMS (NLMS), suf-
fer from a slow convergence in such situations [6]. In order to speed
up filter convergence, proportionate adaptation [7, 8] has been pro-
posed for the identification of sparse or quasi-sparse systems, i.e.,
systems where only a few so-called active coefficients are signifi-
cant. The operating principle of proportionate adaptation is rather
simple: to distribute the adaptation energy of the filter unevenly
among the coefficients, adapting the active coefficients faster.

Proportionate schemes were primarily proposed for acoustic
and network echo cancellation and, to the best of our knowledge,
no work has been reported in the literature in the context of ANC.
Thus, a first objective of this paper is to study the behavior of pro-
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Figure 3: Modified filtered-x (MFX) structure for ANC.

portionate schemes in FX and MFX configurations for ANC. This
extension is motivated by the fact that the optimal solutions encoun-
tered in echo cancellation and ANC share similar properties, partic-
ularly a high (but unknown) degree of sparsity. Among the differ-
ent available schemes, we will consider the improved proportionate
NLMS (IPNLMS) filter of [8], which offers a more robust behavior
than other similar schemes.

The application of proportionate filters is subject to different
kinds of compromises. For instance, as with any other kind of adap-
tive filter, the selection of the step size introduces a trade-off involv-
ing speed of convergence, steady-state misadjustment, and tracking
capability. Furthermore, the IPNLMS filter introduces an additional
asymmetry parameter, whose optimal selection is dependent on the
degree of sparsity of the optimal solution, which is rarely known in
practice. In [9], it was shown that combination approaches, where
filters with complementary capabilities are adaptively fused to pro-
duce an output of improved quality (see also [10]), can be success-
fully applied to alleviate the two aforementioned IPNLMS compro-
mises.

Extending the combination of adaptive filters scheme to ANC is
not straightforward, and requires the introduction of some changes
(see as an example the adaptive algorithms introduced in [11]).
Thus, a second goal of this paper is to present IPNLMS combi-
nation schemes that can satisfactorily work in an ANC setup, both
using the FX and MFX configurations. We will show that the de-
rived schemes improve convergence, steady-state error, and robust-
ness to unknown or time-varying degrees of sparsity, with respect
to standard IPNLMS filters.

The rest of the paper is organized as follows: The next two
sections are devoted to the generalization of IPNLMS and combi-
nation schemes, respectively, for ANC configurations. Then, the
performance of the new schemes, and their different benefits, are
discussed together with experimental results in Section 4. The pa-
per finishes presenting the main conclusions of our work.

2. PROPORTIONATE ADAPTIVE FILTERS FOR ANC

In this section, we extend the IPNLMS algorithm from [8] to ANC.
In our presentation, we will consider both conventional and mod-
ified filtered-x structures, resulting in two schemes that we will
call throughout this paper IPNLMS-FX and IPNLMS-MFX, respec-
tively. According to the notation in Table 1, both algorithms are
described by the following equations:

e(n) = d(n)+ y(n)∗h, (1)

y(n) = wT (n)x(n), (2)

x(n) Reference signal at time n
y(n) Output signal of the adaptive filter at time n
e(n) Error signal at time n
w(n) Weight vector of the adaptive filter (length L)

Estimated impulse response (length M) of the FIR filter
ĥ modelling the secondary path h
wl(n) lth coefficient of the adaptive filter
x(n) [x(n) x(n−1) · · ·x(n−L+1)]T

xM(n) [x(n) x(n−1) · · ·x(n−M +1)]T
v(n) Reference signal x(n) filtered by the plant model

ĥ at time n
v(n) [v(n) v(n−1) · · ·v(n−L+1)]T

y(n) [y(n) y(n−1) · · ·y(n−M +1)]T

Table 1: Notation of the IPNLMS algorithms.

µl(n) =
µgl(n)

δ +∑L−1
k=0 gk(n)v2(n− k)

, (3)

where w(n) is the length-L IPNLMS weight vector at iteration n,

v(n) = xT
M(n)ĥ (4)

is a filtered version of the input signal through the estimated sec-
ondary path, δ is a small parameter to avoid division by zero, and
µl(n), l = 0, · · · ,L− 1, determines the adaptation speed for each
filter weight, with µ being the step size for the IPNLMS filter, and

gl(n) = (1−κ)
1

2L
+(1+κ)

|wl(n)|
ε+2∑k |wk(n)|

(5)

being adaptation gain factors. In the expression for gl(n), ε is a
small constant that avoids division by zero, and κ ∈ [−1,1] is an
asymmetry factor. If κ = −1, the filter reduces to the standard
NLMS and all filter weights are updated with the same energy. On
the contrary, for κ = 1, adaptation is proportional to the absolute
value of each filter weight, speeding up filter convergence for sparse
solutions.

The IPNLMS-FX weights are updated at each iteration accord-
ing to

wl(n) = wl(n−1)−µl(n)e(n)v(n− l), l = 0, ...,L−1. (6)

Alternatively, the IPNLMS-MFX follows the update rule

wl(n) = wl(n−1)−µl(n)e′(n)v(n− l), l = 0, ...,L−1. (7)

where
e′(n) = d′(n)+ y′(n), (8)

d′(n) = e(n)−yT (n)ĥ, (9)

and
y′(n) = vT (n)w(n). (10)

As discussed in [9], the IPNLMS filter is subject to the two
following compromises:
• Selection of the step size µ imposes a trade-off regarding speed

of convergence (faster for large µ) and steady-state misadjust-
ment (which is reduced for small µ).

• An asymmetry factor κ ≈ 1 provides the maximum convergence
gain for very sparse systems. However, if the solution of the fil-
ter is not so sparse, such a setting can in fact degrade the perfor-
mance. The opposite situation is observed for κ =−1. Since the
actual degree of sparsity of the solution is rarely known a pri-
ori, or may even be time-varying, intermediate values of κ = 0
or κ = −0.5 are usually indicated [8].

In the next section, we propose combination approaches to alleviate
both kinds of compromises.
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3. CONVEX COMBINATION OF IPNLMS ALGORITHMS

Adaptive combinations of filters is a simple, yet effective, way to
improve the performance of adaptive algorithms [10, 12]. Recently,
there has been an increasing interest on these algorithms, both on
theoretical aspects, and also on the proposal and study of practical
rules for implementing the combinations. Here, we will consider a
combination of two independent IPNLMS filters that differ on their
step sizes (µ1 and µ2) or their asymmetry factors (κ1 and κ2):
• Setting µ1 > µ2 and κ1 = κ2, the overall filter will enjoy faster

convergence of the filter with µ1, together with the smaller
steady-state error associated with step size µ2.

• Selection of µ1 = µ2, κ1 / 1 and κ2 = −0.5 will result in an
overall filter able to exploit a high degree of sparsity, but show-
ing robust behavior to situations with dispersive optimal solu-
tions.
In the rest of the section, we will briefly review the principles

of combination schemes, paying special attention to some ad hoc
modifications that are necessary for their extension to ANC. Such
modifications are justified by the distinguishing characteristics of
this application, namely the presence of the secondary path, and the
unavailability of d(n) for the FX configuration.

3.1 General principles of combination schemes

We will consider a convex combination of two filters characterized
by

y(n) = λ (n)y1(n)+ [1−λ (n)]y2(n), (11)

where y1(n) and y2(n) are the outputs of the IPNLMS filters, and
where λ ∈ [0,1] is the mixing parameter characterizing the convex
combination.

For an appropriate behavior of the combination filter, both
IPNLMS components have to be updated independently of each
other using their own adaptation rules (which were reviewed in the
previous section) and parameters, whereas the combination parame-
ter needs to be updated in order to minimize the power of the overall
error signal. We will use the combination scheme from [13], which
ensures that λ (n) lies in the range by defining it as the output of a
sigmoidal activation function,

λ (n) = sigmoid[a(n)] = {1+ exp [−a(n)]}−1. (12)

Then, at each iteration a(n) is updated using a gradient descent
scheme

a(n+1) = a(n)−
µa

p(n)
·
∂e2(n)
∂a(n)

, (13)

where µa is the step size for the combination and p(n) is a nor-
malizing factor. Then, λ (n) is recovered according to (12). The
particular analytical expression for the derivative in (13) depends
on which ANC configuration is implemented, and will be presented
next for the FX and MFX structures.

3.2 Conventional filtered-x structure

The combination of IPNLMS filters using the FX structure pro-
vides an algorithm that we will refer to as CIPNLMS-FX. Taking
the derivative of e2(n) with respect to a(n) gives

a(n+1) = a(n)−
µa

p(n)
e(n)[e1(n)− e2(n)]λ (n)[1−λ (n)], (14)

where p(n) is given by [13]

p(n) = β p(n−1)+(1−β )[e1(n)− e2(n)]2 (15)

β being a constant close to 1. However, the FX structure only pro-
vides the error signal e(n), and it is not straightforward to obtain
error signals e1(n) and e2(n), in order to update a(n). Thus, we will

have to rely on some estimation, which can be obtained as follows.
Using ĥ, the estimated, disturbance signal is given by,

d̂(n) = e(n)−yT (n) ĥ, (16)

and the error signals of the component adaptive filters can now be
approximated by

êi(n) = d̂(n)+yT
i (n)ĥ, i = 1,2. (17)

These estimations can be used in (14) and (15) for the update of
the mixing parameter. The CIPNLMS-FX algorithm for ANC is
described in Algorithm 1.

Algorithm 1 CIPNLMS-FX algorithm.
Require: Reference signal x(n) and error signal e(n)
Ensure: Output of the parallel filter y(n)

1: Update the vectors xM(n) and x(n)
2: yi(n) = wT

i (n)x(n), i = 1,2
3: y(n) = λ (n)y1(n)+ [1−λ (n)]y2(n)
4: Update vectors y(n) and yi(n), i = 1,2
5: d̂(n) = e(n)−yT (n) ĥ
6: êi(n) = d̂(n)+yT

i (n)ĥ, i = 1,2
7: p(n) = β p(n−1)+(1−β )[ê1(n)− ê2(n)]2

8: a(n+1) = a(n)+ µa
p(n) e(n)[ê1(n)− ê2(n)]λ (n)[1−λ (n)]

9: λ (n+1) = sigmoid[a(n+1)]
10: v(n) = xT

M(n)ĥ
11: gl,i(n) = (1−κ) 1

2L +(1+κ) |wl,i(n)|
ε+2‖wi(n)‖ , i = 1,2

12: µl,i(n) = µigl,i(n)
δ+∑L−1

k=0 gk,i(n)v(n−k)2 , i = 1,2

13: wl,i(n+1) = wl,i(n)−µl,i(n)v(n− l)êi(n), i = 1,2

3.3 Modified filtered-x structure

The combination of IPNLMS filters with the MFX structure pro-
vides the CIPNLMS-MFX algorithm. This algorithm estimates the
disturbance signal, and the errors for each of the components ac-
cording to (8)–(10).

In this case, the derivative of the squared error signal with re-
spect to a(n) results in

a(n+1) = a(n)−
µa

p(n)
e(n)[y1(n)− y2(n)]λ (n)[1−λ (n)], (18)

where p(n) = β p(n−1)+(1−β )[y1(n)− y2(n)]2.

4. SIMULATION RESULTS

In this section, we carry out a series of experiments in an ANC
setup to illustrate the performance of the adaptive algorithms that
have been introduced. We start by showing the potential advantages
of proportionate schemes over standard NLMS for realistic room re-
sponses. Then, we turn our attention to the problem of boosting the
performance of IPNLMS even further by means of combinations.
Both the conventional and modified filtered-x structures for ANC
will be considered.

To analyze robustness of the algorithms when identifying paths
with different degrees of sparsity, all our simulations will initially
use a non-so-sparse primary path [Fig. 4(a)], that will then be
changed to a sparse one [Fig. 4(b)] provoking a re-convergence
of the adaptive filter. Both primary paths are realistic impulse re-
sponses with 350 taps. The sparse primary path has been obtained
by taking the first 105 samples of the corresponding impulse re-
sponse and zero-padding to length 350. The secondary path be-
tween the loudspeaker and the error sensor is also depicted in Fig. 5
and is assumed to be known by the adaptive controller (e.g., via

1271



0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

Samples

A
m

pl
itu

de

(a)

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

Samples

A
m

pl
itu

de

(b)

Figure 4: Primary paths with 350 coefficients used in the simula-
tions: (a) dispersive, and (b) sparse.
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Figure 5: Sparse secondary path.

prior offline estimation). This secondary path, with only 11 ac-
tive coefficients, has been generated by truncating a real impulse
response. The rest of the settings for the ANC scenario are as fol-
lows: The input signal is a zero-mean Gaussian random variable
with unit variance, whereas the disturbance signal d(n) is obtained
as the output of the primary path, contaminated by zero-mean Gaus-
sian additive noise, e0(n), with variance adjusted to get SNR = 30
dB.

Common settings for the NLMS and IPNLMS adaptive filters
are L = 320, δ = 10−7, and ε = 10−6, whereas the step sizes and
asymmetry parameters (κ) are adjusted to different values depend-
ing on the purpose of the experiment. Regarding the adaptation
of the combination parameter, we use µa = 0.1 and β = 0.9 in all
cases.

The figure of merit to evaluate the performance of the differ-
ent methods will be the excess mean-square error, EMSE(n) =
E{[e(n)− e0(n)]2}, which will be estimated by averaging 100 in-
dependent runs of the algorithms.

4.1 Comparison of the IPNLMS-FX and NLMS-FX filters

To start with, we illustrate the performance gain that can be
achieved by using proportionate schemes in ANC filtering struc-
tures. To this end, Fig. 6 represents the EMSE of the NLMS and
IPNLMS filters in a FX structure (NLMS-FX and IPNLMS-FX al-
gorithms, respectively) when using a common step size (µ = 0.2)
and κ = −0.5 for IPNLMS-FX, as recommended in [8]. As can be
observed, IPNLMS-FX exhibits faster convergence both initially,
and especially after the change in the primary path that increases
the degree of sparsity of the path to identify. Similar results have
been obtained for the MFX structure (not shown here).

4.2 Combination of IPNLMS filters with different step sizes

In this subsection, we consider the combination of two IPNLMS
filters with different adaptation speeds to improve the well-known
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Figure 6: EMSE evolution for the NLMS-FX (µ = 0.2) and
IPNLMS-FX (µ = 0.2 and κ = −0.5) filters.
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Figure 7: EMSE performance for the adaptive combination of two
IPNLMS algorithms in a conventional filtered-x ANC configuration
(CIPNLMS-FX). Component settings are shown in the legend.

convergence vs steady-state misadjustment tradeoff that is inherent
to adaptive filters. We have studied the performance of a combina-
tion of two IPNLMS algorithms with settings µ1 = 0.1, µ2 = 0.3,
and κ1 = κ2 = −0.5. Fig. 7 shows the EMSE evolution for the two
component filters as well as for their combination using a FX struc-
ture (CIPNLMS-FX). Again, similar behavior would be obtained
for the MFX configuration.

As expected, the filter with large step size shows faster conver-
gence, whereas the component with µ1 = 0.1 achieves smaller error
in steady-state. The CIPNLMS-FX method inherits the best proper-
ties of each component, thus combining fast convergence and small
steady-state misadjustment. This capability has been well-studied
in the adaptive filtering literature, mostly in an identification con-
figuration. Here, we observe that such an improvement can also
be achieved in ANC setups, where the output of the filter passes
through a secondary path before being added to the disturbance sig-
nal.

4.3 Combination of IPNLMS filters with different asymmetry
factors

In Subsec. 4.1 we showed how proportionate schemes can acceler-
ate the convergence with respect to standard NLMS filters, benefit-
ing from sparseness in typical room impulse responses. When the
degree of sparsity of the optimal solution is very large, IPNLMS
performance can be further improved by selecting κ very close to
1. However, when doing so, filter performance can be seriously de-
graded if the path is not as sparse as expected. In order to benefit
from very sparse paths whenever possible, while maintaining an ap-
propriate response to more dispersive solutions, we consider in this
section a combination of two IPNLMS algorithms just differing in
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their asymmetry factors. Thus, we use µ1 = µ2 = 0.2, κ1 = −0.5
and κ2 = 0.9. Fig. 8 presents the EMSE of CIPNLMS-FX with the
FX scheme embedded, and of its two component filters (IPNLMS-
FX). We see that the combination scheme retains the best charac-
teristics of each component. During the first part of the experiment,
the IPNLMS-FX filter with κ2 = 0.9 performs poorly. However,
this is precisely the filter that shows faster convergence when the
acoustic path is sparse (after the change at iteration 150,000), and
the combination benefits from this.

Simulation results using the IPNLMS filters based on the MFX
structure are displayed in Fig. 9. Results can be discussed in a very
similar way to the FX case. Interestingly, using the MFX configu-
ration, the CIPNLMS-MFX filter is able to outperform both com-
ponent filters with respect to steady-state EMSE. This is due to low
correlation between component filter errors and the variance reduc-
tion that results from their average (see, e.g., [9]).

5. CONCLUSIONS

In this paper, we have proposed novel adaptive algorithms for
ANC applications both using conventional and modified filtered-
x structures. First, proportionate adaptation implemented with the
IPNLMS algorithm and based on one of the previous filtering struc-
tures has been shown to provide improved convergence with respect
to an adaptive filter based on the standard NLMS algorithm. To im-
prove the convergence vs steady-state error, as well as to make the
algorithms more robust to unknown or time-varying degrees of spar-
sity, combinations of IPNLMS filters have been presented, introduc-
ing several ad hoc modifications motivated by the characteristics of
ANC systems. Simulation results in non-stationary conditions sup-

port the advantages of the presented schemes. The performance of
such combination schemes, the CIPNLMS-FX (based on the con-
ventional filtered-x scheme) and the CIPNLMS-MFX (based on the
modified filtered-x scheme) has been illustrated when combining
IPNLMS filters with different parameter settings, showing that the
combination filter inherits the best properties of each component
filter, and in some cases it can outperform both filters.
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