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Abstract. The object of the study was to optimize the shear
buckling load of laminated composite plates. The laminates
lacked coupling between bending and extension (E;;=0) but
had otherwise arbitrary selection of the ply angle variation
through the thickness. The plates were rectangular and ei-
ther simply supported or clamped on all edges. For crthotropic
plates, it was seen that there is only one parameter necessary for
finding the optimal design for different materials ani plate as-
pect ratios. This parameter can be interpreted zs the layup
angle 8 in a (+/~ 8) orthotropic laminate. When bending-
twisting coupling is present, the buckling strength cepends on
the direction of the applied load. A laminate wit1 non-zero
bending-twisting coupling stiffnesses can be described with four
lamination parameters. The allowable region of theie parame-
ters was investigated, and an optimization of the buckling load
within this region was performed. It was seen that even this is
a one parameter problem. This parameter can be interpreted
as the layup anlge # in an off-axis unidirectional laminate ().

Notations

Ay in-plane stiffnesses of anisotropic flates,
Tsai and Hahn (1980)

B;; coupling stiffnesses of anisotropic plates

D;; bending stiffnesses of anisotropic plates

D - normalized bending stiffnesses

a, g, h length, width and thickness of the plate

z,y in-plane coordinates

# through-the-thickness coordinate

2* normalized through-the-thickness coordinate

w(z,y) out-of-plane deformation

Nzy shear buckling load

* Currently at Japan National Aerospace Laboratory, Struc-
tural Mechanics, 7-44-1 Jindaiji Higashi-Machi, Chcfu-shi, 182
Tokyo, Japan

W; to W/ lamination parameters

Ui 1o Us linear combinations of the on-axis moduli
0(z) layup angle ’

T functional of 8(z)

1 Introduction

The task of optimizing the layup of laminated plates in
order to maximize in-plane shear buckling loads has not
been studied extensively. The first treatment of the prob-
lemn was probably by Housner and Stein (1975), who opti-
mized the angle in an orthotropic angle-ply laminate. Hi-
rano (1979) allowed more freedom in the choice of layup,
but still neglected anisotropy (bending-twisting coupling).
The conclusion from this study was that angle-ply lami-
nates are optimal, and the data presented by Housner and
Stein remained valid.

"Thielemann (1950) showed that non-zero bending-
twisting coupling stiffnesses (D¢, Dyg) results in the fact
that a plate with an infinite aspect ratio gets a preferred
dire:tion of shear. In one direction, the shear buckling
streagth is higher than for the corresponding orthotropic
laminate, in the other it is lower.

No investigation of the optiral layup for non-ortho-
tropic laminates has been found, even though it is clear
that such plates have higher shear buckling strengths (but
only in one direction). The present article studies this
problem. It is seen that shear buckling optimization is
a ore parameter problem. Similar results have been ob-
tain2d for the optimization of vibration frequency, uniax-
ial compression buckling, and deflection under a constant
pressure (Grenestedt 1990).

2 Plate and laminate configurations

The plates considered in this article are rectangular of the
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size a * b in the z and y directions, respectively, and with
the constant thickness h. The edges are either all sim-
ply supported or clamped concerning the out-of-plane de-
formation. The materials used in the study ar: given in
Table 1. The laminates considered are characierized by
a full matrix of bending stiffnesses, but withou: coupling
between bending and extension. Under these restrictions,
any choice of ply angle variation through the thickness is
allowed. Symmetric laminates fulfil these requirements,
but there are also other laminates that fulfil them. The
pre-buckling stresses are constant over the plate, so the
in-plane stiffnesses A;; do not affect the buckling stresses.
Because of this and the lack of bending-extensicn coupling,
the governing equilibrium differential equations can be de-
coupled, and the equation for the out-of-plane deformation
is solved to give the shear buckling load.
The shear buckling equation is

éd‘w 8w 8w
Dyy—F 4+ 4Dyg—— + 2(D 2Dgg) —5—=—5
ng + 4015 5o + (D12 + 2Dge) azt0y"
tw atw 8w
4D9g——= —t —2Nzy——— =0,
D20 goas T Pugr — Wagg (1)

according to e.g. Ashton and Whitney (1970).

By neglecting the D1g and Dyg stiffnesses, 1he ortho-
tropic equation is obtained.

The plates considered in the present paper are sup-
posed to satisfy the Kirchoff-Love assumptions, i.e. the
effect of transverse shear deformation is neglected. This
might lead to significant errors if a characteristic in-plane
length, e.g. the buckling wave length, is of the same order
as the plate thickness. Furthermore, the effect of trans-
verse shear deformation increases when the ratios between
transverse shear moduli and in-plane moduli of the lam-
inate decrease. For ordinary FRP materials such a ratio
might be in the order of 1:50. Cohen (1982) presented
an example where the classical plate theory overestimated
the buckling load with 40% for a plate with 2 thickness-
to-width ratio of only 0.05. Accordingly, since FRP are
considered here, the present analysis should orly be ap-
plied to laminates which are very thin compared to the
characteristic in-plane lengths.

Table 1. Material constants

Material Uy U, Us Uy
(Gpa) | {Gpa) | (Gpz) | (Gpa)
Graphite/epoxy
(T300-5208) 76.4 | 857 | 10.7 | 22.6
Aramid /epoxy
(Teijin EM50/epoxy) | 35.2 | 39.0 | 9.86 | 126
Glass/epoxy
(Scotchply 1002) 204 | 154 | 3.33 | 551

3 Lamination parameters and their allowable re-
gion

The bending stiffnesses of the laminates considered can
be described by the four lamination parameters W to

W/ introduced by Tsai and Hahn (1980). In the present
article these parameters have been normalized, so that
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where z* = 2z/h. The bending stiffnesses become
D}, = Uy + UW7 + UsWy

Dy = Uy — U WY + UsWy

D}y = Uy — UsWy

Dgg = %(UH - Uy) ~ UsW3,

Dig = SUsW; +UsW]

4 1
D?,ﬁ - EUZWS‘ == U3W; 3 (3]

where Df; = 12D;;/h® and h is the thickness of the lami-
nate, U; - Ug are linear combinations of the on-axis moduli
of a lamina and can be considered as material constants,
Tsai and Hahn (1980).

Tor the four lamination pararmeters,

—1:<Wy, Wg, W3, Wi <1 (4)

is valid. Miki (1985) showed that the allowable region of
W and Wy is

Wy 22w -1, (5)

wkich is all that is needed for the study of orthotropic
laminates.

When bending-twisting coupling is present, W3 and
W, are also needed, and the allowable four-dimensional



space of the lamination parameters should be determined.
However, we start by determining the projection of the
allowable region on the six perpendicular, two-dimensional
surfaces that each pair of W' to W spans.

If 6 is a continuous function of 2* (or z), variational
methods can be used to determine the convex part of the
allowable region for this special case. A # that it a contin-
uous function of z* could be achieved by havirg infinitely
many plies of infinitesimal thickness. Define & ‘unctional
Fij!

Fj=Wi+ W, ©)

where ¢ # 7 (¢ and j take the values 1, 2, 3and 4), and ¢ is
a constant. When F;; is constant, (6) describes a straight
line in the W - W‘ plane, the slope of which is deter-
mined by ¢. By maxlmmmg or minimizing Fy; the line is
parallel translated until it tangents the allowable region.
If this done for all ¢, the convex part of the allowable re-
gion when @ is a continuous function of z* is found. The
Euler equation for F,

8f; | 8f;
( N T ) =Y ™
or

aft af] e
(ﬁ ‘% ) =% (8)
since z* = 0 is nothing but a special point. Since fj,

defined through (2), is dependent of z* only through the
function 8, (8) states that 8 is independent of :*, i.e. all
plies have the same orientation. If all plies have the same
orientation, the dashed curves in Fig. 1 are obta ned. The
regions enclosed by these curves are completed with the
dotted lines, corresponding to the following laminates:
In the W} - Wy-plane: a symmetric lamiiate with
two times two plies with the orientations - = 0 and
8 = 7/2 and the normalized thicknesses a und 1 — a.
By varying o between 0 and 1 the line is ot tained.

In the W3 - Wy-plane: as above, but with #; = 7/4
and 02 = 31r/4.

In the W{ - W/-plane: as above, but with #; = /8
and 03 = 5 /8 for the top line, and #; = 37 /8 and

8, = Tr /8 for the bottom line.

In the W3 - W/-plane: as above, with 8, =: /8 and
by = 5#/8 for the top line, and #; = 37/3 and 6 =
Tm /8 for the bottom line.

To evaluate whether discontinuous § will lead to lam-
inates that fall outside these regions, a large rumber of
laminates (4000) with a random number of plies with ran-
dom thickness and random orientation were investigated
and plotted also in Fig. 1. All laminates resulted in points
falling inside the regions. These regions are the same also

117

Fig. 1. Lamination parameters for 4000 non-symmetric random
laminates, plotted on the projections of the allowable region of
the lamination parameters W{ to W}

if the laminates are symmetric. We now feel pretty con-
vinced that the regions of Fig. 1 are the correct projections
of the allowable region of W} to W;.

4 Method for calculating the buckling loads

For she calculation of the shear buckling loads, a numerical
finits difference code was implemented, resulting in the
mat:-ix equation

(A -- NzyB) w=0, (9)

which is a generalized nonsymmetric eigenvalue problem.
It was solved using standard numerical methods. Com-
pariag the results of this approach with data presented in
the literature for square plates revealed that the error was
less than 1%. For other aspect ratios, the discretization
was made finer, but supposedly the error for these aspect
ratics was larger than for the square plates.

5 Optimization and results, orthotropic laminates

There are only two parameters, W and Wy, needed for
describing the orthotropic laminates. For the aspect ratios
a/b = 1.0,1.3,1.7,2.0,2.5,3.0,4.0, and infinity, the buck-
ling load was plotted versus the lamination parameters.
Figure 2 is an example of such a plot. Because of the
symnetric boundary conditions, plates with aspect ratios
a/b vmaller than unity is equivalent to plates with the as-
pect ratio b/a. For the plate with infinite aspect ratio the
data of Seydel (1933) was used. For each plot, 137 buck-
ling loads for different values of the lamination parameters
were calculated. As seen in the figure, the maximal buck-
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Fig. 2. Shear buckling load vs. W{ and W, for a s mply sup-
ported orthotropic aramid/epoxy laminate with the aspect ratio
a/b=1.7T

ling load is found on the border of the allowable region
of the lamination parameters. The same was scen for all
aspect ratios, all materials, for both simply supported and
clamped edges. It appears to be the fact that there is only
one parameter needed for the shear buckling opiimization
of orthotropic rectangular plates. This parameier can be
interpreted as the layup angle # in an orthotrop c (4 /- 6)
laminate. This confirms the results of Hirano (1979), and
the data presented by Housner and Stein (1875) remain
valid.
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Fig. 3. The optimal point for a simply supportec. 1on-ortho-
tropic aramid/epoxy laminate with the aspect ratic a/b=135,
marked with a square on the projections of the allowuble region
of the lamination parameters W' to W

6 Cptimization and results, non-orthotropic lami-
nates

When bending-twisting coupling is present in the lami-
nate, all of the four lamination parameters are needed. A
staridard numerical routine was used for the task of finding
the optimal design for the aspect ratios a/b=1.0, 1.2, 1.5,
1.7, 2.0, 2.5, 3.0 and 4.0, with the lamination parameters
constrained by the six two-dimensional projections of the
allowable region of W to Wj. This results in a too big re-
gior. and it is possible that the optimal point found under
such conditions cannot be realized physically. However,
the optimization was carried out and it was seen that the
optimal designs always were found very close to the curves
corresponding to off-axis unidirectional laminates on the
six rojections of the allowable region. Figure 3 is an ex-
ample of this. In Table 2 the optimal points for simply
supnorted plates are compared with off-axis unidirectional
laminates. The difference might be due to numerical er-
rors — the vicinity of the optimal point is very flat so it is
difficult to find the optimal point with good accuracy, even
if the optimal buckling load could be determined with good
precision — but it is suspected that the true optimum al-
weys is an off-axis unidirectional laminate. However, this
has not been proved analytically.

The conjecture is that also the optimization of non-
orthotropic plates subjected to shear buckling loads is a
single parameter problem, or, ot least, a very close to
optimal design can be found by using only one parameter.
This parameter can be interpreted as the layup angle # in

Table 2. Comparison between lamination parameters found
by the four parameter optimization (num. opt.), and off-axis
unidirectional laminates (UD). Simply supported aramid /epoxy
plates

a/b wi w3 Wy wy }
1.0 | num. opt. | —0.01 | —1.00 | 1.00 0.00
UD 45.0° 0.00 [ ~1,00 | 1.00 | 0.00
1.2 | num. opt. | —0.15 | —0.95 | 0.99 | —0.31
UD 49.4° | —0.15 | —0.95 | 0.99 | —0.30
1.5 | num. opt. | —~0.33 | —0.79 | 0.95 | —0.62
UD 54.5° | —0.33 | —0.79 | 0.95 | —0.62
1.7 | num. opt. | —0.39 | —0.69 | 0.92 | —0.72
UD 56.6° | —0.39 | —0.69 | 0.92 | —0.72
2.0 | num. opt. | —0.44 | —0.62 | 0.90 | —0.79
UD 58.0° | —0.44 | —0.62 | 0.90 | —0.79
2.5 | num. opt. | —0.43 | —0.63 | 0.90 | —0.78
UD 57.8° | —0.43 | —0.63 | 0.90 | —0.78
3.0 | num. opt. | —0.49 | —0.51 | 0.87 | —0.86
UD 59.8° | —0.49 | —0.51 | 0.87 | —0.86
4.0 | num. opt. | —0.52 | —0.46 | 0.85 | —0.89
L UD 60.7° | —0.52 | —0.46 | 0.85 | —0.89
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Fig. 4. Optimal layup angle # vs. the aspect ratio a/b for sim-
ply supported aramid/epoxy laminates. Triangles: crthotropic
laminate, squares; non-orthotropic laminate
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Fig. 8. Optimal layup angle # va. the aspect ratio a/b for
clamped aramid/epoxy laminates. Triangles: orthotiopic lami-
nate, squares; non-orthotropic laminate
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Fig. 6. Optimal shear buckling load vs. the aspect ratio a/b
for simply supported aramid/epoxy laminates. Triangles: or-
thoiropic laminate, squares: non-orthotropic laminate, optimal
direction, dots: non-orthotropic laminate, reversed direction
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Fig. 7. Optimal shear buckling lond ve. the aspect ratio a/b
for clamped aramid/epoxy laminates. Triangles: orthotropic
laminate, squares: non-orthotropic laminate, optimal direction,
dots: non-orthotropic laminate, reversed direction



