Journal of Network and Computer Applications 75 (2016) 47-57

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER

APPLICATIONS

AN

Cost-aware service brokering and performance sentient load balancing @CmssMark

algorithms in the cloud

Ranesh Kumar Naha* , Mohamed Othman

Department of Communication Technology and Network, Universiti Putra Malaysia, 43300 UPM Serdang, Selangor D.E., Malaysia

ARTICLE INFO

ABSTRACT

Article history:

Received 12 May 2015

Received in revised form

3 July 2016

Accepted 22 August 2016
Available online 24 August 2016

Keywords:

Cloud brokering
Load balancing
Cloud computing

On-demand resource provisioning makes cloud computing a cutting edge technology. All cloud service
providers offer computing resources with their own interface type, instance type, and pricing policy,
among other service features. A cloud-based service broker provides intermediation to seek appro-
priate service providers in terms a suitable trade-off between price and performance. On the other
hand, load balancing among cloud resources ensures efficient use of a physical infrastructure, and at
the same time, minimizes execution time. This makes service brokers and load balancing among the
most important issues in cloud computing systems. This paper aims to propose three different cloud
brokering algorithms, and a load balancing algorithm. A simulation-based deployment confirms that
our proposed algorithms minimized the cost, and at the same time, witnessed gains in service per-
formance.

Resource management

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The cloud consists of large data centers, or groups of large
data centers, which may be located in one or multiple geo-
graphical regions where the cloud provides unlimited computing
resources that are available to satisfy user demand. The cloud can
be hosted by enterprises, governments and service providers
(Bernstein et al., 2011, 2009). Content, storage and computing
capable of providing services anywhere throughout the network
are referred to as “Intercloud” (Bernstein and Vij, 2010). In an
interoperability scenario, clouds must be able to detect each
other to exchange information (Vecchiola et al., 2011). Cloud
infrastructures are also represented by services that are not only
used, but also installed, deployed or replicated, with the help of
virtualization. These services are applied in complex business
processes that further complicate the fulfillment of Service Level
Agreements (SLAs). For example, due to the changing compo-
nents, workloads, external conditions, hardware, and software
failures, established SLAs may be violated. Frequent user inter-
action with the system during SLA negotiations and service ex-
ecutions (which are usually necessary in the case of failures) may
pose a challenge to successful cloud Computing. Garg et al.
(2014) propose a scheduling technique which considers SLA-
based VM management with mix workload.

A promising use case of the ‘Intercloud vision’ was defined by
Buyya et al. (2009), which involves market transactions via

* Corresponding author.

http://dx.doi.org/10.1016/j.jnca.2016.08.018
1084-8045/© 2016 Elsevier Ltd. All rights reserved.

brokers. In such a use case, a broker entity is a mediator between
the cloud consumer and multiple interoperable cloud providers, in
order to support the former in selecting the provider, which better
meets user requirements. Another value-added broker service is
the easy deployment and management of a user's service, re-
gardless of the selected provider, through a uniform interface. The
evaluation of the broker on a real-world test bed is typically cost-
and time-consuming, since a great volume of cloud resources is
required to achieve realistic, reliable results. A more promising and
cost-saving approach for the process of broker evaluation is the
application of a simulation environment.

In this study, the researchers focused on load balancing among
data centers and virtual machines; the limitations of efficient
cloud load balancing motivated us to develop a novel load balan-
cing algorithm. The proposed algorithm reduces overall processing
and response times, since tasks are allocated to the available
physical resources in an efficient manner. The proposed algorithm
was found to outperform previously proposed algorithms. In this
study, cloud brokering and load balancing algorithms for a cloud
computing environment were proposed. A discussion of the si-
mulation results of the three cloud brokering algorithms and the
load balancing algorithm is also presented.

2. Related work
Many standard bodies are currently working to define common

standards for cloud computing. These standards have been pro-
posed by numerous cloud standard organizations. Cloud users

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.08.018
http://dx.doi.org/10.1016/j.jnca.2016.08.018
http://dx.doi.org/10.1016/j.jnca.2016.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.018&domain=pdf
http://dx.doi.org/10.1016/j.jnca.2016.08.018

48 R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

currently face the challenge to select the appropriate cloud in or-
der to satisfy their specific requirements. Using an intermediate
cloud brokering service to find a specific provider that satisfies
their requirements is a promising research direction (Jrad et al.,
2012). The two primary underlying components of cloud broker-
ing are resource provisioning and scheduling. Van den Bossche
et al. (2010) propose a scheduling approach for a hybrid cloud that
performs operations in terms of scalability, cost minimization and
feasibility. Through binary integer programming, their approach
supports users in their decision making process with partial au-
tomatization. The researchers also claim that they addressed the
resource management problem first in hybrid clouds using this
technique.

Wickremasinghe et al. (2010) propose the CloudAnalyst tool in
order to model and evaluate real-life problems deployed in the
cloud, exploiting a case study based on a social networking ap-
plication. In their work, they reveal the manner in which a cloud
service broker optimizes system resources based on applications
in various geographic locations. Moreover, they proposed three
Virtual Machine (VM) load balancing algorithms and two cloud
brokering algorithms for their experiments on the CloudAnalyst
tool.

Rochwerger et al. (2011) show that, although there is a lack of
interoperability, among other limitations, in present technologies,
federated clouds have a vast future prospective. It has also been
demonstrated that efficient resource scheduling and provisioning
definitely increase cloud brokering performance.

Ferreto et al. (2011) worked on resource management, which
extends existing solutions of server consolidation. Their proposed
solution defines a constraint that defines VM with variable capa-
city to be migrated and do not migrate VM with steady usage in
order to minimize the usage of the physical server. Ferreto et al.
(2011) called this approach dynamic consolidation with migration
control. Their results show that, with this migration control sys-
tem, data centers would be greatly benefited.

Tordsson et al. (2012) propose a cloud brokering architecture
for VM management in a hybrid cloud computing environment.
Tordsson et al. (2012) also propose an application placement op-
timization algorithm with the application of integer programming
formulations that facilitate a price performance trade-off. The
Aneka (Vecchiola et al., 2011) software platform involves the
management of provisioned resources from clusters, grids and
clouds. The researchers prove that Aneka supports Quality of
Service (QoS) aware execution of controlled applications in
crossbreed clouds. Experimental results of their work suggest that
Aneka has the ability to allocate resources proficiently with the
intention of a reduction in application execution time.

Calheiros et al. (2012) propose a cloud coordinator architecture
that works in private and public cloud environments. This cloud
coordinator represents brokers and data centers in the InterCloud
marketplace, and is liable for resource negotiation management
and publishing offers. The researchers discuss the impact on
elastic applications and the effectiveness of their proposed archi-
tecture in a modest scenario.

Quarati et al. (2013) present a cloud brokering algorithm based
on various types of scheduling conditions for a hybrid cloud. Si-
mulation results of their work manifest that this brokering algo-
rithm maximizes broker revenues and user satisfaction. The re-
searchers apply energy saving mechanisms in order to increase the
broker's revenues. Akhter and Othman (2014) proposed VM pro-
visioning in an energy efficient manner for a cloud data center, and
incorporate various strategies (Akhter and Othman, 2016).

Kessaci et al. (2013) propose the Pareto Multi-Objective Genetic
Algorithm for Cloud Brokering (MOGACB), which aims for both
client satisfaction and the broker's profit. They mention that client
satisfaction is mostly related to response time rather than on the

cost of instances.

The objective of cloud load balancing is to speed up the ex-
ecution time of applications. Numerous studies were performed
on cloud load balancing during the past few years. Fang et al.
(2010) discuss two level tasks scheduling for high resource utili-
zation. Their proposed application and VM level task scheduling
was proven by the CloudSim (Calheiros et al., 2011) toolkit simu-
lation framework. However, factors such as bandwidth and cost
were not considered in their work at the period of load balancing.

Randles et al. (2010) propose Biased Random Sampling, Fora-
ging Behavior and Active Clustering load balancing, inspired by the
honeybee load balancing technique. Their proposed algorithm was
developed for a cloud environment with heterogeneous nodes, but
was simulated on a small scale system. Round robin and throt-
tling-based load balancing was proposed by Wickremasinghe et al.
(2010). They studied application behavior in a large-scale dis-
tributed cloud computing environment by the use of simulations.
However, load balancing performance could be further enhanced,
which is shown in our proposed algorithm.

VM resource load balancing uses a genetic algorithm proposed
by Hu et al. (2010). This algorithm addresses the load imbalance
and over migration cost problems in traditional algorithms pro-
posed in prior work. However, a management and monitoring
mechanism is still required for the dynamic changes of VMs.

Wang et al. (2010) propose Opportunistic Load Balancing and
Load Balance Min-Min, which are static scheduling algorithms for
system load balancing. These algorithms were developed for
three-level cloud computing networks. Request Manager, Service
Manager and Service Node are the three hierarchical components
in their framework. Opportunistic Load Balancing attempts to
make all systems busy in operation time of load balancing, while
the Load Balance Min-Min algorithm minimizes execution time.

Maguluri et al. (2012) propose a stochastic model for load
balancing in cloud computing clusters, focusing on load balancing
among servers. They demonstrate that widely used BestFit sche-
duling is not throughput-optimal. Based on various optimization
criteria and user constraints, Lucas-Simarro et al. (2013) propose a
load balancing and scheduling algorithm for multiple clouds. Their
work demonstrated cost effectiveness and performance improve-
ment, simultaneously, in their proposed algorithms.

Another honey bee inspired load balancing algorithm was
proposed by Krishna (2013). This algorithm provides load balance
across the VMs and maximizes throughput, and the amount of
time of queued tasks was minimal, which leads to a significant
improvement of average execution time. This work focuses on task
priority rather than QoS factors.

Our initial work on load balancing was presented in Naha and
Othman (2014). Round robin with server affinity was proposed by
Mahajan et al. (2013). The authors improve the algorithms func-
tionality by an efficient load balancing algorithm. However, ap-
plication load for an hour may not lead to the actual results for
these kinds of simulations, since it is not possible to realize the
effect of peak and off peak hours load balancing without at least a
one day workload. Load balancing using the firefly model was
proposed by Florence and Shanthi (2014). The simulation of this
work was conducted in a very small-scale cloud environment. VM
assignment algorithms depending on load were proposed by Do-
manal and Reddy (2014). They determine algorithm response in
the case of dynamic and mix workload. Sun et al. (2014) conducted
a comprehensive analysis on the selection approach of cloud ser-
vices, and identified potential research gaps on cloud service
selection.

R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

SaaS

(Request Translator)
A

Y

PaaS

(MPI, FS)
A
v
4 ™\
laaS
(Physical Resouces)
y T T T T T T T TTTTTTTTTTTTTTTTTT T \\
I I
I I
I . .
| | Private Public ||
| Broker [€ »{ Broker |
| Cloud Cloud |1
l l
I I
I I
I I
I I
I I
I I
: Broker :
I 3
| Hybrid Cloud :
.]
N e e 7/
- J

Fig. 1. Cloud service layered model.

3. Cloud service models
3.1. Cloud services layered model

laaS, PaaS and SaaS are the three basic cloud service layers.
Fig. 1 represents a cloud service layered model. The top layer is the
SaaS layer, which deals with the requirements of application ex-
ecution. The SaaS layer translates platform requirements for the
application, and passes them to the PaaS layer.

The PaaS layer then provides a development library, runtime
environment, scaling and layer decoupling. This layer acts through
traditional middleware, and establishes a bridge between the in-
frastructure and the application requirements. It does not de-
termine the actual infrastructure such as the number of VMs
needed. However, it determines the higher representation of ex-
ecution units, e.g., threads, process and tasks. Microsoft Azure and
Google App Engine are some real world examples of PaaS cloud
services.

The IaaS layer deals with number of processors, disk size, vir-
tual machine and network connectivity. This layer determines the
provisioning of virtual resources. Brokers of every cloud are con-
cerned with the availability of system resources, and notify of re-
source costs and runtime performance to other brokers. Our pro-
posed algorithms were designed for the brokers in the laaS layer.
Brokering in the SaaS and PaaS layers differ by fulfilling dis-
tinguished criteria. SaaS layer brokering is based on SLA and user
requirements, while PaaS layer brokering is based on runtime and
deployment support.

Workload

\ 4

User Requests)

A

DC Controller

[)
—

49

Public Hybrid Private
Cloud Cloud Cloud

Fig. 2. Workload and resource request flow.

3.2. Workload and resource model

It is difficult to outline a realistic workload for an IaaS cloud. In
real-world scenarios, an IaaS workload is dynamically changeable
and does not have any fixed patterns. However, for simulation
purposes, we can use workload traces or generated workloads.
Resources are provisioned as the demand of the present workload.
Fig. 2 depicts the workload and resources model. The workload is
passed to the DC controller as a user request. Based on the request,
the broker communicates with other resource brokers for resource
availability. Among the available resources, the broker finds the
best resources based on the users constraints. Once the broker
finds the most suitable resources, it proceeds through allocation
and provisioning policies.

4. Data transmission and user request processing

Data transmission delay (D;) depends on network latency (N;)
and data transfer time (D). Data transmission delay is measured
in millisecond (ms). Network latency between regions is taken as a
latency matrix, which is hypothetical data that follows a Poisson
distribution. Data transfer time depends on the size of the data of a
single request (Rs) and bandwidth per user (B,). Therefore, data
transfer time could be denoted as (D, = g—i); consequently, we can

formulate the data transmission delay as the following equation:

Dt = N[+ &
B, M
Bandwidth per user is calculated from total available band-
width (T,) and concurrent user requests between two regions (R,,).
Bandwidth per user is computed by the following equation:

n @)

Data center controller received requests from the user base and
the data center controller divides this request into sub-cloudlets
by Internet cloudlets. Next, the sub-cloudlet request is assigned to
the VMs for further processing through the load balancer. Data
center processing time is calculated by the receipt on the first

50 R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

response of the sub-cloudlet. So the data center processing
time is the total time needed to process the user request until it
sends the request to the VM. The time necessary to complete a
single user request is considered the data center response time.
We measured data center processing time and data center re-
sponse time.

5. Proposed algorithms
5.1. Description of proposed cloud brokering algorithms

The cloud broker is responsible for handling provider resources
and user requests. Primary work for cloud brokering was pre-
sented by Naha et al. (2015). To allocate resources according to
user requirements, the broker must discover all available re-
sources. Different users must have different constraints in order to
allocate resources. On the other hand, each provider maintains
their own SLA. A cloud broker always considers user satisfaction,
while avoiding SLA violations. After discovering available re-
sources, a cloud broker allocates resources based the user's specific
task. The brokering performance depends on efficient resource
discovery and allocation. Fig. 3 shows the queueing system of the
proposed broker.

5.1.1. Cost aware brokering

We use two different policies to discover the available re-
sources for users, along with a unique algorithm for each. The
algorithm for resource selection over cost and load is shown in
Algorithm 1. In this algorithm, regionalList is a list of regions in
which data centers are located. The dcCostLoadList holds cost and
load wise list for future allocation. The sm holds the dcName of the
lowest cost. Cost-aware brokering algorithms always select the VM
with the lowest cost. They also always update the list if an avail-
able lowest cost VM is found.

Algorithm 1. Resource discovery (cost and load) algorithm.

—» Data Center 1
Broker Queue

Application
Request

» Data Center 2

L | DataCentern

k Physical Resourcey

Fig. 3. Broker queueing process.

This algorithm maintains a list of data centers that is indexed
by data center location. In the case a request is received from user
bases by the broker, the broker retrieves the region of the sender.
It then sends queries to determine which data centers are located
in the same region. These data centers are listed in an array in
terms of network latency.

Latency between the client and the data center is considered
network latency. Later on, other data centers located in different
regions are added to the same array in terms of network latency. If
only one data center is found in the same region, then it selects the
only data center in that particular region. In the final step, if more
than one data center is found by the broker, it will select the data
center having the minimum cost and minimum workload.

5.1.2. Load aware brokering algorithm

The load-aware algorithm distributes all requests among all
available data centers. The resource selection uses a load balancing
technique, as shown in Algorithm 2. The processing time is occa-
sionally reduced if the jobs are distributed among various data
centers. But this could increase operational costs.

Input: userBase, regionallist
Output: dcName

1 Fetch region of the requested sender;

2 if regionallList is not NULL then

3 listSize < Size(regional List);

4 if listSize is 1 then

5 | deName < regional List.get(0);

6 else

7 dcCostLoadList < regionalist sort by cost then by load;
8 for all dcp in dcCostLoadList do

9 if deCostLoadList.get(sm) > dcCostLoadList.get(dep)

then

10 ‘ sm < dcp;
11 end
12 end
13 deName < dcCostLoadList.get(sm);
14 end
15 end

16 Return deName

R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57 51

Algorithm 2. Resource discovery (load aware) algorithm.

Input: userBase, regionallist
Output: dcName

1 Fetch region of the requested sender;

2 if regionallist is not NULL then
3 listSize < Size(regional List);

4 if listSize is 1 then

5 dcName < regional List.get(0);
6 else

7| getRandomNumber(listSize) ;
8 end

9 deName < dcCostLoadList.get(sm);
10 end

11 Return deName

5.1.3. Load aware over cost brokering

The load-aware over cost algorithm maintains a separate table
for data center costs. During simulation, it purses the lowest cost
data center list to another list involving sender region. Once the
lowest cost data center list is created, it distributes all incoming
traffic among the lowest cost data centers. Algorithm 3 shows the
steps for the load-aware over cost algorithm.

Algorithm 3. Load-aware over cost algorithm.

Input: userBase, regionalList, deXCostList
Output: dcName

1 Fetch region of the requested sender;

2 if regionallList is not NULL then
3 listSize + Size(deX CostList);

4 if listSize is 1 then

5 ‘ deName < regional List.get(0);
6 else

7| | getRandomNumber(listSize) ;
8 end

9 deName < deX CostList.get(sm);
10 end

11 Return deName

5.2. Load balancing methods and proposed algorithm

We may use static or dynamic methods for load balancing. A
high variation of loads is observed in the case of cloud computing.
Thus, static algorithms are not suitable for a cloud computing
environment. Dynamic load balancing is successfully used in cloud
and dynamic algorithms that can handle changing workloads over
time. Our proposed State-Based Load Balancing (SBLB) algorithm
dynamically assigns tasks to idle hosts. It also assigns tasks to
available hosts from a task queue. Following this technique pre-
vents the host to become heavily loaded. On the other hand, a task
should not wait for a long time in the queue.

When a user sends a request to the cloud system, the cloud
controller accepts the request for further processing. The data
center controller, service broker and load balancer search for
available resources, and allocate the task to an appropriate VM

considering request types. In every virtual resource pool, there is a
different level of availability of CPUs, memory resources and net-
work bandwidth. On the other hand, each user request has dif-
ferent requirements and constraints. Thus, finding the optimal
solution for a user request is considered a complex, multi-faceted
problem.

Load-balancing algorithm balances loads among VMs. Once the
broker selects the data center for service deployment, the next VM
load balancer distributes the loads among VMs in a performance-
aware manner. Fig. 4 shows the general workflow of the load
balancer. Our proposed SBLB algorithm retains two different tables
based on VM states. When a VM reaches its usage threshold, it is
placed in the busy state. However, if it does not reach the usage
threshold, it is flagged as in the available state.

The data center controller queues user requests and passes
them to the load balancer. The load balancer then returns the
available VMs from the state table, based on user requests. After
allocating the request to the VM, it updates the table accordingly. If
the data center controller does not find any available VMs, the data
center controller queues the request and waits for resource
availability. When processing is finished in a specific VM, the load
balancer reallocates the VM for another task. The data center
randomly checks for available resources for waiting requests. Al-
gorithm 4 shows the pseudocode of the proposed algorithm. In
this algorithm, vmSI denotes the VM state list, while vimSi denotes
the VM state index. A list of available and busy VMs are

Request
Generator
\ 4
Broker
\ 4
DC1 DC2 [— — DCn
\ 4
Physical Physical | _ | Physical -
Machine 1 Machine 2 Machine m -
»
>
Load Balancer
\ 4 \ 4 2
VM 1 VM2 |— — —| VMV

Fig. 4. General flow of VM load balancer.

52 R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

maintained by vmAv and vmBu respectively.

Algorithm 4. Sate based load balancing algorithm.

From the statistics on 30 September 2013 (Facebook User Statis-
tics, 2014), Facebook had 1.19 billion monthly active users world-
wide. About 21.85% of the total users worldwide are from North
America. We assumed that each active user generates a new

Input: vinSl
Output: vmld

1 if vmSIl is NULL then

2 | vmSi < getVmSI();

3 else

4 if (vmAv is NULL) or (vmBu is NULL) then
5 for a1l vmSI do

6 if i is Busy then

7 ‘ Add in vmBu;

8 else

9 ‘ Add in vmAv

10 end

11 end

12 else

13 vmld < getNextAvailableV m();

14 return vmld

15 end

16 end

17 if e.getld < allocated then

18 | vmBu.put(vmld, virtual M achineState. BUSY');
19 else if e.getld < finished then
20 ‘ vmAv.put(vmld, virtual MachineState. AV AILABLE);
21 end

6. Simulation setup and scenario

We used CloudAnalyst (Wickremasinghe et al., 2010) to con-
duct our simulation experiments. CloudAnalyst is the extension of
the CloudSim (Calheiros et al., 2011) toolkit. CloudSim is a modern
simulation framework for Cloud computing which supports large-
scale modeling in federated clouds. CloudSim supports large-scale
cloud simulations with little or no overhead regarding memory
consumption and time initialization. For user requests generation,
we used the latest Facebook user statistics throughout the world.

Table 1
Machine configurations.

DC Physical machines configuration

CPU speed 10,000 MIPS
CPU core 4

RAM 20GB
Storage 1000 GB
Network bandwidth 10 Gbps
CPU architecture x86

oS Linux

Virtual machine monitor (VMM) Xen
VM configuration

CPU speed 1000 MIPS
RAM 1GB
Storage 50 GB
Network bandwidth 100 Mbps

request every two minutes. The data center controller is re-
sponsible for maintaining workload information with the broker.
The peak hour of this region is 15:00-17:00 GMT.

We exhibited a total of seven data centers located in two dif-
ferent regions. One region is where a user base is located. The
location for the other data centers was randomly chosen. Every
simulated data center consists of five physical machines and a
variable number of virtual machines. We have designed six dif-
ferent scenarios by varying the number of VMs up to 15.

The physical machine and the VM configuration of the data
center is stated in Table 1. VMs are initially created depending on
simulation scenarios. The users and requests are grouped by a
factor of 1000 and 100 respectively. In some cases, processing
speed was equally divided within VMs based on simulation sce-
narios. The executable instruction length per request is 250 bytes.
The hourly cost per VM in every hour and cost for a 1 GB data
transfer are US$ 0.10, according to the old pricing scheme of
Amazon EC2. The bandwidth and latency matrix are generated
using a Poisson distribution, and only mean values are used. The
same technique was used to produce the user base size and in-
terval between user requests. Table 2 shows DC names, along with
location and cost per VM, for these data centers.

7. Experimental results and discussion

We have simulated our proposed algorithms in a large-scale
cloud environment. The processing time is always lower for the

R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57 53

Table 2
Data center location and cost.

DC name Region name Region number Cost per VM (US$/H)
DC1 North America 0 0.30
DC2 North America 0 0.38
DC3 North America 0 0.30
DC4 South America 1 0.15
DC5 South America 1 0.30
DC6 South America 1 0.15
DC7 South America 1 0.73

Load Aware (LA) algorithm. The Cost Aware (CA) algorithm saves
cost, but requires more processing time. For all scenarios, the CA
always saves costs compared to the LA. The experimental results
suggest that the CA is cost effective; however, the LA ensures
fastest processing.

Compared to the Service Proximity Service Broker (SPSB) pro-
posed by Wickremasinghe et al. (2010) which was revisited by
Naha and Brokering (2014), we found that LA produced a lower
average response time with a lower number of VMs; whereas the
total cost becomes higher. On the other hand, LA reduced the
average processing time with a higher number of VMs in the
scenarios; while CA always produced higher processing and re-
sponse times. Additionally, we developed a Load Aware Over Cost
(LAOC) algorithm which improves processing and response times,
while ensuring cost effectiveness.

Our research is limited to a brokering mechanism and SLA-
aware match making algorithm without altering the existing ar-
chitecture of cloud providers. One of the limitations of the simu-
lator is that it does not incorporate Failure handling. User traffic
data was generated with the assumption of user request genera-
tion at five minute intervals. However, in the real world, user
traffic is generated in a more complex manner. A detailed analysis
of the results is presented as follows.

7.1. Simulation results of cloud brokering algorithms

Our proposed cost aware algorithm is more cost effective
compared to the previous algorithm proposed by Wickremasinghe
et al. (2010). Performance regarding data center processing and
response times decreases; while it also saves costs. Next, we de-
veloped another load aware algorithm which upturns perfor-
mance. In order to make our algorithm more cost efficient, we
developed another algorithm with the combination of both the
cost and the load-aware techniques. Using the combination of
both techniques, we developed a load aware over cost algorithm
which is cost effective and performance efficient. The yielded re-
sults from the three proposed algorithms are described in the
following sections.

7.1.1. Total VM cost of proposed brokering algorithms

On average, our proposed cost aware brokering algorithm is
5.5% more cost effective compared to other previous work. The
Service Proximity Based Routing (SPBR-RR) brokering algorithm
was proposed previously. Here, the Cost Aware (CA), Load Aware
(LA) and Load Aware Over Cost (LAOC) brokering algorithms are
the newly proposed algorithms in this work. Fig. 5 shows the
comparison of cost between the SPBR-RR, CA-RR, LA-RR and LAOC-
RR algorithms. When we focused on load, the total virtual machine
cost was also increased. Compared with the CA-RR algorithm,
overall costs were increased by 11% with regards to the LA-RR
algorithm. Although our proposed load aware algorithm improves
DC processing time, cost effectiveness and response time declined.

Furthermore, we developed the LAOC algorithm to eliminate
these issues inherent in the mentioned algorithms. We found that

2000
EEE SPBR-RR
1800 7| mm cA-RR
EEE LARR
1600 1 LAOC-RR
& 1400 -
(g
= 1200 A
7]
o
S 1000 A
s
> 800
5]
2 600
400 -
200 -
0 A
SC1 sc2 sc3 sca sC5 SC6

Cloud Scenario

Fig. 5. Total virtual machine cost comparison of proposed brokering algorithms.

total VM costs increase with the proposed LA algorithm. But the
LAOC brokering algorithm shows significant improvement with
regards to costs. The total VM cost is decreased by 8% compared to
the LA brokering algorithm.

7.1.2. Processing time and response time of proposed brokering
algorithms

We measured the response and DC processing times for the old
and the newly proposed algorithms. Fig. 6(a) and (b) shows the
comparison of average and minimum response times. Fig. 6(c) and
(d) shows the average and maximum DC processing times. Based
on Fig. 6(a), it is clear that average response time has greatly in-
creased. For scenarios 1 and 2, average response time has re-
markably increased; this means that response time is higher with
a lower number of VMs. Comparing between load aware and cost
aware algorithms, overall response time is decreased for scenarios
1 and 2.

However, the overall response time is raised for the remaining
four simulation scenarios. We found a 27% improvement for sce-
narios 1 and 2. On the other hand, a 37% demotion was seen re-
garding overall response time for the other four scenarios. For
LAOC, there is a clear trend of decreasing average response time.
The simulation with cloud scenarios 3, 4, 5 and 6 using our pro-
posed LAOC algorithm showed the most surprising degradation of
average response time.

On the other hand, the simulation with cloud scenarios 1 and
2 show less improvement compared to other simulation scenarios.
Nevertheless, we found a 43% average response time improvement
for all scenarios compared to the LB algorithm.

Fig. 6(b) illustrates the comparison between two algorithms in
terms of minimum response time. As illustrated in the figure, the
minimum response time was slightly increased in our proposed
brokering algorithm. However, for some scenarios, especially for 1,
4 and 6, there was no significant difference in minimum response
time for both the SPBR-RR and CA-RR algorithms. Our proposed LA
algorithm upraises minimum response time for all six cloud sce-
narios. Based on the results obtained from the simulation of the
cost and load aware algorithms, the minimum response time in-
creased by 14% compared to the cost aware algorithm. The pro-
posed LAOC algorithm originates a 13% improvement on minimum
response time on average in a comparison between the LA and
LAOC algorithms.

As shown in Fig. 6(c), average DC processing time of the pro-
posed CA-RR algorithms is significantly increased compared to the
SPBR-RR algorithms. In order to increase performance, we design a
new load aware algorithm which increased performance

54 R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

400

N SPBR-RR
N CA-RR
N LA-RR
Il LAOC-RR

300 4

200 A

100 4

Average Response Time (ms)

SC1 SC2 SC3 SC4 SC5 SC6
Cloud Scenario
(a)
350
N SPBR-RR

@ 300 I CA-RR
= N L A-RR
° I | AOC-RR
€ 250 A
'_
[}
c
‘w200 +
[}
©
3
a 150 A
O
[a]
% 100 +
o
g
&L 50

0

SC1 sc2 Sc3 sc4 SC5 SC6

Cloud Scenario

(c)

80

Il SPBR-RR
N CA-RR
N LA-RR

60 4 Il LAOC-RR

40 A

20

Minimum Response Time (ms)

sc1 sc2 sSC3 sSc4 SC5 SC6
Cloud Scenario

(b)

BN SPBR-RR
800 1 BN CA-RR
I L A-RR
BN | AOC-RR

600 -

400 -

200 4

Maximum DC Processing Time (ms)

SC1 SC2 SC3 SC4 SC5 SC6
Cloud Scenario

(d)

Fig. 6. Response time and processing time comparison of proposed brokering algorithms.

compared with the cost aware algorithm. According to Fig. 6(c),
the load aware algorithm reduced average DC processing time
compared to the cost aware algorithm. A reduction of 73% was
observed on average for DC processing time. Compared with LA-
RR, average DC processing time of LAOC-RR was decreased for
scenario 5 only, which indicates a 6% improvement. For the other
scenarios, the average DC processing time of LAOC-RR increased
significantly. For the LAOC-RR algorithm, the average DC proces-
sing time was surprisingly increased for cloud scenarios 1 and 2.

Fig. 6(d) shows the difference of the Maximum DC processing
time between the old and the newly proposed algorithms. Ac-
cording to the figure, the SPBR-RR average DC processing time was
increased for the proposed CA-RR algorithm in all cloud scenarios.
Overall, these results indicate that the performance is degraded
with respect to response and processing times. The Maximum DC
processing time decreased in our proposed load aware algorithm.
Compared with the CA-RR, the overall 49% reduction in maximum
DC processing time is caused by our proposed load aware algo-
rithm. However, maximum DC processing time is very close to that
in the case of scenario 5. Between LA-RR and LAOC-RR, the Max-
imum DC processing time decreased for cloud scenarios 4 and 5.
Moreover, the maximum DC processing time increased. For these
two scenarios, the maximum DC processing time significantly
decreased by 112% on an average. However, the maximum DC
processing time expressively increased in the simulation with
other scenarios.

7.2. Load balancing algorithms

We measured the total VM cost, average response time, mini-
mum response time, average DC processing time and maximum
DC processing time. Our proposed SBLB algorithm outperformed
the round robin algorithm. While improving response and pro-
cessing times, our proposed algorithm attempted to retain existing
VM total costs. Thus, using the proposed algorithm conserves the
effect on operational costs. Fig. 7 shows a cost comparison with
the former and the proposed algorithm.

Our proposed SBLB load balancing algorithm improves average
response and DC processing times. In some cases, the minimum
response time increased compared with the round robin algo-
rithm. But, overall, the minimum response time improved in our
proposed load balancing algorithm. The average response and DC
processing times are greatly reduced in the proposed algorithm.
The minimum response time and maximum DC processing time
were also slightly improved in the proposed algorithm. A detailed
description of the experimental results is presented in the fol-
lowing sub-sections.

7.2.1. Average response time

The proposed SBLB load balancing algorithm minimizes the
average response time for all algorithm combinations. A 23%
average response time is minimized using the proposed algorithm.
The SBLB load balancing algorithm, with the cost aware brokering
algorithm, reduced the average response time by nearly 37%, as

R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57 55

shown in Fig. 8(a). The load aware brokering algorithm minimized
the average response time by 8%, and the simulation conducted by
the combination with the SPBR brokering policy reduced the
average response time by 18%. The LAOC algorithm reduced the
average response time by 29%. We have simulated the proposed
algorithm with SPBR, LA, CA and LAOC cloud brokering algorithms.
The simulation results indicate that our proposed SBLB algorithm

1800
I SPBR-RR
1600 4 | — SPBR-SBLB
[CA-RR
I CA-SBLB
1400 -4 | I LA-RR
[LA-SBLB
I LAOC-RR
1200 4 | C_—1 LAOC-SBLB

1000 -

Total VM Cost (US$)

800 +

600

400 -
SC1 SC2 SC3 SC4 SC5 SC6

Cloud Scenario

Fig. 7. Total virtual machine cost comparison of proposed load balancing
algorithm.

400
Bl sPeR-RR
[sPer-sBLB
B cARR
— [cA-ssLB
g [
300 - [waseLe
TD/ [l LroCRR
e [] Laoc-sBLB
Z
Q
2
S 200 4
Q.
7]
Q
4
(0]
jo2}
o
o 100 4
>
0 p
SC1 SC2 SC3 SC4 SC5 SC6
Cloud Scenario
(@)
350
I SPBR-RR
- [SPBR-SBLB
» 300 4 [CA-RR
\E/ [CA-SBLB
0] Il LARR
€ 250 4 [LA-SBLB
= I LAOC-RR
o [LAOC-SBLB
c
‘» 200
n
Q
(5]
o
a 150
O
o
% 100
o
$
< 50 A
0 -

SC1 SC2 SC3 SC4 SC5 SC6

Cloud Scenario
(c)

improves the average response time compared with the round
robin load balancing algorithm.

7.2.2. Minimum response time

We found a 1% improvement for the minimum response time
with the SBLB algorithm. Some algorithm combinations produced
similar or higher response times. For scenarios 3, 5 and 6, the
SPBR-RR and SPBR-SBLB algorithms show similar minimum re-
sponse times, as shown in Fig. 8(b). With the same algorithm
combination, the minimum response time was slightly increased
in scenario 2. The minimum response time was decreased in
scenarios 1 and 4. On the other hand, the CA-RR and CA-SBLB al-
gorithms produced similar results for scenarios 5 and 6. The
minimum response time was decreased for the other four simu-
lation scenarios. These four scenarios show a 1.8% improvement
over the round robin algorithm. Similarly, the LAOC-RR and LAOC-
SBLB algorithms revealed an equal minimum response time for
scenarios 3, 4, 5 and 6. However, scenarios 1 and 2 produced a
lower minimum response time compared to the round robin al-
gorithm. The simulation results for the LA-RR and LA-SBLB algo-
rithms demonstrated an increase in minimum response time for
scenarios 1 and 5. However, minimum response time was de-
creased for the remaining four scenarios. An average 4.7% im-
provement was noticed for these four scenarios. Based on Fig. 8(b),
it can be concluded that, with the exception of occasional cir-
cumstances, the minimum response time was improved by em-
ploying the proposed load balancing algorithm.

55
Il sPBR-RR
[sPBR-sBLB.
[cARR
™ I cA-sBLB
£ Bl LARR
= [La-sBLB
() Il LAOCRR
§ 50 A [LAoc-sBLB
=
Q
7]
c
o
Qo
7]
Q
o
E 451
£
=
=
40 -
SC1 SC2 SC3 SC4 SC5 SC6
Cloud Scenario
(b)
1000
I SPBR-RR
[SPBR-SBLB
[CA-RR
800 I CA-SBLB
Il LARR
[LA-SBLB
Il LAOC-RR
[LAOC-SBLB
600

400 -

200 -

Maximum DC Processing Time (ms)

SC1 SC2 SC3 SC4 SC5 SC6
Cloud Scenario

Fig. 8. Response time and processing time comparison of proposed load balancing algorithm.

56 R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57

7.2.3. Average DC processing time

The results, as shown in Fig. 8(c), indicate a significant im-
provement on average in DC processing time. There is a 47% im-
provement found for average DC processing time compared with
the round robin algorithm. Moreover, the SPBR-RR and SPBR-SBLB
algorithms show a 46% improvement for DC processing time.
However, the improvement is 41% for scenario 6, while similar
improvement was witnessed for the remaining five scenarios. Si-
milarly, the CA-RR and CA-SBLB algorithms produced very similar
results. A 49% reduction on average for DC processing time was
found for the CA-SBLB algorithm compared to the CA-RR algo-
rithm. The simulation results of the LA-RR and LA-SBLB algorithms
incurred a 39-51% DC processing time improvement for all sce-
narios. Overall, a 46% reduction in DC processing time was noted
for the LA-RR and LA-SBLB algorithms. On the other hand, the
LAOC-RR and LAOC-SBLB algorithms also reduced the similar
average DC processing time. Precisely, the average 48% DC pro-
cessing time was reduced in our proposed load balancing algo-
rithm. Overall, these results indicate that the proposed SBLB load
balancing algorithm ensures the fastest task processing in the
cloud data center.

7.2.4. Maximum DC processing time

Except for the combination of the SPBR-RR and SPBR-SBLB al-
gorithms, all other algorithm combinations produced a lower
maximum DC processing time. Fig. 8(d) presents the maximum DC
processing time results obtained from the simulations using var-
ious algorithm combinations. As shown in Fig. 8(d), the LA-RR and
LA-SBLB group reported a significantly less maximum DC proces-
sing time compared to the other three groups. On average, the
maximum DC processing time was decreased by 11%. The SPBR-RR
and SPBR-SBLB algorithm combination improves maximum DC
processing time for scenarios 5 and 6. However, the maximum DC
processing time increased for scenarios 1-4.

The simulation results for maximum DC processing time of the
CA-RR and CASBLB algorithms is depicted in Fig. 8(d). According to
the figure, an average 4% improvement can be seen for the max-
imum DC processing time. The LAOC-RR and LAOC-SBLB algo-
rithms produced a 7% maximum DC processing for time ad-
vancement. The highest decrement of maximum DC processing
time is observed for cloud scenario 3, which is 13%; while the
lowest decrement in maximum DC processing time is observed for
cloud scenario 2, which is 0.24%. In summary, these results show
that our proposed load balancing algorithm reduced the maximum
DC processing time.

8. Significant contributions

The main contributions in this study are twofold. The first
contribution involves the three proposed cloud brokering algo-
rithms, referred to as CA, LA and LAOC. The second contribution
involves the load balancing algorithm, which is known as the SBLB
algorithm. The CA brokering algorithm saves 5.5% in costs com-
pared to the existing one; but response time and the DC proces-
sing time are highly increased. On the other hand, the LA algo-
rithm shows a 37% improvement in average response time with a
higher number of VMs in the scenarios; and a 73% improvement in
average DC processing time. However, the LA algorithm incurred
11% extra costs compared to the CA algorithm. The proposed LAOC
algorithms is a midway solution based on the CA and LA algo-
rithms. The LAOC incurred higher costs from the CA and lower
costs from the LA brokering algorithm. Similar trends were found
for response and processing times. The proposed SBLB load bal-
ancing algorithm improved DC processing time and response time
by retaining same total VM costs. Therefore, it can be summarized

that the proposed SBLB algorithm improved the DC processing and
response time without affecting the total VM costs. Moreover, the
proposed brokering algorithms help cloud users to choose the
appropriate providers based on their cost saving or performance
aware constraints. The proposed algorithm helps service providers
to manage their resources.

9. Conclusion

The demand for cloud computing has greatly increased in the
past few years due to the advancement in computing as a service
form. In the cloud computing concept, users are able to utilize
computing resources according to their needs and requirements.
The cloud approach helps users to reduce the cost of IT infra-
structures. To provide services, different cloud service providers
build their own computing platforms differently, due to the lack of
a common standard. Selecting the cloud provider from among
these heterogeneous cloud environments is a challenging task for
users. A broker is capable of finding an appropriate service pro-
vider that would satisfy user service requirements in terms of a
Service Level Agreement. Load balancing in the cloud is another
important research issue. Cloud Computing offers on-demand
provisioning of computing resources to users. Cloud service pro-
viders manage a large number of user requests to provide services
according to user demands. Allocating and managing user requests
to physical hardware is a challenging issue, since there is a need to
create a load balance among available system resources. Effective
load balancing saves operational costs, improves user satisfaction
and leads to accelerate overall performance.

The results of the simulations carried out show that cost saving
brokering requires a greater processing time, and sometimes, a
greater response time. However, the fastest processing brokering
leads to higher utilization costs. Depending on user requirements,
the broker decides whether the process is performed in a cost
saving manner, or a faster processing technique. The results of this
study indicate that an efficient brokering technique could save
time and cost for cloud users. The simulation results show that the
performance of the SBLB algorithm is greatly improved when
compared with the existing algorithms in a simulated environ-
ment. The findings of this study suggest that an efficient load
balancing algorithm could minimize execution time, which would
be of benefit to cloud users and providers. The broker should have
the capability to handle changing user requests and dynamic re-
source allocation based on SLA. The aim to resolve these issues is
regarded as future work. Another important limitation lies in the
fact that we have conducted our experiments in a simulated en-
vironment. Further investigation and experimentation in real-
world cloud brokering and load balancing mechanisms is strongly
recommended.

Acknowledgment

The authors would like to thank the Malaysian Ministry of
Education for provide funding under a Commonwealth Scholar-
ship and Fellowship Plan (CSFP) scholarship. This work is also
partially supported by the Malaysian Ministry of Education under
the Fundamental Research Grant Scheme FRGS/02/01/12/1143/FR.

References

Akhter, N., Othman, M., 2014. Energy Efficient Virtual Machine Provisioning in
Cloud Data Centers. In: International Symposium on Telecommunication
Technologies (ISTT), IEEE, Langkawi, Malaysia, pp. 282-286.

R.K. Naha , M. Othman / Journal of Network and Computer Applications 75 (2016) 47-57 57

Akhter, N., Othman, M., 2016. Energy aware resource allocation of cloud data
center: review and open issues. Clust. Comput., 1-20.

Bernstein, D., Vij, D., Diamond, S., 2011. An intercloud cloud computing economy-
technology, governance, and market blueprints. In: 2011 Annual SRII Global
Conference (SRII), IEEE, San Jose, CA, USA, pp. 293-299.

Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M., 2009. Blueprint for
the intercloud-protocols and formats for cloud computing interoperability. In:
2009 ICIW'09 Fourth International Conference on Internet and Web Applica-
tions and Services, IEEE, Mestre, Italy, pp. 328-336.

Bernstein, D., Vij, D., 2010. Intercloud directory and exchange protocol detail using
XMPP and RDF. In: 6th World Congress on Services (SERVICES-1), IEEE, Miami,
Florida, USA, pp. 431-438.

Buyya, R, Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I., 2009. Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the
5th utility. Future Gener. Comput. Syst. 25, 599-616.

Calheiros, R.N., Toosi, A.N., Vecchiola, C., Buyya, R., 2012. A coordinator for scaling
elastic applications across multiple clouds. Future Gener. Comput. Syst. 28,
1350-1362.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011. CloudSim: a
toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41, 23-50.

Domanal, S.G., Reddy, G.R.M., 2014. Optimal load balancing in cloud computing by
efficient utilization of virtual machines. In: 2014 Sixth International Conference
on Communication Systems and Networks (COMSNETS), pp. 1-4.

Facebook User Statistics, 2014. ¢(http://newsroom.fb.com/Key-Facts)(accessed
06.12.13).

Fang, Y., Wang, F,, Ge, J., 2010. A task scheduling algorithm based on load balancing
in cloud computing. In: Web Information Systems and Mining, Springer, Sanya,
China, pp. 271-277.

Ferreto, T.C., Netto, M.A., Calheiros, R.N., De Rose, C.A., 2011. Server consolidation
with migration control for virtualized data centers. Future Gener. Comput. Syst.
27, 1027-1034.

Florence, A.P., Shanthi, V., 2014. A load balancing model using firefly algorithm in
cloud computing. J. Comput. Sci. 10, 1156-1165.

Garg, S.K,, Toosi, A.N., Gopalaiyengar, S.K., Buyya, R., 2014. SLA-based virtual ma-
chine management for heterogeneous workloads in a cloud datacenter.]. Netw.
Comput. Appl. 45, 108-120.

Huy, J, Gu, J,, Sun, G., Zhao, T,, 2010. A scheduling strategy on load balancing of
virtual machine resources in cloud computing environment. In: 2010 Third
International Symposium on Parallel Architectures, Algorithms and Program-
ming (PAAP), pp. 89-96.

Jrad, E, Tao, J., Streit, A., 2012. Simulation-based evaluation of an intercloud service
broker. In: The Third International Conference on Cloud Computing, GRIDs, and
Virtualization, Cloud Computing 2012, pp. 140-145.

Kessaci, Y., Melab, N., Talbi, E-G., 2013. A Pareto-based genetic algorithm for opti-
mized assignment of vm requests on a cloud brokering environment. In: 2013
IEEE Congress on Evolutionary Computation (CEC), pp. 2496-2503.

Krishna, P.V., 2013. Honey bee behavior inspired load balancing of tasks in cloud
computing environments. Appl. Soft Comput. 13, 2292-2303.

Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, .M., 2013.
Scheduling strategies for optimal service deployment across multiple clouds.
Future Gener. Comput. Syst. 29, 1431-1441.

Maguluri, ST., Srikant, R, Ying, L., 2012. Stochastic models of load balancing and
scheduling in cloud computing clusters. In: 2012 Proceedings IEEE INFOCOM,
pp. 702-710.

Mahajan, K., Makroo, A., Dahiya, D., 2013. Round robin with server affinity: a VM
load balancing algorithm for cloud based infrastructure. J. Inf. Process. Syst. 9,
379-394.

Naha, RK., Othman, M., 2014. Brokering and load-balancing mechanism in the
cloud-revisited. IETE Tech. Rev. 31, 271-276.

Naha, RK., Othman, M., 2014. Optimized Load Balancing for Efficient Resource
Provisioning in the Cloud. In: International Symposium on Telecommunication
Technologies (ISTT), IEEE, Langkawi, Malaysia, pp. 382-285.

Naha, RK., Othman, M., Akhter, N., 2015. Evaluation of cloud brokering algorithms
in cloud based data center. Far East]. Electron. Commun. 15, 85-98.

Quarati, A., Clematis, A., Galizia, A., DAgostino, D., 2013. Hybrid clouds brokering:
business opportunities, QoS and energy-saving issues. Simul. Model. Pract.
Theory 39, 121-134.

Randles, M., Lamb, D., Taleb-Bendiab, A., 2010. A comparative study into distributed

load balancing algorithms for cloud computing. In: 2010 IEEE 24th Interna-
tional Conference on Advanced Information Networking and Applications
Workshops (WAINA), pp. 551-556.

Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, L., Nagin, K., et al., 2011.
Reservoir—when one cloud is not enough. IEEE Comput. 44, 44-51.

Sun, L., Dong, H., Hussain, FK., Hussain, O.K., Chang, E., 2014. Cloud service selec-
tion: state-of-the-art and future research directions.]J. Netw. Comput. Appl. 45,
134-150.

Tordsson, ., Montero, R.S., Moreno-Vozmediano, R., Llorente, .M., 2012. Cloud
brokering mechanisms for optimized placement of virtual machines across
multiple providers. Future Gener. Comput. Syst. 28, 358-367.

Van den Bossche, R., Vanmechelen, K., Broeckhove,]., 2010. Cost-optimal schedul-
ing in hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD), pp. 228-235.

Vecchiola, C., Chu, X., Mattess, M., Buyya R, 2011. Aneka—integration of private and
public clouds. In: Cloud Computing Principles and Paradigms, Wiley, Hoboken,
pp. 251-274.

Wang, S-C., Yan, K-Q., Liao, W-P.,, Wang, S-S., 2010. Towards a load balancing in a
three-level cloud computing network. In: 2010 3rd IEEE International Con-
ference on Computer Science and Information Technology (ICCSIT), vol. 1, pp.
108-113.

Wickremasinghe, B., Calheiros, RN., Buyya, R., 2010. Cloudanalyst: a cloudsim-based
visual modeller for analysing cloud computing environments and applications.
In: 2010 24th IEEE International Conference on Advanced Information Net-
working and Applications (AINA), pp. 446-452.

Ranesh Kumar Naha awarded Master of Science from
the Faculty of Computer Science and Information
Technology in Universiti Putra Malaysia in 2015. He
received B.Sc. degree in Computer Science and En-
gineering from State University of Bangladesh in 2008.
His research interests are in wired and wireless net-
work, parallel and distributed computing and cloud
computing. During his master study he was awarded
Commonwealth Scholarship provided by Ministry of
Higher Education, Malaysia. After his graduation he
served as Lecturer until 2011 in Daffodil Institute of IT,
Bangladesh.

Mohamed Othman received his Ph.D. degree from the
Universiti Kebangsaan Malaysia with distinction (Best
Ph.D. Thesis in 2000 awarded by Sime Darby Malaysia
and Malaysian Mathematical Science Society) and now
he is a Professor in Computer Science at the Faculty of
Computer Science and Information Technology, Uni-
versiti Putra Malaysia (UPM). He served at various po-
sitions in UPM, member of Computer Chapter Malaysia
Section and as chief-editor and associate editor of
several computer and network journals. He is also an
associate researcher at the Computational Science and
Mathematical Physics Lab., Institute of Mathematical
Research (INSPEM), UPM. His main research interests
are in the fields of parallel and distributed computing architecture, interconnection
ultra speed network, network design and management (wireless communication
and network, and mobile traffic monitoring), and scientific computing. He is a
member of [EEE Computer Society, International Association of Computer Science
and Information Technology, IAENG, Malaysian National Computer Confederation
and Malaysian Mathematical Society. He already published more than 500 National
and International journals and proceeding papers. His main research interests are
in the fields of parallel and distributed algorithms, high performance computing
architecture, wireless communication and network, network design architecture
and management (high-speed, security, wireless, and traffic monitoring) and sci-
entific computing.

http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref2
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref2
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref2
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref6
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref6
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref6
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref6
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref7
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref7
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref7
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref7
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref8
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref8
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref8
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref8
http://www.newsroom.fb.com/Key-Facts
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref12
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref12
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref12
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref12
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref13
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref13
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref13
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref14
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref14
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref14
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref14
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref18
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref18
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref18
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref19
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref19
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref19
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref19
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref21
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref21
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref21
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref21
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref22
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref22
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref22
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref24
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref24
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref24
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref25
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref25
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref25
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref25
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref27
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref27
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref27
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref28
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref28
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref28
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref28
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref29
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref29
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref29
http://refhub.elsevier.com/S1084-8045(16)30187-4/sbref29

	Cost-aware service brokering and performance sentient load balancing algorithms in the cloud
	Introduction
	Related work
	Cloud service models
	Cloud services layered model
	Workload and resource model

	Data transmission and user request processing
	Proposed algorithms
	Description of proposed cloud brokering algorithms
	Cost aware brokering
	Load aware brokering algorithm
	Load aware over cost brokering

	Load balancing methods and proposed algorithm

	Simulation setup and scenario
	Experimental results and discussion
	Simulation results of cloud brokering algorithms
	Total VM cost of proposed brokering algorithms
	Processing time and response time of proposed brokering algorithms

	Load balancing algorithms
	Average response time
	Minimum response time
	Average DC processing time
	Maximum DC processing time

	Significant contributions
	Conclusion
	Acknowledgment
	References

