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Abstract Field Programmable Gate Array (FPGA) is an efficient reconfigurable integrated circuit 
platform and has become a core signal processing microchip device of digital systems over the last 
decade. With the rapid development of semiconductor technology, the performance and system inte-
gration of FPGA devices have been significantly progressed, and at the same time new challenges arise. 
The design of FPGA architecture is required to evolve to meet these challenges, while also taking 
advantage of ever increased microchip density. This survey reviews the recent development of advanced 
FPGA architectures, including improvement of the programming technologies, logic blocks, intercon-
nects, and embedded resources. Moreover, some important emerging design issues of FPGA archi-
tectures, such as novel memory based FPGAs and 3D FPGAs, are also presented to provide an outlook 
for future FPGA development. 
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I. Introduction
Field Programmable Gate Arrays (FPGAs) are 

pre-fabricated silicon devices that can be electri-
cally programmed to implement almost any kind of 
digital circuit or system. As illustrated in Fig. 1, 
the basic structure of an FPGA consists of a sea of 
Logic Blocks (LBs), an interconnection network, 
and configurable I/O blocks. Because of very high 
level integration, the recent FPGA devices also 
include memory blocks, hardwired DSP blocks, 
clock management blocks, and high speed data 
transceiver blocks, all embedded monolithically[1−3]. 
Logic blocks are the main digital processing re-
sources, and each of them is configured to perform 
combinational as well as sequential operations 
depending on the required function to implement. 
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For the combinatorial operations, a set of LookUp 
Tables (LUTs) are employed as arbitrary logic- 
function generators, and for the sequential opera-
tions a set of D-Flip-Flops are involved. Moreover, 
some evolved forms of LB are optimized to be able 
to support additional functions, such as local 
storage (distributed RAM memory), Shift Register 
(SR), multiplexer, and adder/subtractor operations. 
The interconnection network is programmable by 
the user so as to link as many LBs as necessary[4−7]. 

In order to optimize FPGA performance, 
hardwired DSP blocks are included, which allow 
complex arithmetic operations to be performed. 
Internal memories, such as RAM, ROM, flash RAM, 
and shift registers, are optionally integrated to 
increase the processing speed and simplify the 
board level design of the system. The integrated 
clock management blocks are used to provide sys-
tem synchronization synthesizable. They are usu-
ally based on Phase-Locked-Loops (PLLs), which 
support features such as frequency multiplication 
and division, propagation delay compensation and 
phase shift correction. The current FPGA devices 
also include high speed data transceiver blocks that 
generally consist of transmission and reception 
buffers. Various data communication protocols are 
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supported, including USB, Ethernet, CAN, PCI, 
SPI, I2C, etc. Furthermore, a few complex FPGA 
architectures include embedded microprocessors 
and peripherals for additional SoC support fea-
tures[8−10]. 

Fig. 1  Generic structure of an FPGA[11] 

To provide high integration density, high-speed 
and low-power consumption, FPGAs have been the 
subject of a considerable progress in terms of ad-
vanced semiconductor process technology. Recent 
commercial FPGA devices, such as Altera’s Arria 
10 and Xilinx’ Virtex UltraScale, have reached 
down to 20 nm process[12,13]. Moreover, Xilinx is 
aiming to offer Virtex UltraScale all programmable 
devices built on TSMC’s 16 nm FinFET process 
technology, and Altera and Intel Corporation have 
jointly announced that the next generation of Al-
tera’s highest performance FPGA products 
(Stratix 10) would be produced using Intel’s 14 nm 
3D Tri-Gate transistor technology[14,15]. The de-
velopment of FPGA has been greatly heightened by 
implementation of the advanced process. Thus 
unprecedented levels of performance, system inte-
gration and bandwidth can be expected in the next 
generations of FPGA to come. 

The goal of this survey is to present the state-of- 
the-art FPGA architecture and to foresee future 
trends in FPGA design progress. The rest of this 
paper is organized as follows. Section II introduces 
the main approaches to programming technologies 
of FPGA. Section III addresses the design issues 
with regard to logic block architecture, while pro-
grammable routing architecture is described in 

Section IV. Section V discusses arrangement of the 
hardware resources embedded in FPGAs and ex-
plains about a convergence towards System-on- 
Chip (SoC) FPGAs. Section VI tries to explore the 
future technology trends of FPGAs, and a conclu-
sion of the paper is given in Section VII. 

II. Programming Technologies
An FPGA is programmed using electrically 

programmable switches. The properties of these 
programmable switches, such as size, on-resistance, 
and capacitance, have a significant impact on pro-
grammable logic architecture. The approaches 
widely used in modern FPGAs include Static 
Random Access Memory (SRAM), flash memory, 
and anti-fuse. Of these approaches, SRAM-based 
FPGAs are most commonly used and get a domi-
nant position in the market, mainly due to its 
scalability with CMOS process technology. In this 
section, all these approaches of programming 
technologies will be reviewed, and their advantages 
and disadvantages are compared to provide a 
complete understanding of the programming 
technologies. 

1. SRAM based programming

The basis for SRAM programming technology is
the static memory cell, which is shown in Fig. 2. 
Access to the cell is enabled by the word line which 
controls the two access transistors M5 and M6 for 
both READ and WRITE operations. If the word 
line is not asserted, the access transistors M5 and 
M6 disconnect the cell from the bit lines, and the 
two cross-coupled inverters formed by M1~M4 will 
continue to reinforce each other as long as they are 
connected to the supply[3].  

Fig. 2  Static memory cell 

SRAM-based FPGAs utilize SRAM to provide 
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configurability for routing and computational 
functions, typically through the use of LUTs and 
multiplexers. There are two primary advantages 
associated, namely re-programmability by design 
and compatibility to standard CMOS process 
technology. As a result, SRAM-based FPGAs can 
catch up with the latest CMOS technology avail-
able and, therefore, benefit from the increased 
integration level, the higher speeds and the lower 
dynamic power consumption with smaller mini-
mum geometries offered[16]. 

2. Flash/E2PROM memory based programming 

In the case of flash memory technology, the 
configuration is based on flash connections that 
keep the configuration state when the device is 
powered down. Each connection contains two 
transistors that share a floating gate and store the 
programming bit information, as Fig. 3 shows. The 
conductivity of the access transistor can be con-
trolled by injecting charge onto the floating gate. 
Because the floating gate is electrically isolated by 
its insulating layer, any electrons placed on it are 
trapped there and, under normal conditions, will 
not discharge for many years. 

 

Fig. 3  Floating gate transistor[17] 

Unlike CMOS based SRAM, non-volatility is 
one of the most important advantages for flash 
memory based programming technology. As a re-
sult, flash memory based FPGAs do not have to use 
external resources to store and load configuration 
data. Additionally, as all configuration and routing 
data retain their states when the power is off, a 
flash-based device can function immediately upon 
power-up instead of having to wait for reconfigu-
ration. The flash approach is also more area effi-
cient than SRAM-based technology which requires 
5 or 6 transistors to implement the programmable 
bit storage.  

The main disadvantages of flash-based devices 
are the limited numbers of reprogramming runs 
and the need for a non-standard CMOS process. 
Current devices such as the Microsemi IGLOO2 are 
only rated for 500~1000 programming cycles[18].  

3. Anti-fuse based one time programming 

An alternative to SRAM and floating gate- 
based technologies is anti-fuse programming tech-
nology. This technology is based on structures 
which exhibit very high-resistance under normal 
circumstances but can be “blown” (in reality, 
connected) to create a low resistance link. In con-
trast to SRAM or floating gate programming 
technologies, this link is permanent. Therefore, 
FPGAs based on anti-fuse programming technol-
ogy can be programmed only once. 

The primary advantage of anti-fuse program-
ming technology is its small footprint[16]. With 
metal-to-metal anti-fuses (Fig. 4), no silicon area is 
required to make connections, decreasing the area 
needed for programmability. For the same reason, 
anti-fuses have lower on resistances and parasitic 
capacitances than in other programming tech-
nologies. Moreover, as the programming of anti- 
fuse based FPGAs needs only to be done once, the 
security for the hardware description bit stream 
downloaded to the FPGAs are greatly improved.  

 

Fig. 4  Anti-fuse interconnect elements (metal- to-metal)[19] 

However, there exist some disadvantages. In 
particular, since anti-fuse-based FPGAs require a 
nonstandard CMOS process, they are typically 
several generations behind in the manufacturing 
processes compared to SRAM-based FPGAs (see 
Tab. 1 below). Furthermore, the fundamental me- 
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Tab. 1  Comparison of different programming technologies 

Programming type 
Parameters 

SRAM Flash Anti-fuse

Nonvolatile × √ √ 
Reprogrammable √ √ ×
Cell components 5 or 6 transistors 1 or 2 transistors Metal-to-metal 

Read/Write speed 1 ns/1 ns 100 ns/200 ns[20] - 

State-of-the-art process 20 nm 65 nm[18] 130 nm 

Endurance (Cycles) Infinite 500~1000[18] 1 

Programming yield 100% 100% >90% 

chanism of programming, which involves significant 
changes to the properties of the materials in the 
fuse, leads to scaling challenges when new IC fab-
rication processes are phased in. The inability to 
reprogram also restricts the scope of applications. 
Unlike other technologies, in-system programming 
is not possible, which requires special programming 
system used to program a device before it is 
mounted on a final product. Finally, the one-time 
programmability of anti-fuses makes it impossible 
for manufacturing tests to detect all possible 
faults[16].  

4. Summary

The three programming technologies reviewed
in this section have different application domains in 
modern FPGA markets. SRAM-based program-
ming technology has become the most widely used 
because of its compatibility to standard CMOS 
process. Flash memory based FPGAs are mainly 
used in some specific applications where both 
nonvolatile and reprogrammable technologies are 
required. Due to highest reliability at expenses of 
the flexibility, anti-fuse FPGAs are mainly used in 
aviation and aerospace systems. Tab. 1 summarizes 
the pros and cons among the different program-
ming technologies.  

III. Logic Block Architecture
FPGAs consist of logic blocks to implement 

logic functions, programmable routing to inter-
connect these functions and I/O blocks to make 
off-chip connections. The logic block architecture is 
extremely important as it lies at the heart with 
respect to the design of FPGAs for optimized 
performance and logic density[21−23]. In this section, 
we will discuss the basic issues and trade-offs in 
logic block architecture design, with a revisit to the 

evolution of the commercial FPGA architectures. 

1. Design fundamentals

The purpose of a logic block in an FPGA is to
provide the basic computation and storage ele-
ments used in digital logic systems. In this section, 
three most cited logic blocks, which are respectively 
based on LUT, multiplexer, and And-Inverter Cone 
(AIC), will be discussed.  

(1) LUT 
LUT is considered to be an array of memories 

which has only 1 bit of output. The logic block 
architecture with one LUT and DFF is shown in 
Fig. 5. In most cases, the truth table for a K-input 
logic function is stored in a (2K×1) SRAM. The 
address lines of the SRAM function as inputs and 
the output of the SRAM provides the value of the 
logic function. However, the high functionality of 
LUT does not come for free. They tend to be 
roughly large and slow, as their area grows expo-
nentially and delay grows linearly both with the 
number of inputs. Also, the number of outputs is 
intrinsically only one, limiting their flexibility[24,25]. 

Fig. 5  LB architecture with one LUT and DFF 

The mainly used commercial FPGAs are always 
based on clusters, such as in the Altera Stratix, 
Cyclone, and the Xilinx Virtex series[26−35]. A 
cluster is a group of Basic Logic Elements (BLEs) 
that are fully connected by a MUX-based cross 
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bar[36], as illustrated in Fig. 6.  

 

Fig. 6  Structure of Logic Cluster[36] 

In most industrial FPGAs, the granularity of 
logic block is adjustable by using of LUTs and 
flip-flops. The LUT size (K, number of inputs) and 
cluster size (N, number of LUTs per cluster) have 
important effect on the area and speed performance 
of FPGAs. The work of Ref. [37] first explored the 
effect of K and N on FPGA architecture, as Fig. 7 
demonstrated.  

 

 

Fig. 7  Illustration the effect of LUT and BLE Characteristics 

Fig. 7(a) illustrates the effect of LUT size on the 
number of clusters and cluster area, and Fig. 7(b) 
shows the trade-off between BLE delay and number 
of BLEs on critical path. It is understood that as 
the LUT and cluster size increases, the total 
number of logic blocks needed to implement a given 
function is decreased, and the number of such 
blocks on the critical path is decreased too. How-
ever, both the size and delay of the logic block  
increase with K and N. Furthermore, the area 
dedicated to routing outside the block will change 
as a function of K and N, and this has a strong 
effect on the results. The choice of the logic block 
granularity, which produces the best area-delay 
product, lies in somewhere between these two ex-
tremes[38-40]. 

(2) MUX 
The functions that can be implemented by a 

single two-input MUX are shown in Fig. 8. In MUX 
based FPGAs, two-input MUXs are used to im-
plement different logic functions by connecting 
each of its inputs to a constant or to a signal. Using 
such methods, a logic block capable of implementing 
a large number of functions can be constructed by 
grouping a number of MUXs and basic logic gates. 

Multiplexer-based logic blocks have the ad-
vantage of providing a large degree of functionality 
for a relatively small number of transistors. This is, 
however, achieved at the expense of a large number 
of inputs, which place high demands on the routing 
resources. Such blocks are, therefore, more suited to 
FPGA’s that use programmable switches of small 
size such as flash and anti-fuse. 

 

Fig. 8  Functions implemented by a two-input MUX[41] 

(3) AIC 
The And-Inverter Cone (AIC) is a full binary 

tree of cells which can be configured as 2-input 
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NAND or AND gates. The architecture of the AICs 
is inspired from the And-Inverter Graphs (AIGs)[42], 
where all nodes are 2-input AND gates with an 
optional inversion at the output. However, in this 
original AIC architecture, inverters are not avail-
able at the inputs of the cells. Therefore, nodes 
whose fan-outs include both inverted and non- 
inverted edges cannot be represented as-is. To ac-
commodate these cases, some AIG transformations 
are required, such as duplicating the node that has 
the fan-out or adding an inverter node at its output. 
This provides more flexibility and allows the AIC 
to map a larger subset of functions, and the ar-
chitecture of the AIC is shown in Fig. 9. 

Fig. 9  AIC architecture[43] 

Though unable to implement all possible func-
tions of its inputs, the AIC logic block is considered 
to be less versatile but more efficient compared to 
LUT-based block. AICs can be richer in terms of 
input and output bandwidth, because their area 
grows linearly with the number of inputs. Also their 
delay grows logarithimically with the broad input 
and intermediate output are easier to implement.  

2. Commercial product examples

In general, published research work on logic
block architecture tends to model and explore 
relatively simple basic logic elements, such as the 
pure k-input LUT. In contrast, commercial logic 
blocks have undergone an evolution that typically 
has led to the development of more complex blocks 
in an attempt to gain more functionality. 

(1) Altera 
In Altera FPGA product families, Stratix and 

Cyclone based architectures use Logic Elements 
(LEs) of different types arranged into Logic Array 
Blocks (LABs). In Stratix I FPGA, each LAB 

contains some number of LEs, which is composed of 
a 4- input LUT, a programmable register, carry 
chain with carry select capability, and some other 
control logics, as Fig. 10 shows. With the 4-input 
LUT, each LE can implement any function of four 
variables, and it also supports single bit addition or 
subtraction mode dynamically selectable by a 
LAB-wide control signal. This device has a simple 
architecture which is easily mapped and synthe-
sized in software, and is considered to be suitable 
for low cost FPGAs. This architecture continues to 
be used in Cyclone 1-4 FPGA families[27−30].  

To get advanced features with efficient logic 
utilization, the architectures in Stratix II have 
evolved in great extent. Adaptive Logic Module 
(ALM) becomes the smallest unit of logic instead of 
LE, and it keeps as the main feature of LABs in the 
following Stratix device families. For example, the 
ALM in Stratix V devices consists of combinational 
logic, four registers, and two adders, as shown in 
Fig. 11. The combinational logic portion has eight 
inputs including two adaptive LUTs using Altera’s 
patented LUT technology. An entire ALM is 
needed to implement an arbitrary six-input func-
tion. Because it has eight inputs to the combina-
tional logic block, one ALM support implementing 
various combinations of two individual functions. 
In addition to implementing a full 6-input LUT, the 
ALM can, for example, implement 2 independent 
4-input functions or a 5-input and a 3-input func-
tions with independent inputs[31]. Because 4 regis-
ters and 2 adders are available, the ALM has the 
flexibility to implement 2.5 logic elements (LEs) of 
a classic 4-input LUT (4-LUT) architecture, con-
sisting of a 4-LUT, carry logic, and a register[32]. 
Compared to LEs with fixed 4-input LUTs, the 
architecture of ALM exhibits much more func-
tionality as well as flexibility, providing the per-
formance superiority of larger LUTs and the area 
efficiency of smaller LUTs[44]. 

The design of the ALM shows possible trade- 
offs between FPGA speed performance and area 
cost. Altera’s research results indicated that a basic 
6-LUT could yield a 14% performance improve-
ment by reducing the number of levels of logic 
elements on the critical paths of circuits, while this 
performance increase also had a large area penalty,  
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Fig. 10  LE architecture in Stratix I[26] 

 

 

Fig. 11  ALM block diagram in Stratix V[31] 
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Fig. 12  Delay-cost tradeoff with LUT size in ALM design[32] 

a 17% area increase resulting from a larger LUT- 
mask and more inputs for the LUT[32]. Fig. 12 il-
lustrates the tradeoff between area and delay for 
different sizes of LUTs. The basic approach in 
designing the ALM was not only to investigate 
building a larger LUT to reduce levels of logic and 
hence increase performance, but also to avoid the 
area increase by efficiently dividing the larger LUT 
into smaller LUTs when appropriate, as illustrated 
by the dashed line. The ability to divide an LUT is 
what makes it “adaptive.”  

(2) Xinlix 
In most Xinlix FPGA devices, the Basic Logic 

Element (BLE) is based on LUTs with fixed-inputs. 
Take the early device XC3000 as an example (Fig. 
13), each BLE contains a 5-inputs LUT, which can 
implement any arbitrarily defined 5-input Boolean 
function, or two arbitrarily defined 4-input Boolean 
functions, as long as these two functions share 
common inputs. However, at that time (around 
1995~2000) the EDA tools was not sophisticated 
for highly efficient synthesis and placement of this 
complex function generator, and it was replaced by 
architectures based on 4-input LUTs in Virtex 1-4 
FPGAs. This change could be seen as a compro-
mise between area and performance. 

Xilinx proposed Virtex-5 family FPGAs in 2007, 
in which Configurable Logic Blocks (CLBs) based 
on 6-input LUTs started to be used as basic ele-
ments. The CLB contains two slices, each organized 
as a column, and contains four 6-input LUTs, four 
storage elements, some multiplexers, and carry 
logic. These elements are used by all slices to pro-
vide logic, arithmetic, and ROM functions. The 
function generators are implemented as six-input 
LUTs, and each can be configured as either a     
6-input LUT with one output, or as two 5-input 

 

Fig. 13  Diagram of basic logic element of XC3000[41] 
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Fig. 14  Diagram of slice in Virtex-5 FPGA[33] 

LUTs with separate outputs but common addresses 
or logic inputs. Each 5-input LUT output can op-
tionally be registered in a flip-flop, and 4 flip-flops 
in each slice can optionally be configured as latches. 
The diagram of slice in Virtex-5 is shown in Fig. 14. 

In addition, some slices in Virtex-5 support 
extra functions such as storing data using LUTs 
and shifting data with 32-bit registers[33]. These 
slices are called SLICEM, in which the function 
generators (LUTs) can be implemented as syn-
chronous RAM resource called distributed RAM 
element. Multiple LUTs in a SLICEM can be 
combined to store larger amount of data, up to 256 

bits. In general, distributed RAM is more efficient 
in terms of resources and performance to imple-
ment memories that consist of 64 bits or less, thus 
provide a trade-off between using storage elements 
for very small arrays and block RAM for larger 
arrays[34]. A similar function can be found in the 
Memory LAB (MLAB) of Stratix IV, where each 
ALM can be configured as 64 bits memory block[7]. 

The comparison between the different LUT 
architectures of the two main FPGA vendors has 
caused a series of arguments. It is announced by 
Altera that the flexible ALM architecture is ad-
vanced compared to the fixed 6-inputs LUT ar-
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chitecture of Xilinx’s Virtex-5 devices, and each 
ALM could get equivalent performance to 1.8 logic 
elements based on 6-inpus LUT[45]. However, Xilinx 
pronounced that the performance of ALM only 
equal to 1.2 times of the architecture based on fixed 
6-inputs LUT, while taking much more cost in 
terms of area. As a result, the Virtex-5 devices still 
contain a higher capacity of logic resources than 
their counterpart Stratix III devices[46]. Whatever 
the truth of these arguments present, taking LUTs 
with multiple inputs as the basic unit of FPGA has 
became the mainstream in the design of FPGA 
architectures.  

IV.   Routing Architecture 
FPGA architecture consists of programmable 

logic elements and a programmable routing fabric. 
The programmable routing provides connections 
among logic blocks and I/O blocks to complete a 
user-designed circuit. It consists of wires and pro-
grammable switches that form the desired connec-
tions. To accommodate a wide variety of circuits, 
the interconnect structure must be flexible enough 
to support widely varying local and distant routing 
demands together with the design goals of speed 
performance and power consumption. In commer-
cial architectures, the routing consumes most of the 
chip area, and is responsible for most of the circuit 
delay. As FPGAs are migrated to more advanced 
technologies, the routing fabric becomes even more 
important. Thus, there has been a great deal of 
interest in developing efficient FPGA routing ar-
chitectures. In this section, the discussion to be 
given will focus exclusively on the FPGA’s general 
purpose routing. 

1. Overall routing 

A basic issue in FPGA design is the organiza-
tion of the global routing architecture, which is the 
macroscopic allocation of wires. Based on the ar-
rangement of the logic and interconnect resources, 
the routing architecture of FPGAs are broadly 
categorized into the following three main types: 
island-style routing architecture, channel-style 
routing architecture and hierarchical routing ar-
chitecture. Nowadays, island-style is the main-
stream of the routing architectures used in com-
mercial FPGAs. Channel-style and hierarchical 

routing architecture can be found in some early 
FPGA devices, such as Microsemi ACT, SX, and 
MX family FPGAs for channel-style[47], and Altera 
Flex10K, Apex, and Apex II FPGAs for hierar-
chical routing architecture[48−50]. For the rest of this 
section, we will focus on the design issues of island- 
style routing architecture. 

 

Fig. 15  Example of island style FPGA[51] 

Island style routing architecture consists of an 
array of programmable logic blocks connected via 
vertical and horizontal programmable routing 
channels, as Fig. 15 shows[51]. It typically has 
routing channels on all four sides of the logic blocks, 
and the input or output of one logic block can 
connect to the routing channels with the connec-
tion blocks. Island-style routing architectures 
generally employ wire segments of different lengths 
for flexible interconnection planning, and the 
horizontal and vertical routing channels are con-
nected at every intersection with programmable 
switch block. 

2. Detailed routing 

The detailed routing architecture of FPGA de-
fines the logical structure of interconnection be-
tween each other of wire segments and I/O blocks. 
Switch blocks are used to form connections between 
these wire segments at every intersection of the 
channels. In the rest of this section, the discussion 
will focus on optimizing switch patterns, routing 
channel segmentation and bi-directional routing 
design in FPGAs. 
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(1) Switch box 
Switch block is a programmable interconnect 

block at the intersection of each of the horizontal 
and vertical channels, which programmably con-
nects incoming track to a number of outgoing 
tracks. Clearly, the flexibility of each switch block is 
essential to the overall flexibility and routability of 
the device. Since the transistors in the switch block 
add capacitance loading to each track, the switch 
block has a significant effect on the speed of each 
routable connection, and hence the speed of the 
FPGA as a whole. In addition, since such a large 
portion of an FPGA is devoted to routing, the chip 
area required by each switch block will have a large 
effect on the achievable logic density of the device. 
Thus, the design of a good switch block is of the 
up-most importance. 

Fig. 16 shows three previous switch block ar-
chitectures that have been proposed[52−55]. In each 
block, an incoming track can be connected to three 
outgoing tracks, but the topology of each block is 
different. The disjoint switchbox has been used in a 
number of commercial FPGAs, such as the Xilinx 
XC4000 family[41]. As seen in Fig. 16(a), the con-
nection pattern is “symmetric” in the disjoint block, 
which means a wire entering a disjoint switch block 
can only connect to other wires with the same 
numerical designation via programmable switches. 
As a result, routes in the FPGA are isolated into 
distinct routing domains, limiting routing flexibility. 
The Wilton switch block in Fig. 16(b) is similar to 
the disjoint switch block, except that each diagonal 
connection has been “rotated” by one track[56]. This 
eliminates the domains problem of disjoint switch 
block, and results in many more routing choices for 
each connection. In addition to the Wilton and 
disjoint switch blocks, a number of alternative 
designs, such as the Universal switch block shown 
in Fig. 16(c), have also been suggested[57]. The 
design focus of the Universal block is on maxi-
mizing the number of simultaneous connections 
that can be made using this block, and it does not 
taking into account interactions between neighbor- 
ing switch blocks. A full review of additional is-
land-style switch blocks optimized for length 1 wire 
segments can be found in Ref. [58]. 

Each of the blocks in Fig. 16 was developed and 
evaluated assuming the architecture with only 

single-length wires (i.e. wires that only connect 
neighboring switch blocks). In reality, FPGAs, 
however, typically have longer wires which connect 
distant switch blocks. Such a routing architecture is 
called a segmented architecture, and it is known 
that such architectures lead to a higher density and 
speed than architecture with only single-length 
wires[59]. 

Fig. 16  Previous switch blocks[52−55] 

The majority of recent switch block designs 
only allow switch connections between wire end-
points or between wire midpoints, but not between 
endpoints and midpoints. Midpoint-to-midpoint 
connections are made using single disjoint connec-
tions. Examples include the Imran[56] and shifty[60] 
switch blocks, as shown in Fig. 17 and Fig. 18. The 
Imran switch block uses a Wilton switch block to 
connect endpoints of wires and single-transistor 
disjoint connections to connect midpoints. This 
switch block has been shown to be more area effi-
cient than disjoint, universal, or Wilton switch 
blocks[56]. The shifty switch block similarly allows 
for routing domain changes on endpoint turns and 
disjoint connections at midpoints. Experimentation 
has shown that shifty and Imran switch blocks give 
similar area and delay results[60]. Both switch blocks 
are superior to disjoint switch blocks in area and 
delay performance due to their ability to allow for 
diverse routing paths. 

(2) Channel segmentation 
In the design of FPGA routing architecture, 

wire segment is defined as the number of logic 
blocks that a routing wire spans before terminating. 
All FPGAs use routing channel segmentation, 
whereby each routing track is divided into wire 
segments with different length. Studies have shown 
that the mix of segment lengths used in different 
routing tracks can have a significant impact on 
interconnect performance[6,58], and hence the overall 
FPGA performance.  



382 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014 

Fig. 17  Imran switch block[60]  

Fig. 18  Shifty switch block[60] 

Conceptually, routing architecture with shorter 
segments results in better routability and lower 
excess net loading, which means higher logic den-
sity and lower power consumption. However, in an 
FPGA with too many short wires, some long 
connections will have to be constructed using sev-
eral short wire segments connected in series, re-
sulting in longer delays. On the other hand, the 
speed performance of the routing architecture can 
be improved by increasing longer segments, but at 
the expense of lower logic density and higher power 
consumption. Moreover, it was observed in Ref. [61] 
that with CMOS technology scaling, the average 
segment length should decrease because of the 
increase in wire parasitics relative to device para-
sitic. Given these tradeoffs and observations, the 
routing channel segmentation should be chosen 
carefully to optimize the overall FPGA perform-
ance. 

In Ref. [62], the design of segmented routing 
channel was first discussed for row-based FPGAs. 
The approach of constructing a segmented routing 
channel to get high routability is shown, assuming 
both random origination points and geometrically 
distributed connection lengths. In Ref. [63], this 
statistical approach was extended to island-style 
FPGAs, where empirical distributions for segment 
lengths were first determined by statistically ana-
lyzing placed and routed designs, and then separate 
horizontal and vertical channel segmentations were 
found according to the demand for each segment 

length.  
Empirical methods were also attempted. In 

Ref. [59], Betz et al. used a contemporary FPGA 
router which combines global and detailed routing 
into one step to evaluate segmentation. It is shown 
in Fig. 19 that among channels of equal length 
segments, a channel with only length-4 segments 
achieves the lowest routing area and shortest 
critical path delay. Moreover, a routing channel 
with a mixture of length-4 and 8 segments can 
outperform a channel arrangement with only 
length-4 segments. Similarly in Ref. [64], optimal 
uniform segmentation was investigated experi-
mentally for 100 nm process FPGA, and their re-
sults have shown that using length-3 segments leads 
to the lowest energy consumption as well as en-
ergy-delay-area product. These studies verified the 
importance of including significant medium length 
segments which span between several logic blocks 
in an island-style routing architecture, and it is 
validated during the development of the Stratix 
architecture[65], which contains significant length 4 
and length 8 segments.  

Fig. 19  Speed and area of FPGAs vs. routing wire segment 
length[59] 

In addition to connection pattern and quanti-
fication parameters, FPGA detailed routing ar-
chitecture performance is governed by the types of 
switches used to make connections, the size of 
transistors used to build programmable switches 
and the metal width and spacing of interconnection 
wires[59]. Routing switches are typically made from 
collections of basic transistor structures including 
pass transistors, buffers, and multiplexers.  

(3) Bi-directional or unidirectional 
Fig. 20 shows the basic structures of bi-direc-

tional and unidirectional routing. In bi-directional 
routing, the output of the cluster tile is connected 
via a buffer, and alternatively, in unidirectional 
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routing the output is connected to a multiplexer 
with other wires (from both cluster outputs and 
other wires in the channel), and one buffer then 
drives the output of this multiplexer. 

 

Fig. 20  Bi-directional and uni-directional basic structure[66] 

Based on the routing structure just discussed, 
some contrast between uni-directional and 
bi-directional routing architectures can be observed. 
First, in terms of area, uni-directional routing 
consumes less area than bi-directional routing due 
to buffer sharing facilitated by the multiplexer/ 
driver routing switch. This effect is shown by Le-
mieux[67] and Lewis[68], and in their works, it is 
indicated that the overall area required to imple-
ment a uni-directional routing architecture was 
found to be about 20% less than the corresponding 
bidirectional equivalent. Second, the uni-direc-
tional routing nets connect to fewer switching 
points, resulting in less capacitive load. But for the 
situation that a routing path goes through at least 
one switch box, bi-directional routing architecture 
has fewer programmable switches compared to 
uni-directional routing. In modern FPGA routing 
design, uni-directional is used for most of the tracks, 
and bi-directional routing is only used for the long 
interconnects across several switch blocks to re-
strain from expanding with regard to the number of 
such long interconnects. 

3. Asynchronous interconnect 

As the logic size of FPGA grows, there are some 
challenges faced by conventional FPGA architec-
tures. First, the delays of the long interconnect 
wires can easily dominate all other delays. Second, 
to evenly distribute the global clock signals all over 
the FPGA area requires great design efforts be-
cause of the clock skew. Third, FPGAs are more 
likely to contain a multitude of modules running at 
different clock frequencies since they have grown to 

sufficient die sizes. Data signals appear to be 
asynchronous in the new clock domain when 
moving data across modules[69].  

Introducing asynchronous concept into the 
FPGA architecture is a possible solution to the 
named challenges. In terms of interconnect delays, 
performance is dictated by the average of the in-
terconnect delays rather than the worst-case delay. 
By adopting asynchronous design, FPGAs can 
provide architectural supports for communications 
across different clock domains. Different modules 
running at different clock frequencies can be easily 
glued together. 

Achronix’s FPGA is typically implemented 
with asynchronous interconnect, and Fig. 21 illus-
trates the principle of Achronix FPGA’s asyn-
chronous 

 

 

Fig. 21  Conventional implementation vs. asynchronous imple-
mentation[71] 
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routing architecture. Within a traditional FPGA, 
signals which travel on long routing tracks suffer 
from a high capacitive load, and things get worse 
when the FPGA become larger in size. Within 
asynchronous FPGAs, the built-in pipelining en-
sures that signals only ever need to travel on short 
routing tracks, decreasing the capacitance load at 
each stage. Moreover, asynchronous architecture 
ensures there is only one logic level per pipeline 
stage, allowing a much faster rate of data tokens[70]. 

4. 2.5 dimensional interconnect 

The Xilinx Stacked Silicon Interconnect (SSI) 
technology is a 2.5 dimensional integration of 
multiple active devices on a passive interposer to 
form a single device, as illustrated in Fig. 22. It is 
implemented to answer the challenges that ob-
structed attempts to combine the interconnect logic 
of two or more FPGAs to create a larger FPGA for 
implementing a complex design. These challenges 
mainly include: the amount of available I/O is 
insufficient for connecting; the latency of signals 
passing between FPGAs limits performance; and 
power consumption is increased by using standard 
device I/O to create logical connections between 
multiple FPGAs. 

 

Fig. 22  Stacked Silicon Interconnect cross section[72] 

To rise to the challenges, the SSI technology 
uses passive silicon interposers with microbumps 
and Through-Silicon Vias (TSVs) to combine 
multiple FPGA die in a single package, and enables 
high- bandwidth connectivity between multiple 
dies by providing a great number of connections. It 
takes lower latency and consumes lower power than 
the multiple FPGA approach, while enabling the 
integration of massive quantities of interconnect 

logic, transceivers, and on-chip resources. In addi-
tion, it is of extra importance at the early stages of 
a new process node, as the defect densities are still 
quite high and die yield declines dramatically with 
the increasing of die size. This also helps in 
maximizing the functional performance of each 
chip . 

Fig. 22 shows the side view of the die stack-up 
with four FPGA slices, silicon interposer, and 
package substrate. The silicon interposer acts as an 
interconnect vehicle based on a silicon manufac-
turing process on which multiple dies are set side by 
side and interconnected. The key innovation is to 
augment the standard I/Os with thousands of 
die-to-die connections through passive traces fab-
ricated on the silicon interposer, which provides 
high connectivity and low latency without incur-
ring the power penalty of traditional I/O structures. 
Besides this, SSI technology avoids the power and 
reliability issues that result from stacking multiple 
FPGA dies on top of each other. Compared to 
organic or ceramic substrates, silicon interposers 
are considered to offer better geometries of inter-
connection (approximately 20X denser wire pitch) 
to provide device-scale interconnect hierarchy that 
enables, in theory, up to 10,000 die-to-die con-
nections[73]. 

V.   Embedded Resources 
With the increasing amount and improved 

performance of functional modules, such as DSP, 
memory, clock manager, high speed transceiver, 
and so on, FPGA has become an imperative sys-
tem-enable device. The inclusion of these embed-
ded resources have great influence on the per-
formance of modern FPGAs. Moreover, the main 
commercial vendors tend to provide a series of 
FPGA platforms rather than a single FPGA 
product, with varying feature mix optimized for 
different application domains[74]. How to get a rapid 
and cost-effective assembly of FPGA platforms 
with different functional modules, has become a 
sought after issue of FPGA design. In this section 
we will discuss this problem and give a broad view 
on the design features of Altera and Xilinx. 

Xilinx created the so-called Advanced Silicon 
Modular Block (ASMBL) architecture to enable 
rapid and cost-effective assembly of FPGA plat-
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forms with different features[75]. A high-level de-
scription of this architecture is illustrated in Fig. 23. 
In this architecture, logic resources, such as the 
Configurable Logic Block (CLB), DSP, memory 
and so on, are arranged in columns and can be 
selected for targeted applications. Customers can 
choose FPGA platforms with the right mix of 
features and capabilities for their specific design. 
The main advantage of ASMBL architecture is the 
elimination of geometric layout constraints, which 
means any kind of hard IP blocks can be scaled 
independent of surrounding resources, and power 
and ground can be placed anywhere on the chip[76]. 

 

Fig. 23  Column-based resources of ASMBL architecture[77] 

Altera devices comprise an array of LABs in-
terconnected by rows and columns of routing wires. 
The LAB architecture naturally creates a tall and 
narrow layout. As Fig. 24 shows, functional mod-
ules, such as MegaRAMs, are organized as rectan-
gle blocks and have a quite larger width, rather 
than columns in Virtex. These modules could not 
be assembled and removed directly like the ASMBL 
architecture, and restart of synthesis and place-
ment is needed to carry out different FPGA plat-
forms. For the customers, this design flow means 
widely-expanded choice with “personalized” FPGA 
platforms, while for the FPGA designers, more 
experience of customization is needed, as well as 
much more powerful software and EDA tools to 
support rapid synthesis and placement[65]. 

Another important architecture of the embed-
ded resources can be found in SoC FPGAs, where 
both microprocessor and FPGA are integrated into 
a single device. Melding the two technologies pro-
vides a variety of benefits including higher inte-

gration, lower power, smaller board size, and higher 
bandwidth communication between them. Besides 
this, SoC FPGA system has complete flexibility to 
select any combination of peripherals and control-
lers, and it shows good ability to make tradeoffs 
between hardware and software to maximize effi-
ciency and performance. Altera Arria family de-
vices and Xilinx Zynq family devices are typical 
examples of this architecture[8,9]. 

 

Fig. 24  Overview of Stratix floorplan[65] 

VI.   Future Trends of FPGA 
In the field of FPGA development, persistent 

concerns are placed on area, speed and power, 
which are considered to be ever-existing design 
issues for FPGAs. Besides, there are some other 
emerging technologies that may have impact on the 
future trends of FPGA, such as novel memory 
based FPGAs and 3D FPGAs. This section will 
present a brief introduction. 

1. Novel memory technologies 

Over the past decade, the semiconductor in-
dustry has experienced a resurgence of interest in 
the search for highly scalable memory technologies. 
As novel nonvolatile memory technologies are fast 
progressing, there has been a growing interest on 
investigating their use in future FPGAs.  

Lots of research efforts have been done to de-
velop a novel memory technology for FPGAs which 
combines the desired merits of nonvolatility and 
high performance. Kryder introduced 13 alterna-
tive (NVM) technologies which are evaluated with 
respect to density, device performance, and likeli-
hood of success in 2020[20]. Among these new 
memory technologies, Phase-Change RAM 
(PCRAM), Spin-Torque Transfer RAM (STTRAM) 
and Resistive RAM (RRAM) are most promising 
candidates and hence have received a lot of atten-
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tions[78−83]. This section will discuss these alterna-
tive memory technologies as well as their prospect 
for future FPGAs. 

(1) PCRAM 
PCRAMs utilize a reversible phase change 

between the amorphous and the crystalline states 
of a chalcogenide glass to produce a reversible re-
sistance change in the cell[84]. Fig. 25 shows the 
schematic cross-sectional view of the PCRAM cells. 
The structure consists of the top and bottom 
electrodes of TiW material, the SiO2 dielectric layer 
as the isolator, and Ge2Sb2Te5 phase change mate-
rial as the active layer. The crystalline and amor-
phous states have low and high resistance, respec-
tively, for data 0 and 1, and a heater element is 
used to generate heat to switch between states.  

 

Fig. 25  Schematic cross-section of PCRAM cell[85] 

PCRAM is a nonvolatile memory technology 
with speed comparable to SRAM, capacity com-
parable to DRAM, almost unlimited endurance, 
and write speed faster than flash by several orders 
of magnitude, and yet they require only three to 
four additional masks[78]. It is considered to be one 
of the most promising candidates for future FPGAs. 
The main challenge in PCRAMs is controlling the 
resistance variations during manufacturing and 
after read/write cycles.  

(2) STTRAM 
The basic building block of an STTRAM cell is 

the Magnetic Tunneling Junction (MTJ) (see   
Fig. 26). Each MTJ consists of two ferromagnetic 
layers separated by a very thin tunneling dielectric 
film. Switching MTJ states from antiparallel or “1” 
to parallel or “0” and vice versa is performed by 
running a polarized electron current from the top to 
the bottom of the MTJ and vice versa[86]. The di-
rection of magnetization of free layer can be con-

trolled by the injection of spin-polarized electrons. 
Hence, the MTJ can be switched between two 
stable magnetic states with high or low resistances. 

  

 

Fig. 26  Schematic of STTRAM 

A scheme for sensing the resistance of the MTJs 
in case of FPGAs has been proposed in Refs. [88] 
and [89]. The principle idea is to use two MTJ 
elements for storing one-bit information, and then, 
employing a sense amplifier for reading out the 
stored configuration. Just like PCRAM, STTRAM 
also has the advantage of nonvolatility and small 
cell size. Besides this, compared to PCRAM, 
STTRAM has faster read/write speed and a larger 
number of write cycles. The key challenge in an 
STTRAM-based reconfigurable framework is how 
to sense the resistance state for each configuration 
bit during normal functioning of the FPGA. Sense- 
amplifier-based data read-out mechanisms, com-
monly employed in embedded STTRAM memories, 
will incur large overhead when used in an FPGA 
framework. 

(3) RRAM 
RRAM cells are capacitor-like structures that 

exhibit a resistive switching phenomenon in tran-
sition metal oxides. This memory conception is 
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based on electric pulse-induced reversible resistance 
change effect, and has a kind of metal-insulator- 
metal sandwich architecture, which is shown in  
Fig. 27. The metallic ions in the insulator are solid 
state electrolyte, which can be collected into fila-
ments when the electrical bias provided, inducing a 
very low resistance. When the electrode bias is 
reversed, the filaments shrink or disappear, exhib-
iting a high resistance. The high resistance value 
can be obtained more than 1000 times than the low 
resistance. Furthermore, the resistance value can be 
maintained constant even if removing the applied 
voltage. 

 

Fig. 27  RRAM structure 

RRAM architecture has been proposed to re-
alize FPGA. M. Liu proposed a new FPGA con-
ception called rFPGA[90]. In rFPGA, the conven-
tional architectures, such as Switch Block (SB), 
Connection Block (CB) and block memory, are 
substituted by RRAM. As shown in Fig. 28, the 
2T1R (two transistors and one resistor) RRAM are 
used to substitute the conventional programmable 
switches in CB and SB, and the 1T1R RRAM are 
used to substitute the 6T SRAM cell in block 
memory. Simulation results show that the routing 
resource complexity can be decreased and the 
channel delay will be reduced 2~3 times by using 
RRAM to realize CB and SB. The block memory’s 
area will be reduced 5~6 times by using RRAM. 

The improved architecture can also reduce power 
consumption because it employs less number of 
transistors. Other research on improving the inte-
gration level is focused on substituting 2-D RRAM 
with 3D RRAM[91]. 

 

Fig. 28  FPGA utilizing RRAM components as memory and 
routing elements[92] 

(4) Summary 
Tab. 2 summarizes features of the proposed 

emerging memory technologies along with SRAM 
and Flash, which are included for comparison 
purposes. The cell sizes of all memory technologies 
in units of minimum feature size F were projected 
based upon the Emerging Research Devices (ERD) 
chapter of the 2007 International Technology 
Roadmap for Semiconductors (ITRS), which con-
tains a tabulation of the recent experimental values 
as reported in literature. 

2. 3D FPGA 

3D FPGA, which represents another important 
FPGA developing trend, is based on three dimen-
sions integrated circuit technologies. As FPGA 
chips grow in complexity, the problems such as 
interconnect delay, clock synchronization and IR 

Tab. 2  Comparison of embedded memory technologies[20,78,87,93] 

Device type Cell structure Cell components* 
Minimum cell size  

(F2, F=feature size) 
Incremental 

masks 
Read/write 
speed (ns) 

Endurance 
(Cycles) 

SRAM Latch 6T 24  0    1/1  Infinite 

Flash Floating 1T-2T 8-12  6-8 25/200  104~105 

PCRAM Phase 1T1R 6-10  3-4  20/50  >1012 

STTRAM Magneto 1T1MTJ 6-10  3-4  10/10  >1015 

RRAM Memristor 1T1R 4  3-4  10/20  105~106 
*T = transistor; C = capacitor; R = resistance/phase-change element 
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drop in power grid have become more severe than 
ever. 3D technologies based on Through Silicon 
Vias (TSVs) is considered to be the most promising 
candidate to solve such problems.  

M. Lin from Stanford University has proposed 
an optimal structure of 3D FPGA based on chips 
stacked and utilized Through Silicone Vias (TSVs) 
as interconnect channels. Fig. 29 shows a typical 3D 
FPGA structure, which extends traditional 2-D 
FPGA to 3 layers: memory on the top, switch in the 
middle and Logic on the substrate layer. The ad-
vantage of this structure is easy for integrating 
logic and SRAM IP. Compared with Virtex-II, this 
stacked 3D FPGA has 3.2 times logic density in-
tegration with area reduced to 31%.  

 

Fig. 29  Monolithically stacked 3D-FPGA 

Estimation of the 3D FPGA for each of the four 
technology nodes (180 nm, 130 nm, 90 nm, and 65 
nm) in ITRS[93] using versatile (VPR), see Fig. 30, 
shows that the geometric average of the pin-to-pin 
delay has improved range between 1.7 and 2.05, 
and between 1.31 and 2.14 for the critical path 
delay, and 1.68 dynamic power consumption saving 
over a conventional 2D FPGA.  

Although 3D FPGA has overwhelming advan-
tage compared with conventional 2-D FPGA, less 
of stability in 3D fabrication process and lack of 
supported EDA tool hampers its application. 
Fortunately, along with the 3D technique being 
developed and place and route tool in 3D FPGA 
being reported[94], it has been envisaged that 3D 
FPGA could probably be industrialized in the 
coming 5 years.  

 

 
Fig. 30  Improvements for different submicron technology nodes[95] 

VII.   Brief discussions on Current De-
velopment of FPGA Research in China 

Generally speaking, research and development 
of FPGA in China is in the phase of fully catching 
up[96−102]. With respect to the architecture design, 
some endeavor is worthily mentioned. For example, 
Fudan University has developed an evaluation 
system for FPGA architecture based on the tools of 
VPR, to estimate the power, area and timing in-
formation[103]. A delay-estimated method based on 
statistical model was also proposed, help optimiz-
ing FPGA interconnect architecture[104]. To improve 
the flexibility of the routing resources, a novel 
switch box, called Minimum-Loop Maximization 
(MLM) switch box was developed by maximizing 
the minimum loop size in the routing-resource 
graph[105]. 

The “Comet” serials FPGAs[106,107] have been 
developed by System on Programmable Chip Re-
search Department of Institute of Electronics, 
Chinese Academy of Sciences, and comprehensive 
research into FPGA architectures were performed 
onto this platform. Through empirical methods, 
the relationship between Flexibility of connection 
(Fc) of a generic FPGA and its performance was 
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analyzed, optimizing the flexibility of FPGA ar-
chitecture[108]. Moreover, the routability of switch 
box and connection box were modeled, and simu-
lated annealing method was employed to maximize 
the information entropy of the switch distribution 
in order to improve routability[109]. These research 
achievements have been successfully applied to 
“Comet 02” mega-gates FPGA chip, which was the 
first domestic large scale FPGA product launched 
into space with satellites. 

VIII. Conclusion
The aim of this paper is to provide a compre-

hensive insight into advanced FPGA architectural 
design. FPGA technology has been greatly pro-
gressed by the rapid development of semiconductor 
technology, while at the same time the designers 
face new challenges due to the undesired effects 
caused by deep submicron and nano-meter process. 
To keep pace with today’s high-end market de-
mands, FPGA devices are being developed towards 
high levels of performance, system integration and 
bandwidth. In addition, with the increasing amount 
and improved performance of functional modules, 
FPGA has become an imperative system-enable 
device, and microprocessors were integrated into 
FPGA devices to provide a comprehensive platform 
base for next-generation systems. For the outlook 
into the future, it is quite promising that the design 
of FPGAs will remain an exciting and dynamic 
technology for the years to come, and the emerging 
technologies might be hybrid together to provide 
tremendous opportunities to develop the future 
System on Chip FPGA platforms. 
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