
Vol.31 No.5 JOURNAL OF ELECTRONICS (CHINA) October 2014

REVIEW OF ADVANCED FPGA ARCHITECTURES AND
TECHNOLOGIES1

Yang Haigang* ** Zhang Jia* ** Sun Jiabin* Yu Le*
*(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)

**(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract Field Programmable Gate Array (FPGA) is an efficient reconfigurable integrated circuit
platform and has become a core signal processing microchip device of digital systems over the last
decade. With the rapid development of semiconductor technology, the performance and system inte-
gration of FPGA devices have been significantly progressed, and at the same time new challenges arise.
The design of FPGA architecture is required to evolve to meet these challenges, while also taking
advantage of ever increased microchip density. This survey reviews the recent development of advanced
FPGA architectures, including improvement of the programming technologies, logic blocks, intercon-
nects, and embedded resources. Moreover, some important emerging design issues of FPGA archi-
tectures, such as novel memory based FPGAs and 3D FPGAs, are also presented to provide an outlook
for future FPGA development.

Key words Field Programmable Gate Array (FPGA); Microchip architecture; Programmable logic
device; System-on-Chip (SoC)

CLC index TN47

DOI 10.1007/s11767-014-4090-x

I. Introduction
Field Programmable Gate Arrays (FPGAs) are

pre-fabricated silicon devices that can be electri-
cally programmed to implement almost any kind of
digital circuit or system. As illustrated in Fig. 1,
the basic structure of an FPGA consists of a sea of
Logic Blocks (LBs), an interconnection network,
and configurable I/O blocks. Because of very high
level integration, the recent FPGA devices also
include memory blocks, hardwired DSP blocks,
clock management blocks, and high speed data
transceiver blocks, all embedded monolithically[1−3].
Logic blocks are the main digital processing re-
sources, and each of them is configured to perform
combinational as well as sequential operations
depending on the required function to implement.

1 Manuscript received date: April 9, 2014; revised date:
August 23, 2014.
Supported by National Natural Science Foundation of
China (No. 61271149), National High Technology Re-
search and Development Program of China (No. 2012AA-
012301), and National Science and Technology Major
Project of China (No. 2013ZX03006004).
Corresponding author: Yang Haigang, born in 1960, male,
Professor. Institute of Electronics, Chinese Academy of
Sciences, Beijing 100190, China,
Email: yanghg@mail.ie.ac.cn.

For the combinatorial operations, a set of LookUp
Tables (LUTs) are employed as arbitrary logic-
function generators, and for the sequential opera-
tions a set of D-Flip-Flops are involved. Moreover,
some evolved forms of LB are optimized to be able
to support additional functions, such as local
storage (distributed RAM memory), Shift Register
(SR), multiplexer, and adder/subtractor operations.
The interconnection network is programmable by
the user so as to link as many LBs as necessary[4−7].

In order to optimize FPGA performance,
hardwired DSP blocks are included, which allow
complex arithmetic operations to be performed.
Internal memories, such as RAM, ROM, flash RAM,
and shift registers, are optionally integrated to
increase the processing speed and simplify the
board level design of the system. The integrated
clock management blocks are used to provide sys-
tem synchronization synthesizable. They are usu-
ally based on Phase-Locked-Loops (PLLs), which
support features such as frequency multiplication
and division, propagation delay compensation and
phase shift correction. The current FPGA devices
also include high speed data transceiver blocks that
generally consist of transmission and reception
buffers. Various data communication protocols are

372 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

supported, including USB, Ethernet, CAN, PCI,
SPI, I2C, etc. Furthermore, a few complex FPGA
architectures include embedded microprocessors
and peripherals for additional SoC support fea-
tures[8−10].

Fig. 1 Generic structure of an FPGA[11]

To provide high integration density, high-speed
and low-power consumption, FPGAs have been the
subject of a considerable progress in terms of ad-
vanced semiconductor process technology. Recent
commercial FPGA devices, such as Altera’s Arria
10 and Xilinx’ Virtex UltraScale, have reached
down to 20 nm process[12,13]. Moreover, Xilinx is
aiming to offer Virtex UltraScale all programmable
devices built on TSMC’s 16 nm FinFET process
technology, and Altera and Intel Corporation have
jointly announced that the next generation of Al-
tera’s highest performance FPGA products
(Stratix 10) would be produced using Intel’s 14 nm
3D Tri-Gate transistor technology[14,15]. The de-
velopment of FPGA has been greatly heightened by
implementation of the advanced process. Thus
unprecedented levels of performance, system inte-
gration and bandwidth can be expected in the next
generations of FPGA to come.

The goal of this survey is to present the state-of-
the-art FPGA architecture and to foresee future
trends in FPGA design progress. The rest of this
paper is organized as follows. Section II introduces
the main approaches to programming technologies
of FPGA. Section III addresses the design issues
with regard to logic block architecture, while pro-
grammable routing architecture is described in

Section IV. Section V discusses arrangement of the
hardware resources embedded in FPGAs and ex-
plains about a convergence towards System-on-
Chip (SoC) FPGAs. Section VI tries to explore the
future technology trends of FPGAs, and a conclu-
sion of the paper is given in Section VII.

II. Programming Technologies
An FPGA is programmed using electrically

programmable switches. The properties of these
programmable switches, such as size, on-resistance,
and capacitance, have a significant impact on pro-
grammable logic architecture. The approaches
widely used in modern FPGAs include Static
Random Access Memory (SRAM), flash memory,
and anti-fuse. Of these approaches, SRAM-based
FPGAs are most commonly used and get a domi-
nant position in the market, mainly due to its
scalability with CMOS process technology. In this
section, all these approaches of programming
technologies will be reviewed, and their advantages
and disadvantages are compared to provide a
complete understanding of the programming
technologies.

1. SRAM based programming

The basis for SRAM programming technology is
the static memory cell, which is shown in Fig. 2.
Access to the cell is enabled by the word line which
controls the two access transistors M5 and M6 for
both READ and WRITE operations. If the word
line is not asserted, the access transistors M5 and
M6 disconnect the cell from the bit lines, and the
two cross-coupled inverters formed by M1~M4 will
continue to reinforce each other as long as they are
connected to the supply[3].

Fig. 2 Static memory cell

SRAM-based FPGAs utilize SRAM to provide

YANG et al. Review of Advanced FPGA Architectures and Technologies 373

configurability for routing and computational
functions, typically through the use of LUTs and
multiplexers. There are two primary advantages
associated, namely re-programmability by design
and compatibility to standard CMOS process
technology. As a result, SRAM-based FPGAs can
catch up with the latest CMOS technology avail-
able and, therefore, benefit from the increased
integration level, the higher speeds and the lower
dynamic power consumption with smaller mini-
mum geometries offered[16].

2. Flash/E2PROM memory based programming

In the case of flash memory technology, the
configuration is based on flash connections that
keep the configuration state when the device is
powered down. Each connection contains two
transistors that share a floating gate and store the
programming bit information, as Fig. 3 shows. The
conductivity of the access transistor can be con-
trolled by injecting charge onto the floating gate.
Because the floating gate is electrically isolated by
its insulating layer, any electrons placed on it are
trapped there and, under normal conditions, will
not discharge for many years.

Fig. 3 Floating gate transistor[17]

Unlike CMOS based SRAM, non-volatility is
one of the most important advantages for flash
memory based programming technology. As a re-
sult, flash memory based FPGAs do not have to use
external resources to store and load configuration
data. Additionally, as all configuration and routing
data retain their states when the power is off, a
flash-based device can function immediately upon
power-up instead of having to wait for reconfigu-
ration. The flash approach is also more area effi-
cient than SRAM-based technology which requires
5 or 6 transistors to implement the programmable
bit storage.

The main disadvantages of flash-based devices
are the limited numbers of reprogramming runs
and the need for a non-standard CMOS process.
Current devices such as the Microsemi IGLOO2 are
only rated for 500~1000 programming cycles[18].

3. Anti-fuse based one time programming

An alternative to SRAM and floating gate-
based technologies is anti-fuse programming tech-
nology. This technology is based on structures
which exhibit very high-resistance under normal
circumstances but can be “blown” (in reality,
connected) to create a low resistance link. In con-
trast to SRAM or floating gate programming
technologies, this link is permanent. Therefore,
FPGAs based on anti-fuse programming technol-
ogy can be programmed only once.

The primary advantage of anti-fuse program-
ming technology is its small footprint[16]. With
metal-to-metal anti-fuses (Fig. 4), no silicon area is
required to make connections, decreasing the area
needed for programmability. For the same reason,
anti-fuses have lower on resistances and parasitic
capacitances than in other programming tech-
nologies. Moreover, as the programming of anti-
fuse based FPGAs needs only to be done once, the
security for the hardware description bit stream
downloaded to the FPGAs are greatly improved.

Fig. 4 Anti-fuse interconnect elements (metal- to-metal)[19]

However, there exist some disadvantages. In
particular, since anti-fuse-based FPGAs require a
nonstandard CMOS process, they are typically
several generations behind in the manufacturing
processes compared to SRAM-based FPGAs (see
Tab. 1 below). Furthermore, the fundamental me-

374 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

Tab. 1 Comparison of different programming technologies

Programming type
Parameters

SRAM Flash Anti-fuse

Nonvolatile × √ √
Reprogrammable √ √ ×
Cell components 5 or 6 transistors 1 or 2 transistors Metal-to-metal

Read/Write speed 1 ns/1 ns 100 ns/200 ns[20] -

State-of-the-art process 20 nm 65 nm[18] 130 nm

Endurance (Cycles) Infinite 500~1000[18] 1

Programming yield 100% 100% >90%

chanism of programming, which involves significant
changes to the properties of the materials in the
fuse, leads to scaling challenges when new IC fab-
rication processes are phased in. The inability to
reprogram also restricts the scope of applications.
Unlike other technologies, in-system programming
is not possible, which requires special programming
system used to program a device before it is
mounted on a final product. Finally, the one-time
programmability of anti-fuses makes it impossible
for manufacturing tests to detect all possible
faults[16].

4. Summary

The three programming technologies reviewed
in this section have different application domains in
modern FPGA markets. SRAM-based program-
ming technology has become the most widely used
because of its compatibility to standard CMOS
process. Flash memory based FPGAs are mainly
used in some specific applications where both
nonvolatile and reprogrammable technologies are
required. Due to highest reliability at expenses of
the flexibility, anti-fuse FPGAs are mainly used in
aviation and aerospace systems. Tab. 1 summarizes
the pros and cons among the different program-
ming technologies.

III. Logic Block Architecture
FPGAs consist of logic blocks to implement

logic functions, programmable routing to inter-
connect these functions and I/O blocks to make
off-chip connections. The logic block architecture is
extremely important as it lies at the heart with
respect to the design of FPGAs for optimized
performance and logic density[21−23]. In this section,
we will discuss the basic issues and trade-offs in
logic block architecture design, with a revisit to the

evolution of the commercial FPGA architectures.

1. Design fundamentals

The purpose of a logic block in an FPGA is to
provide the basic computation and storage ele-
ments used in digital logic systems. In this section,
three most cited logic blocks, which are respectively
based on LUT, multiplexer, and And-Inverter Cone
(AIC), will be discussed.

(1) LUT
LUT is considered to be an array of memories

which has only 1 bit of output. The logic block
architecture with one LUT and DFF is shown in
Fig. 5. In most cases, the truth table for a K-input
logic function is stored in a (2K×1) SRAM. The
address lines of the SRAM function as inputs and
the output of the SRAM provides the value of the
logic function. However, the high functionality of
LUT does not come for free. They tend to be
roughly large and slow, as their area grows expo-
nentially and delay grows linearly both with the
number of inputs. Also, the number of outputs is
intrinsically only one, limiting their flexibility[24,25].

Fig. 5 LB architecture with one LUT and DFF

The mainly used commercial FPGAs are always
based on clusters, such as in the Altera Stratix,
Cyclone, and the Xilinx Virtex series[26−35]. A
cluster is a group of Basic Logic Elements (BLEs)
that are fully connected by a MUX-based cross

YANG et al. Review of Advanced FPGA Architectures and Technologies 375

bar[36], as illustrated in Fig. 6.

Fig. 6 Structure of Logic Cluster[36]

In most industrial FPGAs, the granularity of
logic block is adjustable by using of LUTs and
flip-flops. The LUT size (K, number of inputs) and
cluster size (N, number of LUTs per cluster) have
important effect on the area and speed performance
of FPGAs. The work of Ref. [37] first explored the
effect of K and N on FPGA architecture, as Fig. 7
demonstrated.

Fig. 7 Illustration the effect of LUT and BLE Characteristics

Fig. 7(a) illustrates the effect of LUT size on the
number of clusters and cluster area, and Fig. 7(b)
shows the trade-off between BLE delay and number
of BLEs on critical path. It is understood that as
the LUT and cluster size increases, the total
number of logic blocks needed to implement a given
function is decreased, and the number of such
blocks on the critical path is decreased too. How-
ever, both the size and delay of the logic block
increase with K and N. Furthermore, the area
dedicated to routing outside the block will change
as a function of K and N, and this has a strong
effect on the results. The choice of the logic block
granularity, which produces the best area-delay
product, lies in somewhere between these two ex-
tremes[38-40].

(2) MUX
The functions that can be implemented by a

single two-input MUX are shown in Fig. 8. In MUX
based FPGAs, two-input MUXs are used to im-
plement different logic functions by connecting
each of its inputs to a constant or to a signal. Using
such methods, a logic block capable of implementing
a large number of functions can be constructed by
grouping a number of MUXs and basic logic gates.

Multiplexer-based logic blocks have the ad-
vantage of providing a large degree of functionality
for a relatively small number of transistors. This is,
however, achieved at the expense of a large number
of inputs, which place high demands on the routing
resources. Such blocks are, therefore, more suited to
FPGA’s that use programmable switches of small
size such as flash and anti-fuse.

Fig. 8 Functions implemented by a two-input MUX[41]

(3) AIC
The And-Inverter Cone (AIC) is a full binary

tree of cells which can be configured as 2-input

376 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

NAND or AND gates. The architecture of the AICs
is inspired from the And-Inverter Graphs (AIGs)[42],
where all nodes are 2-input AND gates with an
optional inversion at the output. However, in this
original AIC architecture, inverters are not avail-
able at the inputs of the cells. Therefore, nodes
whose fan-outs include both inverted and non-
inverted edges cannot be represented as-is. To ac-
commodate these cases, some AIG transformations
are required, such as duplicating the node that has
the fan-out or adding an inverter node at its output.
This provides more flexibility and allows the AIC
to map a larger subset of functions, and the ar-
chitecture of the AIC is shown in Fig. 9.

Fig. 9 AIC architecture[43]

Though unable to implement all possible func-
tions of its inputs, the AIC logic block is considered
to be less versatile but more efficient compared to
LUT-based block. AICs can be richer in terms of
input and output bandwidth, because their area
grows linearly with the number of inputs. Also their
delay grows logarithimically with the broad input
and intermediate output are easier to implement.

2. Commercial product examples

In general, published research work on logic
block architecture tends to model and explore
relatively simple basic logic elements, such as the
pure k-input LUT. In contrast, commercial logic
blocks have undergone an evolution that typically
has led to the development of more complex blocks
in an attempt to gain more functionality.

(1) Altera
In Altera FPGA product families, Stratix and

Cyclone based architectures use Logic Elements
(LEs) of different types arranged into Logic Array
Blocks (LABs). In Stratix I FPGA, each LAB

contains some number of LEs, which is composed of
a 4- input LUT, a programmable register, carry
chain with carry select capability, and some other
control logics, as Fig. 10 shows. With the 4-input
LUT, each LE can implement any function of four
variables, and it also supports single bit addition or
subtraction mode dynamically selectable by a
LAB-wide control signal. This device has a simple
architecture which is easily mapped and synthe-
sized in software, and is considered to be suitable
for low cost FPGAs. This architecture continues to
be used in Cyclone 1-4 FPGA families[27−30].

To get advanced features with efficient logic
utilization, the architectures in Stratix II have
evolved in great extent. Adaptive Logic Module
(ALM) becomes the smallest unit of logic instead of
LE, and it keeps as the main feature of LABs in the
following Stratix device families. For example, the
ALM in Stratix V devices consists of combinational
logic, four registers, and two adders, as shown in
Fig. 11. The combinational logic portion has eight
inputs including two adaptive LUTs using Altera’s
patented LUT technology. An entire ALM is
needed to implement an arbitrary six-input func-
tion. Because it has eight inputs to the combina-
tional logic block, one ALM support implementing
various combinations of two individual functions.
In addition to implementing a full 6-input LUT, the
ALM can, for example, implement 2 independent
4-input functions or a 5-input and a 3-input func-
tions with independent inputs[31]. Because 4 regis-
ters and 2 adders are available, the ALM has the
flexibility to implement 2.5 logic elements (LEs) of
a classic 4-input LUT (4-LUT) architecture, con-
sisting of a 4-LUT, carry logic, and a register[32].
Compared to LEs with fixed 4-input LUTs, the
architecture of ALM exhibits much more func-
tionality as well as flexibility, providing the per-
formance superiority of larger LUTs and the area
efficiency of smaller LUTs[44].

The design of the ALM shows possible trade-
offs between FPGA speed performance and area
cost. Altera’s research results indicated that a basic
6-LUT could yield a 14% performance improve-
ment by reducing the number of levels of logic
elements on the critical paths of circuits, while this
performance increase also had a large area penalty,

YANG et al. Review of Advanced FPGA Architectures and Technologies 377

Fig. 10 LE architecture in Stratix I[26]

Fig. 11 ALM block diagram in Stratix V[31]

378 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

Fig. 12 Delay-cost tradeoff with LUT size in ALM design[32]

a 17% area increase resulting from a larger LUT-
mask and more inputs for the LUT[32]. Fig. 12 il-
lustrates the tradeoff between area and delay for
different sizes of LUTs. The basic approach in
designing the ALM was not only to investigate
building a larger LUT to reduce levels of logic and
hence increase performance, but also to avoid the
area increase by efficiently dividing the larger LUT
into smaller LUTs when appropriate, as illustrated
by the dashed line. The ability to divide an LUT is
what makes it “adaptive.”

(2) Xinlix
In most Xinlix FPGA devices, the Basic Logic

Element (BLE) is based on LUTs with fixed-inputs.
Take the early device XC3000 as an example (Fig.
13), each BLE contains a 5-inputs LUT, which can
implement any arbitrarily defined 5-input Boolean
function, or two arbitrarily defined 4-input Boolean
functions, as long as these two functions share
common inputs. However, at that time (around
1995~2000) the EDA tools was not sophisticated
for highly efficient synthesis and placement of this
complex function generator, and it was replaced by
architectures based on 4-input LUTs in Virtex 1-4
FPGAs. This change could be seen as a compro-
mise between area and performance.

Xilinx proposed Virtex-5 family FPGAs in 2007,
in which Configurable Logic Blocks (CLBs) based
on 6-input LUTs started to be used as basic ele-
ments. The CLB contains two slices, each organized
as a column, and contains four 6-input LUTs, four
storage elements, some multiplexers, and carry
logic. These elements are used by all slices to pro-
vide logic, arithmetic, and ROM functions. The
function generators are implemented as six-input
LUTs, and each can be configured as either a
6-input LUT with one output, or as two 5-input

Fig. 13 Diagram of basic logic element of XC3000[41]

YANG et al. Review of Advanced FPGA Architectures and Technologies 379

Fig. 14 Diagram of slice in Virtex-5 FPGA[33]

LUTs with separate outputs but common addresses
or logic inputs. Each 5-input LUT output can op-
tionally be registered in a flip-flop, and 4 flip-flops
in each slice can optionally be configured as latches.
The diagram of slice in Virtex-5 is shown in Fig. 14.

In addition, some slices in Virtex-5 support
extra functions such as storing data using LUTs
and shifting data with 32-bit registers[33]. These
slices are called SLICEM, in which the function
generators (LUTs) can be implemented as syn-
chronous RAM resource called distributed RAM
element. Multiple LUTs in a SLICEM can be
combined to store larger amount of data, up to 256

bits. In general, distributed RAM is more efficient
in terms of resources and performance to imple-
ment memories that consist of 64 bits or less, thus
provide a trade-off between using storage elements
for very small arrays and block RAM for larger
arrays[34]. A similar function can be found in the
Memory LAB (MLAB) of Stratix IV, where each
ALM can be configured as 64 bits memory block[7].

The comparison between the different LUT
architectures of the two main FPGA vendors has
caused a series of arguments. It is announced by
Altera that the flexible ALM architecture is ad-
vanced compared to the fixed 6-inputs LUT ar-

380 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

chitecture of Xilinx’s Virtex-5 devices, and each
ALM could get equivalent performance to 1.8 logic
elements based on 6-inpus LUT[45]. However, Xilinx
pronounced that the performance of ALM only
equal to 1.2 times of the architecture based on fixed
6-inputs LUT, while taking much more cost in
terms of area. As a result, the Virtex-5 devices still
contain a higher capacity of logic resources than
their counterpart Stratix III devices[46]. Whatever
the truth of these arguments present, taking LUTs
with multiple inputs as the basic unit of FPGA has
became the mainstream in the design of FPGA
architectures.

IV. Routing Architecture
FPGA architecture consists of programmable

logic elements and a programmable routing fabric.
The programmable routing provides connections
among logic blocks and I/O blocks to complete a
user-designed circuit. It consists of wires and pro-
grammable switches that form the desired connec-
tions. To accommodate a wide variety of circuits,
the interconnect structure must be flexible enough
to support widely varying local and distant routing
demands together with the design goals of speed
performance and power consumption. In commer-
cial architectures, the routing consumes most of the
chip area, and is responsible for most of the circuit
delay. As FPGAs are migrated to more advanced
technologies, the routing fabric becomes even more
important. Thus, there has been a great deal of
interest in developing efficient FPGA routing ar-
chitectures. In this section, the discussion to be
given will focus exclusively on the FPGA’s general
purpose routing.

1. Overall routing

A basic issue in FPGA design is the organiza-
tion of the global routing architecture, which is the
macroscopic allocation of wires. Based on the ar-
rangement of the logic and interconnect resources,
the routing architecture of FPGAs are broadly
categorized into the following three main types:
island-style routing architecture, channel-style
routing architecture and hierarchical routing ar-
chitecture. Nowadays, island-style is the main-
stream of the routing architectures used in com-
mercial FPGAs. Channel-style and hierarchical

routing architecture can be found in some early
FPGA devices, such as Microsemi ACT, SX, and
MX family FPGAs for channel-style[47], and Altera
Flex10K, Apex, and Apex II FPGAs for hierar-
chical routing architecture[48−50]. For the rest of this
section, we will focus on the design issues of island-
style routing architecture.

Fig. 15 Example of island style FPGA[51]

Island style routing architecture consists of an
array of programmable logic blocks connected via
vertical and horizontal programmable routing
channels, as Fig. 15 shows[51]. It typically has
routing channels on all four sides of the logic blocks,
and the input or output of one logic block can
connect to the routing channels with the connec-
tion blocks. Island-style routing architectures
generally employ wire segments of different lengths
for flexible interconnection planning, and the
horizontal and vertical routing channels are con-
nected at every intersection with programmable
switch block.

2. Detailed routing

The detailed routing architecture of FPGA de-
fines the logical structure of interconnection be-
tween each other of wire segments and I/O blocks.
Switch blocks are used to form connections between
these wire segments at every intersection of the
channels. In the rest of this section, the discussion
will focus on optimizing switch patterns, routing
channel segmentation and bi-directional routing
design in FPGAs.

YANG et al. Review of Advanced FPGA Architectures and Technologies 381

(1) Switch box
Switch block is a programmable interconnect

block at the intersection of each of the horizontal
and vertical channels, which programmably con-
nects incoming track to a number of outgoing
tracks. Clearly, the flexibility of each switch block is
essential to the overall flexibility and routability of
the device. Since the transistors in the switch block
add capacitance loading to each track, the switch
block has a significant effect on the speed of each
routable connection, and hence the speed of the
FPGA as a whole. In addition, since such a large
portion of an FPGA is devoted to routing, the chip
area required by each switch block will have a large
effect on the achievable logic density of the device.
Thus, the design of a good switch block is of the
up-most importance.

Fig. 16 shows three previous switch block ar-
chitectures that have been proposed[52−55]. In each
block, an incoming track can be connected to three
outgoing tracks, but the topology of each block is
different. The disjoint switchbox has been used in a
number of commercial FPGAs, such as the Xilinx
XC4000 family[41]. As seen in Fig. 16(a), the con-
nection pattern is “symmetric” in the disjoint block,
which means a wire entering a disjoint switch block
can only connect to other wires with the same
numerical designation via programmable switches.
As a result, routes in the FPGA are isolated into
distinct routing domains, limiting routing flexibility.
The Wilton switch block in Fig. 16(b) is similar to
the disjoint switch block, except that each diagonal
connection has been “rotated” by one track[56]. This
eliminates the domains problem of disjoint switch
block, and results in many more routing choices for
each connection. In addition to the Wilton and
disjoint switch blocks, a number of alternative
designs, such as the Universal switch block shown
in Fig. 16(c), have also been suggested[57]. The
design focus of the Universal block is on maxi-
mizing the number of simultaneous connections
that can be made using this block, and it does not
taking into account interactions between neighbor-
ing switch blocks. A full review of additional is-
land-style switch blocks optimized for length 1 wire
segments can be found in Ref. [58].

Each of the blocks in Fig. 16 was developed and
evaluated assuming the architecture with only

single-length wires (i.e. wires that only connect
neighboring switch blocks). In reality, FPGAs,
however, typically have longer wires which connect
distant switch blocks. Such a routing architecture is
called a segmented architecture, and it is known
that such architectures lead to a higher density and
speed than architecture with only single-length
wires[59].

Fig. 16 Previous switch blocks[52−55]

The majority of recent switch block designs
only allow switch connections between wire end-
points or between wire midpoints, but not between
endpoints and midpoints. Midpoint-to-midpoint
connections are made using single disjoint connec-
tions. Examples include the Imran[56] and shifty[60]
switch blocks, as shown in Fig. 17 and Fig. 18. The
Imran switch block uses a Wilton switch block to
connect endpoints of wires and single-transistor
disjoint connections to connect midpoints. This
switch block has been shown to be more area effi-
cient than disjoint, universal, or Wilton switch
blocks[56]. The shifty switch block similarly allows
for routing domain changes on endpoint turns and
disjoint connections at midpoints. Experimentation
has shown that shifty and Imran switch blocks give
similar area and delay results[60]. Both switch blocks
are superior to disjoint switch blocks in area and
delay performance due to their ability to allow for
diverse routing paths.

(2) Channel segmentation
In the design of FPGA routing architecture,

wire segment is defined as the number of logic
blocks that a routing wire spans before terminating.
All FPGAs use routing channel segmentation,
whereby each routing track is divided into wire
segments with different length. Studies have shown
that the mix of segment lengths used in different
routing tracks can have a significant impact on
interconnect performance[6,58], and hence the overall
FPGA performance.

382 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

Fig. 17 Imran switch block[60]

Fig. 18 Shifty switch block[60]

Conceptually, routing architecture with shorter
segments results in better routability and lower
excess net loading, which means higher logic den-
sity and lower power consumption. However, in an
FPGA with too many short wires, some long
connections will have to be constructed using sev-
eral short wire segments connected in series, re-
sulting in longer delays. On the other hand, the
speed performance of the routing architecture can
be improved by increasing longer segments, but at
the expense of lower logic density and higher power
consumption. Moreover, it was observed in Ref. [61]
that with CMOS technology scaling, the average
segment length should decrease because of the
increase in wire parasitics relative to device para-
sitic. Given these tradeoffs and observations, the
routing channel segmentation should be chosen
carefully to optimize the overall FPGA perform-
ance.

In Ref. [62], the design of segmented routing
channel was first discussed for row-based FPGAs.
The approach of constructing a segmented routing
channel to get high routability is shown, assuming
both random origination points and geometrically
distributed connection lengths. In Ref. [63], this
statistical approach was extended to island-style
FPGAs, where empirical distributions for segment
lengths were first determined by statistically ana-
lyzing placed and routed designs, and then separate
horizontal and vertical channel segmentations were
found according to the demand for each segment

length.
Empirical methods were also attempted. In

Ref. [59], Betz et al. used a contemporary FPGA
router which combines global and detailed routing
into one step to evaluate segmentation. It is shown
in Fig. 19 that among channels of equal length
segments, a channel with only length-4 segments
achieves the lowest routing area and shortest
critical path delay. Moreover, a routing channel
with a mixture of length-4 and 8 segments can
outperform a channel arrangement with only
length-4 segments. Similarly in Ref. [64], optimal
uniform segmentation was investigated experi-
mentally for 100 nm process FPGA, and their re-
sults have shown that using length-3 segments leads
to the lowest energy consumption as well as en-
ergy-delay-area product. These studies verified the
importance of including significant medium length
segments which span between several logic blocks
in an island-style routing architecture, and it is
validated during the development of the Stratix
architecture[65], which contains significant length 4
and length 8 segments.

Fig. 19 Speed and area of FPGAs vs. routing wire segment
length[59]

In addition to connection pattern and quanti-
fication parameters, FPGA detailed routing ar-
chitecture performance is governed by the types of
switches used to make connections, the size of
transistors used to build programmable switches
and the metal width and spacing of interconnection
wires[59]. Routing switches are typically made from
collections of basic transistor structures including
pass transistors, buffers, and multiplexers.

(3) Bi-directional or unidirectional
Fig. 20 shows the basic structures of bi-direc-

tional and unidirectional routing. In bi-directional
routing, the output of the cluster tile is connected
via a buffer, and alternatively, in unidirectional

YANG et al. Review of Advanced FPGA Architectures and Technologies 383

routing the output is connected to a multiplexer
with other wires (from both cluster outputs and
other wires in the channel), and one buffer then
drives the output of this multiplexer.

Fig. 20 Bi-directional and uni-directional basic structure[66]

Based on the routing structure just discussed,
some contrast between uni-directional and
bi-directional routing architectures can be observed.
First, in terms of area, uni-directional routing
consumes less area than bi-directional routing due
to buffer sharing facilitated by the multiplexer/
driver routing switch. This effect is shown by Le-
mieux[67] and Lewis[68], and in their works, it is
indicated that the overall area required to imple-
ment a uni-directional routing architecture was
found to be about 20% less than the corresponding
bidirectional equivalent. Second, the uni-direc-
tional routing nets connect to fewer switching
points, resulting in less capacitive load. But for the
situation that a routing path goes through at least
one switch box, bi-directional routing architecture
has fewer programmable switches compared to
uni-directional routing. In modern FPGA routing
design, uni-directional is used for most of the tracks,
and bi-directional routing is only used for the long
interconnects across several switch blocks to re-
strain from expanding with regard to the number of
such long interconnects.

3. Asynchronous interconnect

As the logic size of FPGA grows, there are some
challenges faced by conventional FPGA architec-
tures. First, the delays of the long interconnect
wires can easily dominate all other delays. Second,
to evenly distribute the global clock signals all over
the FPGA area requires great design efforts be-
cause of the clock skew. Third, FPGAs are more
likely to contain a multitude of modules running at
different clock frequencies since they have grown to

sufficient die sizes. Data signals appear to be
asynchronous in the new clock domain when
moving data across modules[69].

Introducing asynchronous concept into the
FPGA architecture is a possible solution to the
named challenges. In terms of interconnect delays,
performance is dictated by the average of the in-
terconnect delays rather than the worst-case delay.
By adopting asynchronous design, FPGAs can
provide architectural supports for communications
across different clock domains. Different modules
running at different clock frequencies can be easily
glued together.

Achronix’s FPGA is typically implemented
with asynchronous interconnect, and Fig. 21 illus-
trates the principle of Achronix FPGA’s asyn-
chronous

Fig. 21 Conventional implementation vs. asynchronous imple-
mentation[71]

384 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

routing architecture. Within a traditional FPGA,
signals which travel on long routing tracks suffer
from a high capacitive load, and things get worse
when the FPGA become larger in size. Within
asynchronous FPGAs, the built-in pipelining en-
sures that signals only ever need to travel on short
routing tracks, decreasing the capacitance load at
each stage. Moreover, asynchronous architecture
ensures there is only one logic level per pipeline
stage, allowing a much faster rate of data tokens[70].

4. 2.5 dimensional interconnect

The Xilinx Stacked Silicon Interconnect (SSI)
technology is a 2.5 dimensional integration of
multiple active devices on a passive interposer to
form a single device, as illustrated in Fig. 22. It is
implemented to answer the challenges that ob-
structed attempts to combine the interconnect logic
of two or more FPGAs to create a larger FPGA for
implementing a complex design. These challenges
mainly include: the amount of available I/O is
insufficient for connecting; the latency of signals
passing between FPGAs limits performance; and
power consumption is increased by using standard
device I/O to create logical connections between
multiple FPGAs.

Fig. 22 Stacked Silicon Interconnect cross section[72]

To rise to the challenges, the SSI technology
uses passive silicon interposers with microbumps
and Through-Silicon Vias (TSVs) to combine
multiple FPGA die in a single package, and enables
high- bandwidth connectivity between multiple
dies by providing a great number of connections. It
takes lower latency and consumes lower power than
the multiple FPGA approach, while enabling the
integration of massive quantities of interconnect

logic, transceivers, and on-chip resources. In addi-
tion, it is of extra importance at the early stages of
a new process node, as the defect densities are still
quite high and die yield declines dramatically with
the increasing of die size. This also helps in
maximizing the functional performance of each
chip .

Fig. 22 shows the side view of the die stack-up
with four FPGA slices, silicon interposer, and
package substrate. The silicon interposer acts as an
interconnect vehicle based on a silicon manufac-
turing process on which multiple dies are set side by
side and interconnected. The key innovation is to
augment the standard I/Os with thousands of
die-to-die connections through passive traces fab-
ricated on the silicon interposer, which provides
high connectivity and low latency without incur-
ring the power penalty of traditional I/O structures.
Besides this, SSI technology avoids the power and
reliability issues that result from stacking multiple
FPGA dies on top of each other. Compared to
organic or ceramic substrates, silicon interposers
are considered to offer better geometries of inter-
connection (approximately 20X denser wire pitch)
to provide device-scale interconnect hierarchy that
enables, in theory, up to 10,000 die-to-die con-
nections[73].

V. Embedded Resources
With the increasing amount and improved

performance of functional modules, such as DSP,
memory, clock manager, high speed transceiver,
and so on, FPGA has become an imperative sys-
tem-enable device. The inclusion of these embed-
ded resources have great influence on the per-
formance of modern FPGAs. Moreover, the main
commercial vendors tend to provide a series of
FPGA platforms rather than a single FPGA
product, with varying feature mix optimized for
different application domains[74]. How to get a rapid
and cost-effective assembly of FPGA platforms
with different functional modules, has become a
sought after issue of FPGA design. In this section
we will discuss this problem and give a broad view
on the design features of Altera and Xilinx.

Xilinx created the so-called Advanced Silicon
Modular Block (ASMBL) architecture to enable
rapid and cost-effective assembly of FPGA plat-

YANG et al. Review of Advanced FPGA Architectures and Technologies 385

forms with different features[75]. A high-level de-
scription of this architecture is illustrated in Fig. 23.
In this architecture, logic resources, such as the
Configurable Logic Block (CLB), DSP, memory
and so on, are arranged in columns and can be
selected for targeted applications. Customers can
choose FPGA platforms with the right mix of
features and capabilities for their specific design.
The main advantage of ASMBL architecture is the
elimination of geometric layout constraints, which
means any kind of hard IP blocks can be scaled
independent of surrounding resources, and power
and ground can be placed anywhere on the chip[76].

Fig. 23 Column-based resources of ASMBL architecture[77]

Altera devices comprise an array of LABs in-
terconnected by rows and columns of routing wires.
The LAB architecture naturally creates a tall and
narrow layout. As Fig. 24 shows, functional mod-
ules, such as MegaRAMs, are organized as rectan-
gle blocks and have a quite larger width, rather
than columns in Virtex. These modules could not
be assembled and removed directly like the ASMBL
architecture, and restart of synthesis and place-
ment is needed to carry out different FPGA plat-
forms. For the customers, this design flow means
widely-expanded choice with “personalized” FPGA
platforms, while for the FPGA designers, more
experience of customization is needed, as well as
much more powerful software and EDA tools to
support rapid synthesis and placement[65].

Another important architecture of the embed-
ded resources can be found in SoC FPGAs, where
both microprocessor and FPGA are integrated into
a single device. Melding the two technologies pro-
vides a variety of benefits including higher inte-

gration, lower power, smaller board size, and higher
bandwidth communication between them. Besides
this, SoC FPGA system has complete flexibility to
select any combination of peripherals and control-
lers, and it shows good ability to make tradeoffs
between hardware and software to maximize effi-
ciency and performance. Altera Arria family de-
vices and Xilinx Zynq family devices are typical
examples of this architecture[8,9].

Fig. 24 Overview of Stratix floorplan[65]

VI. Future Trends of FPGA
In the field of FPGA development, persistent

concerns are placed on area, speed and power,
which are considered to be ever-existing design
issues for FPGAs. Besides, there are some other
emerging technologies that may have impact on the
future trends of FPGA, such as novel memory
based FPGAs and 3D FPGAs. This section will
present a brief introduction.

1. Novel memory technologies

Over the past decade, the semiconductor in-
dustry has experienced a resurgence of interest in
the search for highly scalable memory technologies.
As novel nonvolatile memory technologies are fast
progressing, there has been a growing interest on
investigating their use in future FPGAs.

Lots of research efforts have been done to de-
velop a novel memory technology for FPGAs which
combines the desired merits of nonvolatility and
high performance. Kryder introduced 13 alterna-
tive (NVM) technologies which are evaluated with
respect to density, device performance, and likeli-
hood of success in 2020[20]. Among these new
memory technologies, Phase-Change RAM
(PCRAM), Spin-Torque Transfer RAM (STTRAM)
and Resistive RAM (RRAM) are most promising
candidates and hence have received a lot of atten-

386 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

tions[78−83]. This section will discuss these alterna-
tive memory technologies as well as their prospect
for future FPGAs.

(1) PCRAM
PCRAMs utilize a reversible phase change

between the amorphous and the crystalline states
of a chalcogenide glass to produce a reversible re-
sistance change in the cell[84]. Fig. 25 shows the
schematic cross-sectional view of the PCRAM cells.
The structure consists of the top and bottom
electrodes of TiW material, the SiO2 dielectric layer
as the isolator, and Ge2Sb2Te5 phase change mate-
rial as the active layer. The crystalline and amor-
phous states have low and high resistance, respec-
tively, for data 0 and 1, and a heater element is
used to generate heat to switch between states.

Fig. 25 Schematic cross-section of PCRAM cell[85]

PCRAM is a nonvolatile memory technology
with speed comparable to SRAM, capacity com-
parable to DRAM, almost unlimited endurance,
and write speed faster than flash by several orders
of magnitude, and yet they require only three to
four additional masks[78]. It is considered to be one
of the most promising candidates for future FPGAs.
The main challenge in PCRAMs is controlling the
resistance variations during manufacturing and
after read/write cycles.

(2) STTRAM
The basic building block of an STTRAM cell is

the Magnetic Tunneling Junction (MTJ) (see
Fig. 26). Each MTJ consists of two ferromagnetic
layers separated by a very thin tunneling dielectric
film. Switching MTJ states from antiparallel or “1”
to parallel or “0” and vice versa is performed by
running a polarized electron current from the top to
the bottom of the MTJ and vice versa[86]. The di-
rection of magnetization of free layer can be con-

trolled by the injection of spin-polarized electrons.
Hence, the MTJ can be switched between two
stable magnetic states with high or low resistances.

Fig. 26 Schematic of STTRAM

A scheme for sensing the resistance of the MTJs
in case of FPGAs has been proposed in Refs. [88]
and [89]. The principle idea is to use two MTJ
elements for storing one-bit information, and then,
employing a sense amplifier for reading out the
stored configuration. Just like PCRAM, STTRAM
also has the advantage of nonvolatility and small
cell size. Besides this, compared to PCRAM,
STTRAM has faster read/write speed and a larger
number of write cycles. The key challenge in an
STTRAM-based reconfigurable framework is how
to sense the resistance state for each configuration
bit during normal functioning of the FPGA. Sense-
amplifier-based data read-out mechanisms, com-
monly employed in embedded STTRAM memories,
will incur large overhead when used in an FPGA
framework.

(3) RRAM
RRAM cells are capacitor-like structures that

exhibit a resistive switching phenomenon in tran-
sition metal oxides. This memory conception is

YANG et al. Review of Advanced FPGA Architectures and Technologies 387

based on electric pulse-induced reversible resistance
change effect, and has a kind of metal-insulator-
metal sandwich architecture, which is shown in
Fig. 27. The metallic ions in the insulator are solid
state electrolyte, which can be collected into fila-
ments when the electrical bias provided, inducing a
very low resistance. When the electrode bias is
reversed, the filaments shrink or disappear, exhib-
iting a high resistance. The high resistance value
can be obtained more than 1000 times than the low
resistance. Furthermore, the resistance value can be
maintained constant even if removing the applied
voltage.

Fig. 27 RRAM structure

RRAM architecture has been proposed to re-
alize FPGA. M. Liu proposed a new FPGA con-
ception called rFPGA[90]. In rFPGA, the conven-
tional architectures, such as Switch Block (SB),
Connection Block (CB) and block memory, are
substituted by RRAM. As shown in Fig. 28, the
2T1R (two transistors and one resistor) RRAM are
used to substitute the conventional programmable
switches in CB and SB, and the 1T1R RRAM are
used to substitute the 6T SRAM cell in block
memory. Simulation results show that the routing
resource complexity can be decreased and the
channel delay will be reduced 2~3 times by using
RRAM to realize CB and SB. The block memory’s
area will be reduced 5~6 times by using RRAM.

The improved architecture can also reduce power
consumption because it employs less number of
transistors. Other research on improving the inte-
gration level is focused on substituting 2-D RRAM
with 3D RRAM[91].

Fig. 28 FPGA utilizing RRAM components as memory and
routing elements[92]

(4) Summary
Tab. 2 summarizes features of the proposed

emerging memory technologies along with SRAM
and Flash, which are included for comparison
purposes. The cell sizes of all memory technologies
in units of minimum feature size F were projected
based upon the Emerging Research Devices (ERD)
chapter of the 2007 International Technology
Roadmap for Semiconductors (ITRS), which con-
tains a tabulation of the recent experimental values
as reported in literature.

2. 3D FPGA

3D FPGA, which represents another important
FPGA developing trend, is based on three dimen-
sions integrated circuit technologies. As FPGA
chips grow in complexity, the problems such as
interconnect delay, clock synchronization and IR

Tab. 2 Comparison of embedded memory technologies[20,78,87,93]

Device type Cell structure Cell components*
Minimum cell size

(F2, F=feature size)
Incremental

masks
Read/write
speed (ns)

Endurance
(Cycles)

SRAM Latch 6T 24 0 1/1 Infinite

Flash Floating 1T-2T 8-12 6-8 25/200 104~105

PCRAM Phase 1T1R 6-10 3-4 20/50 >1012

STTRAM Magneto 1T1MTJ 6-10 3-4 10/10 >1015

RRAM Memristor 1T1R 4 3-4 10/20 105~106
*T = transistor; C = capacitor; R = resistance/phase-change element

388 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

drop in power grid have become more severe than
ever. 3D technologies based on Through Silicon
Vias (TSVs) is considered to be the most promising
candidate to solve such problems.

M. Lin from Stanford University has proposed
an optimal structure of 3D FPGA based on chips
stacked and utilized Through Silicone Vias (TSVs)
as interconnect channels. Fig. 29 shows a typical 3D
FPGA structure, which extends traditional 2-D
FPGA to 3 layers: memory on the top, switch in the
middle and Logic on the substrate layer. The ad-
vantage of this structure is easy for integrating
logic and SRAM IP. Compared with Virtex-II, this
stacked 3D FPGA has 3.2 times logic density in-
tegration with area reduced to 31%.

Fig. 29 Monolithically stacked 3D-FPGA

Estimation of the 3D FPGA for each of the four
technology nodes (180 nm, 130 nm, 90 nm, and 65
nm) in ITRS[93] using versatile (VPR), see Fig. 30,
shows that the geometric average of the pin-to-pin
delay has improved range between 1.7 and 2.05,
and between 1.31 and 2.14 for the critical path
delay, and 1.68 dynamic power consumption saving
over a conventional 2D FPGA.

Although 3D FPGA has overwhelming advan-
tage compared with conventional 2-D FPGA, less
of stability in 3D fabrication process and lack of
supported EDA tool hampers its application.
Fortunately, along with the 3D technique being
developed and place and route tool in 3D FPGA
being reported[94], it has been envisaged that 3D
FPGA could probably be industrialized in the
coming 5 years.

Fig. 30 Improvements for different submicron technology nodes[95]

VII. Brief discussions on Current De-
velopment of FPGA Research in China

Generally speaking, research and development
of FPGA in China is in the phase of fully catching
up[96−102]. With respect to the architecture design,
some endeavor is worthily mentioned. For example,
Fudan University has developed an evaluation
system for FPGA architecture based on the tools of
VPR, to estimate the power, area and timing in-
formation[103]. A delay-estimated method based on
statistical model was also proposed, help optimiz-
ing FPGA interconnect architecture[104]. To improve
the flexibility of the routing resources, a novel
switch box, called Minimum-Loop Maximization
(MLM) switch box was developed by maximizing
the minimum loop size in the routing-resource
graph[105].

The “Comet” serials FPGAs[106,107] have been
developed by System on Programmable Chip Re-
search Department of Institute of Electronics,
Chinese Academy of Sciences, and comprehensive
research into FPGA architectures were performed
onto this platform. Through empirical methods,
the relationship between Flexibility of connection
(Fc) of a generic FPGA and its performance was

YANG et al. Review of Advanced FPGA Architectures and Technologies 389

analyzed, optimizing the flexibility of FPGA ar-
chitecture[108]. Moreover, the routability of switch
box and connection box were modeled, and simu-
lated annealing method was employed to maximize
the information entropy of the switch distribution
in order to improve routability[109]. These research
achievements have been successfully applied to
“Comet 02” mega-gates FPGA chip, which was the
first domestic large scale FPGA product launched
into space with satellites.

VIII. Conclusion
The aim of this paper is to provide a compre-

hensive insight into advanced FPGA architectural
design. FPGA technology has been greatly pro-
gressed by the rapid development of semiconductor
technology, while at the same time the designers
face new challenges due to the undesired effects
caused by deep submicron and nano-meter process.
To keep pace with today’s high-end market de-
mands, FPGA devices are being developed towards
high levels of performance, system integration and
bandwidth. In addition, with the increasing amount
and improved performance of functional modules,
FPGA has become an imperative system-enable
device, and microprocessors were integrated into
FPGA devices to provide a comprehensive platform
base for next-generation systems. For the outlook
into the future, it is quite promising that the design
of FPGAs will remain an exciting and dynamic
technology for the years to come, and the emerging
technologies might be hybrid together to provide
tremendous opportunities to develop the future
System on Chip FPGA platforms.

References
[1] J. J. Rodriguez-Andina, M. J. Moure, and M. D.

Valdes. Features, design tools, and application do-

mains of FPGAs. IEEE Transactions on Industrial

Electronics, 54(2007)4, 1810–1823.

[2] M. Slimane-Kadi, D. Brasen, and G. Saucier. A

fast-FPGA prototyping system that uses inexpensive

high-performance FPIC. In Proceeding of 2nd Annual

Workshop on FPGAs, Berkeley, CA, USA, 1994, 1–6.

[3] S. M. Trimberger. Field-Programmable Gate Array

Technology. USA, Kluwer, 1994, Chapters 1–4.

[4] E. Ahmed and J. Rose. The effect of LUT and cluster

size on deep-submicron FPGA performance and den-

sity. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 12(2004)3, 288–298.

[5] Xilinx. Virtex-6 Family Overview. DS150 (v1.0),

February 2, 2009.

[6] V. Betz, J. Rose, and A. Marquardt. Architecture and

CAD for Deep-Submicron FPGAs. Berlin, Kluwer

Academic Publishers, 1999, Chapters 1–5.

[7] Altera Corporation. Stratix IV Device Handbook.

March 2009.

[8] Altera Corporation. Architecture Matters: Choosing

the Right SoC FPGA for Your Application. Novem-

ber 2013.

[9] Xilinx. Zynq-7000 All Programmable SoC Overview.

March 2013.

[10] Microsemi. SmartFusion2 System-on-Chip FPGAs.

January 2014, Revision 5.

[11] E. Monmasson, L. Idkhajine, and M. Cirstea, et al..

FPGAs in industrial control applications. IEEE

Transactions on Industrial Informatics, 7(2011)2,

224–243.

[12] Altera Corporation. Arria 10 Device Handbook. June

2013.

[13] Xilinx. Xilinx UltraScale Architecture for High-

Performance, Smarter Systems. December 2013.

[14] Xilinx. Xilinx UltraScale: The Next-Generation Ar-

chitecture for Your Next-Generation Architecture.

July 2013.

[15] Altera Corporation. Expect a Breakthrough Advan-

tage In Next Generation FPGAs. June 2013.

[16] I. Kuon, R. Tessier, and J. Rose. FPGA architecture:

survey and challenges. Electronic Design Automation,

2(2007)2, 135–253.

[17] Microsemi. ProASIC3 Flash Family FPGAs with

Optional Soft ARM Support. January 2013, Revision

13.

[18] Microsemi. IGLOO2 FPGAs. June 2013.

[19] Microsemi. Axcelerator Family FPGAs. Revision 18,

March 2012.

[20] I. Kuon and J. Rose. Measuring the gap between

FPGAs and ASICs. IEEE Transactions on Com-

puter-Aided Design of Integrated Circuits and Systems,

26(2007)2, 203–215.

[21] Yang Hai-gang, Sun Jia-bin, and Wang Wei. An

overview to FPGA device design technologies. Jour-

nal of Electronics and Information Technology,

32(2010)3, 714–727.

[22] A. M. Smith, G. A. Constantinides, and P. Y. K.

Cheung. FPGA architecture optimization using

geometric programming. IEEE Transactions on Com-

puter-Aided Design of Integrated Circuits and Systems,
29(2010)8, 1163–1176.

390 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

[23] F. Barranco, M. Tomasi, J. Diaz, et al.. Architecture

for hierarchical optical flow estimation based on

FPGA. IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, 20(2012)6, 1058–1067.

[24] E. Ahmed and J. Rose. The effect of logic block

granularity on deep-submicron FPGA performance

and density. Master’s thesis, University of Toronto,

Department of Electrical and Computer Engineering,

2001.

[25] R. Tessier, V. Betz, D. Neto, and T. Gopalsamy.

Power-aware RAM mapping for FPGA embedded

memory blocks. In Proceedings of the ACM/SIGDA

International Symposium on Field Programmable

Gate Arrays, Monterey, CA, USA, 2006, 189–198.

[26] Altera Corporation. Stratix Device Handbook.

January 2006.

[27] Altera Corporation. Cyclone Device Handbook. May

2008, ver. 3.1.

[28] Altera Corporation. Cyclone II Device Handbook.

February 2008, ver. 4.0.

[29] Altera Corporation. Cyclone III Device Handbook.

August 2012, ver. 4.2.

[30] Altera Corporation. Cyclone IV Device Handbook.

February 2013, ver. 1.8.

[31] Altera Corporation. Stratix V Device Handbook. June

2013.

[32] Altera Corporation. FPGA Architecture. July 2006,

ver. 1.0.

[33] Xilinx. Virtex-5 FPGA User Guide. March 2012, ver.

5.4.

[34] Xilinx. UltraScale Architecture Configurable Logic

Block. December, 2013, ver. 1.0.

[35] Xilinx. 7 Series FPGAs Configurable Logic Block.

August 2013, ver. 1.5.

[36] V. Betz and J. Rose. Cluster-based logic blocks for

FPGAs: area-efficiency vs. input sharing and size.

IEEE Custom Integrated Circuits Conference, Santa

Clara, CA, USA, 1997, 551–554.

[37] E. Ahmed and J. Rose. The effect of LUT and cluster

size on deep-submicron FPGA performance and den-

sity. In Proceedings of the 2000 ACM/SIGDA Eighth

International Symposium on Field Programmable

Gate Arrays, USA, ACM Press, 2000, 3–12.

[38] R. Lysecky and F. Vahid. A study of the speedups and

competitiveness of FPGA soft processor cores using

dynamic hardware/software partitioning. Design,

Automation and Test in Europe, Munich, Germany,

2005, 18–23.

[39] P. Biswas, S. Banerjee, and N. Dutt. Performance and

energy benefits of instruction set extensions in an

FPGA soft core. 19th International Conference on

VLSI Design and Held jointly with 5th International

Conference on Embedded Systems and Design, India,

2006, 1–5.

[40] I. Kuon and J. Rose. Measuring the gap between

FPGAs and ASICs. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

26(2007)2, 203–215.

[41] Michael John and Sebastian Smith. Application-

specific integrated circuits. US, Electronic Industry

Press, January 2003.

[42] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-

aware AIG rewriting: a fresh look at combinational

logic synthesis. In Proceedings of the 43rd Design

Automation Conference, San Francisco, CA, USA,

July 2006, 532–536.

[43] Hadi Parandeh-Afshar, Hind Benbihi, et al.. Re-

thinking FPGAs: elude the flexibility excess of LUTs

with and-inverter cones. ACM/SIGDA 20th Interna-

tional Symposium on Field Programmable Gate Ar-

rays, Monterey, CA, US, February 2012, 119–128.

[44] D. Lewis, D. Cashman, Mark Chan, et al.. Architec-

tural enhancements in Stratix-V™. ACM/SIGDA

21st International Symposium on Field Programma-

ble Gate Arrays, Monterey, CA, US, February 2013,

147– 156.

[45] Altera Corporation. Stratix III FPGAs vs. Xilinx

Virtex-5 Devices: Architecture and Performance

Comparison. September 2007, ver. 2.0

[46] Xilinx. Advantages of the Virtex-5 FPGA 6-Input

LUT Architecture. December 2007, ver. 1.0.

[47] V. George and J. M. Rabaey. Low-Energy FPGAs:

Architecture and Design.US, Kluwer Academic Pub-

lishers, US, 2001.

[48] Altera Corporation. FLEX 10K embedded pro-

grammable logic device family. DS-F10K-4.2 January

2003.

[49] Altera Corporation. APEX 20K programmable logic

device family data sheet. DS-APEX20K-5.1, March

2004.

[50] Altera Corporation. APEX II programmable logic

device family. DSAPEXII-3.0, August 2002.

[51] V. Betz and J. Rose. FPGA routing architecture:

Segmentation and buffering to optimize speed and

density. ACM/SIGDA International Symposium on

Field Programmable Gate Arrays, Monterey, CA, US,

February 1999, 140–149.

[52] Xilinx Inc.. The Programmable Logic Data Book.

1994.

[53] G. G. Lemieux and S. D. Brown. A detailed router for

YANG et al. Review of Advanced FPGA Architectures and Technologies 391

allocating wire segments in field-programmable gate

arrays. ACM Physical Design Workshop, Reston

Sheraton, US, April 1993, 1–8.

[54] Y. W. Chang, D. Wong, and C.Wong. Universal

switch modules for FPGA design. ACM Transactions

on Design Automation of Electronic Systems,

1(1996)1, 80–101.

[55] S. J. E. Wilton. Architectures and algorithms for

field-programmable gate arrays with embedded

memory. Ph.D. thesis, University of Toronto, 1997.

[56] M. I. Masud and S. Wilton. A new switch block for

segmented FPGAs. International Workshop on Field

Programmable Logic and Applications, US, August

1999, 274–281.

[57] H. Fan, J. Liu, Y. L. Wu, and C. C. Cheung. On

optimal hyperuniversal and rearrangeable switch box

designs. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 22(2003)12,

1637–1649.

[58] G. Lemieux and D. Lewis. Design and Interconnection

Networks for Programmable Logic. Boston, MA, US,

Kluwer Academic Publishers, 2004.

[59] D. Marple and L. Cooke. An MPGA compatible

FPGA architecture. IEEE Custom Integrated Cir-

cuits Conference, Boston, MA, US, 1992, 421–424.

[60] G. Lemieux and D. Lewis. Analytical framework for

switch block design. International Symposium on

Field Programmable Logic and Applications, Mon-

terey, CA, US, September 2002, 122–131.

[61] M. Lin, A. El Gamal, Y. C. Lu, and S. Wong. Per-

formance benefits of monolithically stacked 3D FPGA.

IEEE Transaction on Computer -Aided Design Inte-

grated Circuits and System, 26(2007)2, 216–229.

[62] A. El Gamal, J. Greene, V. Roychowdhury, et al..

Segmented channel routing in nearly as efficient as

channel routing (and just as hard). University of

California/Santa Cruz Conference, Berkeley, CA, US,

1991, 192–211.

[63] W. K. Mak and D. F. Wong. Channel segmentation

design for symmetrical FPGAs. International Con-

ference on Computer-aided Design, Kasuga, Japan,

1997, 496–501.

[64] C. G. Wong, A. J. Martin, and P. Thomas. An ar-

chitecture for asynchronous FPGAs. IEEE Interna-

tional Conference on Field-Programmable Technology

(FPT), HK SAR China, 2003, 170–177.

[65] David Lewis, Vaughn Betz, et al.. The StratixTM

routing and logic architecture. ACM/SIGDA Inter-

national Symposium on Field Programmable Gate

Arrays, Monterey, CA, US, February 2003, 41–48.

[66] P. Jamieson, W. Luk, et al.. An energy and power

consumption analysis of FPGA routing architectures.

International Conference on Field-Programmable

Technology (FPT), Sydney, Australia, December

2009, 324–327.

[67] G. Lemieux and D. Lewis. Directional and sin-

gle-driver wires in FPGA interconnect. ACM/SIGDA

International Symposium on Field Programmable

Gate Arrays, Monterey, CA, US, December 2004,

41–48.

[68] D. Lewis, et al.. The Stratix II logic and routing ar-

chitecture. In Proceeding: ACM/SIGDA International

Symposium on Field Programmable Gate Arrays,

Monterey, CA, US, Februery 2005, 14–20.

[69] John Teifel and Rajit Manohar. An Asynchronous

Dataflow FPGA Architecture. IEEE Transactions on

Computers, 53(2004)11, 1376–1392.

[70] Achronix Corporation. ACE User Guide. December

2012, ver. 5.0.

[71] Achronix Corporation. Introduction to Achronix

FPGAs. August 2008, Rev. 1.6.

[72] Xilinx. Xilinx Stacked Silicon Interconnect Technol-

ogy Delivers Breakthrough FPGA Capacity, Band-

width, and Power Efficiency. December 2012, ver. 1.2.

[73] L. Madden, E. Wu, et al.. Advancing high performance

heterogeneous integration through die stacking.

European Solid-State Circuits Conference (ESSCIRC),

Bordeaux, France, September 2012, 18–24.

[74] Kurt Keutzer, Sharad Malik, A. Richard Newton, et

al.. System-level design: orthogonalization of concerns

and platform-based design. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, 19(2000)12, 1523–1543.

[75] Xilinx. Virtex-4 FPGA User Guide. UG070 (v2.6),

December 2008.

[76] Xilinx. Virtex-4: Breakthrough Performance at the

Lowest Cost. December 2004.

[77] Xilinx. Virtex-5 Platform FPGA Family Technical

Backgrounder. May 2006.

[78] S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi.

Searching for the dream embedded memory. IEEE

Solid-State Circuits Magazine, 1(2009)3, 34–44.

[79] Y. Guillemenet, L. Torres, and G. Sassatelli. Non-

volatile run-time field-programmable gate arrays

structures using thermally assisted switching mag-

netic random access memories. IET Computer Digital

Technology, 4(2010) 3, 211–226.

[80] S. Paul, S. Mukhopadhyay, and S. Bhunia. Circuit

and architecture co-design approach for hybrid

CMOS-STTRAM non-volatile FPGA. IEEE Trans-

392 JOURNAL OF ELECTRONICS (CHINA), Vol.31 No.5, October 2014

actions on. Nanotechnology, 10(2011)3, 385–394.

[81] Jason Cong and Bingjun Xiao. FPGA-RPI: A novel

FPGA architecture with rram-based programmable

interconnects. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 22(2014)4, 864–

877.

[82] S. Tanachutiwat, M. Liu, and W. Wang. FPGA based

on integration of CMOS and RRAM. IEEE Trans-

actions on Very Large Scale Integrity System, 19
(2011)11, 2023–2032.

[83] O. Turkyilmaz, J. Figueras, and Y. Zorian.

RRAM-based FPGA for ACM normally off, instantly

on ACM applications. International Symposium on

Nanoscale Architecture, US, 2012, 101–108.

[84] A. Pirovano. Electronic switching effect in phase-

change memory cells. IEEE International Electron

Devices Meeting, Washington, D.C., US, 2005, 923–

926.

[85] R. Zhao and L.P. Shi. Study of phase change random

access memory (PCRAM) at the nano-scale. Non-

Volatile Memory Technology Symposium, Albu-

querque, New Mexico, US, 2007, 36–39.

[86] M. Hosomi. A novel nonvolatile memory with spin

torque transfer magnetization switching: Spin-RAM.

International Electron Device Meeting, Washington,

D.C., US, 2005, 473–476.

[87] Somnath Paul and Swarup Bhunia. A circuit and

architecture codesign approach for a hybrid CMOS-

STTRAM nonvolatile FPGA. IEEE Transactions on

Nanotechnology, 10(2011)3, 385–394.

[88] W. Zhao, E. Belhaire, Q. Mistral, E. Nicolle, T. De-

volder, and C. Chappert. Integration of spin-RAM

technology in FPGA circuits. International Confer-

ence Solid-State Integrated Circuit. Technology, US,

2006, 799–802.

[89] N. Bruchon, L. Torres, G. Sassatelli, et al.. New non-

volatile FPGA concept using magnetic tunneling

junction. IEEE Computing Society Annie Symposium

Emery on VLSI Technology Architecture, US, 2006,

269–276.

[90] M. Liu and W. Wang. Rfpga: CMOS-Nano hybrid

FPGA using RRAM components. IEEE International

Symposium on Nanoscale Architectures, Anaheim, CA,

US, June 2008, 93–98.

[91] J. Zhang, Y. Q. Ding, et al.. A 3D RRAM using

stackable 1TXR memory all for high density appli-

cation. International Conference on Communications,

Circuits and Systems, CA, US, July 2009, 917–920.

[92] Hai-Gang Yang. Overview: Emerging technologies on

giga-scale FPGA implementation, 2010 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS),

France, July 2010, 1428–1431.

[93] G. Hariharan, R. Chaware, L. Yip. et al.. Assembly

process qualification and reliability evaluations for

heterogeneous 2.5D FPGA with HiCTE ceramic.

Electronic Components & Technology Conference,

Las Vegas, NV, USA, November 2013, 904–908.

[94] C. Ababei, H. Mogal, and K. Bazargan. Three-di-

mensional place and route for FPGAs. IEEE Asia and

South Pacific Design Automation Conference,

Shanghai, China, January 2005, 773–778.

[95] Mingjie Lin, A. El Gamal, Yi-Chang, et al.. Perform-

ance benefits of monolithically stacked 3D FPGA.

IEEE Transactions on Computer Aided Design of

Integrated Circuit and Systems, 26(2007)2, 216–229.

[96] Xie Ding, Lai Jinmei, and Tong Jiarong. Research of

efficient utilization routing algorithm for Current

FPGA. Chinese Journal of Electronics, 19(2010)1,

48–52.

[97] Zhu Limin, Bian Jinian, Zhou Qiang, et al.. Integer

programming based routing algorithm fro hierarchical

FPGAs. Journal of Computer-Aided Design & Com-

puter Graphics, 22(2010)10, 1687–1694.

[98] Zhang Kun, Zhou Huabing, Stanley L. Chen, et al..

Technology mapping for FPGA with multi-mode logic

cell. Journal of Computer-Aided Design & Computer

Graphics, 21(2009)10, 1375–1380.

[99] Zhang Huiguo, Tang Yulan, Yu Zongguang, and Tao

Yufeng. High performance FPGA LUT design and

implementation. Research & Progress of SSE, 29
(2009)4, 584–588.

[100] Xu Hanyang, Wang Jian, and Lai Jinmei. A FPGA

prototype design emphasis on low power technique. In

Proceedings of the 2014 ACM/SIGDA 22nd Interna-

tional Symposium on Field Programmable Gate Ar-

rays, Monterey, CA, US, February 2014, 147–150.

[101] Gao Haixia, Yang Yintang, and Dong Gang. Theo-

retical analysis of effect of LUT size on area and delay

of FPGA. Chinese Journal of Semiconductors, 26
(2005)5, 893–898.

[102] Gao Haixia, Ma Xiaohua, and Yang Yintang. Accu-

rate interconnection length and routing channel width

estimates for FPGAs. Chinese Journal of Semicon-

ductors, 27(2006)7, 1196–1200.

[103] Chen Yuanfeng, Tang Pushan, Lai Jinmei, et al..

Evaluation System for FPGA. Journal of Fudan

University (Natural Science), 45(2006)4, 523–528.

[104] Zhen Wang, Ding Xie, Jinmei Lai, et al.. FPGA in-

terconnect architecture exploration based on a sta-

tistical model. International Conference on Field-Pro-

YANG et al. Review of Advanced FPGA Architectures and Technologies 393

grammable Logic and Applications, Greece, 2011,

447–452.

[105] Yu Jiande, Xie Ding, Shao Yun, et al.. Mini-loop

maximization method on FPGA routing resources

architecture design. Journal of Computer-Aided De-

sign & Computer Graphics, 22(2010)6, 934–942.

[106] System on Programmable Chip Research Department

of Institute of Electronics, Chinese Academy of Sci-

ence. COMET02 Device Handbook. January 2010,

Ver. 1.1.

[107] System on Programmable Chip Research Department

of Institute of Electronics, Chinese Academy of Sci-

ence. ER2C1000-G Handbook. June 2013, Ver. 1.0.

[108] Xingzheng Li, Haigang Yang, and Hua Zhong. Use of

VPR in design of FPGA architecture. International

Conference on Solid-State and Integrated Circuit

Technology, Shanghai, China, 2006, 1880–1882.

[109] Li Wei, Yang Haigang, and Gong Xiao. Optimal de-

sign of topological structure for FPGA connection box

based on information entropy. Journal of Com-

puter-Aided Design & Computer Graphics, 21(2009)2,

203–208.

