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Successful efforts in hand gesture recognition research within the last two decades paved the path for natu-

ral human–computer interaction systems. Unresolved challenges such as reliable identification of gesturing

phase, sensitivity to size, shape, and speed variations, and issues due to occlusion keep hand gesture recog-

nition research still very active. We provide a review of vision-based hand gesture recognition algorithms

reported in the last 16 years. The methods using RGB and RGB-D cameras are reviewed with quantitative

and qualitative comparisons of algorithms. Quantitative comparison of algorithms is done using a set of 13

measures chosen from different attributes of the algorithm and the experimental methodology adopted in

algorithm evaluation. We point out the need for considering these measures together with the recognition

accuracy of the algorithm to predict its success in real-world applications. The paper also reviews 26 publicly

available hand gesture databases and provides the web-links for their download.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Nonverbal communication, which includes communication

through hand gestures, body postures, and facial expressions makes

up about two-thirds of all communication among human [1]. Hand

gestures are one of the most common category of body language

used for communication and interaction. Whilst the rest of the body

indicates a more general emotional state, hand gestures can have

specific linguistic content in it [2]. Due to the speed and expressive-

ness in interaction, hand gestures are widely used in sign languages

and human–computer interaction systems.

One ongoing goal in human–machine interface design is to

enable effective and engaging interaction. For example, vision-based

hand gesture recognition (HGR) systems can enable contactless

interaction in sterile environments such as hospital surgery rooms,

or simply provide engaging controls for entertainment and gaming

applications. However HGR is not as robust as standard keyboard and

mouse based interaction. Issues such as sensitivity to size and speed

variations, poor performance against complex backgrounds and

varying lighting conditions, and the reliable detection of gesturing

phase have limited the use of hand gestures as a reliable modality in

interface design.
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.1. Taxonomy of gestures

There are multiple ways to categorize hand gestures, (1) based on

bservable features and (2) based on the interpretation. In the first

ategory gestures are classified based on temporal relationships, into

wo types; static and dynamic gestures (Fig. 1). Static hand gestures

(aka hand postures/hand poses) are those in which the hand position

does not change during the gesturing period. Static gestures mainly

rely on the shape and flexure angles of the fingers. In dynamic hand

gestures, the hand position changes continuously with respect to

time. Dynamic gestures generally have three motion phases: prepa-

ration, stroke, and retraction [3]. The message in a dynamic gesture

is mainly contained in the temporal sequence in the stroke phase.

Dynamic gestures rely on the hand trajectories and orientations, in

addition to the shape and fingers’ flex angles.

In the second category, gestures are classified based on the

interpreted meaning. For example emblems, illustrators, regula-

tors, affect displays, and adaptors [4,5] are the typical classes to

describe gestures. Emblems (also labeled as autonomous gestures)

are gestures that can be substituted for spoken words (for example,

showing thumbs-up instead of saying all right). Illustrators are ges-

tures used to illustrate spoken words (for example, giving directions

by pointing). Regulators support the interaction and communication

between speaker and listener (for example, raising hand to manage

turn-taking). Affect displays are facial expressions, which when

combined with postures reflect the intensity of an emotion (for

example, staring at an object and moving the body back reflect the

emotion fear). Adaptors are gestures used at some point in time for

http://dx.doi.org/10.1016/j.cviu.2015.08.004
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Fig. 1. Classification of hand gestures based on temporal nature. Static gestures are

time independent whereas dynamic gestures are time dependent.
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Fig. 3. Taxonomy of hand gesture recognition techniques reviewed.
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ersonal convenience, but have turned into a habit (for example,

djusting glasses in a tensed situation).

.2. Hand gesture recognition

Fig. 2 shows the block diagram of a typical contactless gesture

ecognition system. The sensor is a camera in vision-based gesture

ecognition systems. Berman et al. [6] reviewed different sensors

sed in gesture recognition systems and provided a comprehensive

nalysis of integration of sensors into gesture recognition systems

nd their impact on the system performance. Based on feature extrac-

ion, vision-based gesture recognition systems are broadly divided

nto two categories, appearance-based methods and three dimen-

ional (3D) hand model-based methods. Appearance-based methods

tilize features of training image to model the visual appearance, and

ompare these parameters with the features of test image. Three-

imensional model-based methods rely on a 3D kinematic model, by

stimating the angular and linear parameters of the model.

.3. Survey and evaluation of hand gesture recognition techniques

Our study builds on top of earlier attempts to survey the field of

GR. Mitra et al. [7] provided a survey of different gesture recognition

ethods, covering hand and arm gestures, head and face gestures,

nd body gestures. The HGR methods investigated in the survey was

imited to Hidden Markov Models (HMMs), particle filtering and

ondensation algorithms, and Artificial Neural Networks (ANNs).

and modeling and 3D motion based pose estimation methods are

eviewed in [8] (ignoring the gesture classification schemes). An anal-

sis of sign languages, grammatical processes in sign gestures, and

ssues relevant to the automatic recognition of sign languages are dis-

ussed in [9]. The latest of the above papers [8] covered developments
Fig. 2. Gesture recogn
ill the year 2005. The review concluded that the methods studied

re experimental and their use is limited to laboratory environments.

This paper reviews recent works in HGR with a focus on the devel-

pments in the last 16 years. Algorithms utilizing conventional RGB

ameras (Section 2) as well as the new generation RGB-D cameras

Section 3) are surveyed, making the review unique. The HGR meth-

ds are classified and analyzed according to the technique used for

esture classification. We perform a quantitative comparison of HGR

lgorithms based on different attributes of the algorithm and the ex-

erimental methodology followed in algorithm testing. A review of

vailable hand gesture databases (Section 4) and a discussion on hand

esture recognition research (Section 5) are also provided. We hope

his survey is timely, given the growing research efforts and expand-

ng market for gestural interactive systems.

. Conventional hand gesture recognition: RGB sensor

ased methods

.1. Recognition of dynamic hand gestures

The techniques used for dynamic HGR can be classified as

a) HMM [10–23] and other statistical methods [24–31], (b) ANN

32–34] and other learning based methods [35,36], (c) Eigenspace

ased methods [37,38], (d) Curve fitting [39], and (e) Dynamic pro-

ramming [40]/Dynamic time warping [41,42] (Fig. 3).

.1.1. HMM and other statistical methods

HMM is the most widely used HGR technique. HMM is a statis-

ical model in which the system being modeled is assumed to be a

arkov process with unknown parameters. HMM represents the sta-

istical behavior of an observable symbol sequence using a network

f hidden states with transition and emission probabilities. The HMM

an be used for pattern recognition once the hidden parameters are

dentified using the observable data.

HMM based dynamic hand gesture recognition methods mainly

tilize temporal and spatial features of input images. Chen et al. [14]

tilized Fourier descriptor and optical flow based motion analysis

o characterize spatial and temporal features respectively. The algo-

ithm extracts hand shape from complex backgrounds by tracking the

and in realtime. HMM based recognizers identify the best likelihood

esture model for a given pattern. The variations in gesture from a ref-

rence pattern reduce the likelihood of the gesture with the model.
ition pipeline.
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Lee and Kim [10] introduced an HMM based threshold model concept

to filter out patterns with less likelihood. Hand movement direction

is used to represent the spatio-temporal sequences of gestures. The

method reliably detects an end point of a gesture, and finds the start

point by backtracking.

HMM is based on homogeneous Markov chains as the dynamics of

the system is determined only by time independent transition prob-

abilities. Marcel et al. [15] proposed an extension of HMM, namely

Input/Output Hidden Markov Model (IOHMM), for HGR. IOHMM is

based on a non-homogeneous Markov chain in which emission and

transition probabilities depend on the input. The IOHMM learns to

map the input sequences, observations, output sequences, and the

gesture classes for all the observations using a supervised discrim-

inant learning. Compared to HMMs, IOHMM is a discriminative ap-

proach as it directly models posterior probabilities. The study in [15]

was limited to 2 classes. Just et al. [13] extended the study for the

recognition of single and double handed gestures and provided a

comparison of HMM and IOHMM. Experiments conducted on larger

databases, ranging from 7 to 16 gesture classes, concluded that HMM

has better performance than IOHMM for large number of classes.

Hand location, angle and velocity features are combined in [11] to

implement an HMM for HGR. Hand is localized by skin-color analysis

and tracked by connecting the centroid of moving hand regions. The

paper compared the utility of the three features, location, angle, and

velocity, and concluded that angular features are most effective, hav-

ing better discriminative power. Location and velocity features are

ranked second and third respectively. A similar HMM implementa-

tion utilizing angles of motion along the trajectory of hand centroid

is provided in [16].

Ramamoorthy et al. developed an HGR system by combining

HMM based temporal characterization scheme with a static shape

recognition system [12]. They used a Kalman filter based hand con-

tour tracker which provides temporal characteristics of the gesture.

Shapes are recognized using contour discriminant based classifier.

These symbolic descriptors of the gestures are utilized for training the

HMM. The system can reliably recognize dynamic gestures in spite of

motion and discrete changes in hand poses. Also the algorithm has

the ability to detect the start and end points of gesture sequences.

Dynamic gesture recognition algorithms utilize a backward spot-

ting scheme that first detects the end point of a gesture and then trace

back to the start point. Kim et al. [17] proposed an alternate method,

a forward spotting scheme, that executes gesture segmentation and

recognition simultaneously. The start and end points of gestures are

detected by zero crossings of differential probability of the signal. A

set of 3D articulation based features are extracted by an association

mapping technique that correlates the 2D shape data to the 3D ar-

ticulation data. Gestures are classified by a majority voting using an

accumulative HMM.

Davis and Shah [31] decomposed gestures into four distinct

phases which occurs in a fixed order, and developed a Finite State

Machine (FSM) model for recognition. Temporal signature of hand

motion is extracted and hand gesture are modeled using an FSM in

[29]. The concept of motion energy is used to estimate the dominant

motion from an image sequence. Hong et al. [30] used 2D positions

of the centers of subjects’ head and hands to develop the FSM. A dy-

namic Bayesian network model is proposed in [24] for the recogni-

tion of isolated as well as continuous handed gestures. The features

utilized are direction codes for hand motion, positional relation be-

tween the two hands, and the positional relation between face and

hands.

Chen et al. [25] proposed a two level approach of statistical and

syntactic analysis for the recognition of static and dynamic hand

gestures respectively. The first level, statistical analysis, is based on

Haar-like features and AdaBoost learning algorithm. The second level,

syntactic analysis, is based on a stochastic context-free grammar

(SCFG). The Haar-like features effectively describe the hand posture
attern and the AdaBoost algorithm constructs a strong classifier

y combining a sequence of weak classifiers. The postures detected

y the first level are converted to a sequence of terminal strings

ccording to the grammar, in the second stage.

.1.2. ANN and other learning based methods

Yang et al. [32,33] utilized a time delay neural network (TDNN) to

earn the 2D motion trajectories. TDNN is a multi-layer feed-forward

etwork that utilizes shift windows between all layers to represent

emporal relationships between events. The classification in TDNN is

ynamic as the network sees only a small window of the input motion

attern, and the window slides over the input data while the network

akes a series of local decisions. These local decisions are temporally

ntegrated into a global decision at the output layer.

The region based motion algorithms as in [32] outperform

ntensity-based methods. For example, motion information in areas

ith little intensity variation is contained in the contours of the asso-

iated regions. The motion segmentation algorithm computes corre-

pondences for such regions and finds the best affine transformation

hat accounts for the change in contour shape. The affine transforma-

ion parameters for region at different scales are used to derive a sin-

le motion field, which is then segmented to identify moving regions

etween two frames.

Chan et al. [34] proposed a combination of HMM and recurrent

eural networks (RNN) which provided better performance com-

ared to HMM or RNN used alone. The shape features used are based

n Fourier descriptors, which are the inputs to radial basis function

RBF) network for an initial pose classification. The pose likelihood

ector from the RBF network along with the motion information is

he input to two independent classifiers, HMM and RNN. Outputs

rom the classifiers are combined linearly for the prediction of the

esture class.

Shen et al. [35] proposed an exemplar-based approach for ges-

ure recognition. Hand gestures are represented using the divergence

eld of the hand flow motions. The divergence fields of the optical

ow between consecutive image frames are derived and salient re-

ions are detected from the divergence field using a Maximally Stable

xtremal Regions (MSER) feature detector. Descriptors are extracted

rom each detected region to characterize local motion patterns. The

atabase gesture sequences with their descriptors are indexed by a

re-trained hierarchical vocabulary. A new gesture sequence is rec-

gnized by matching it against the database.

.1.3. Eigenspace based method

Patwardhan and Roy [37] proposed an eigenspace based frame-

ork to model dynamic hand gestures containing both shape and tra-

ectory information. Feature based methods involve a separate time

onsuming feature detection step which is avoided in this algorithm.

he algorithm is invariant to common hand shape deformations: ro-

ation, translation, scale and shear.

.1.4. Curve fitting

Shin et al. [39] proposed a geometric method using Bezier curves

or the trajectory analysis and classification of dynamic gestures. Ges-

ures are recognized by fitting the curve to 3D motion trajectory of

and. The gesture speed is incorporated into the algorithm to enable

ccurate recognition from trajectories having variations in speed.

.1.5. Dynamic programming and dynamic time warping

Kuremoto et al. [40] proposed a one-pass dynamic programming

ased approach for gesture recognition. A biologically motivated

eature extraction system based on retina-V1 model proposed by

ohyama and Fukushima [43] estimates the hand motion. Hand

estures are considered as combinations of templates of simple

ovements. The movements are used to compose a set of 40

emplates of gestures.
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Table 1

Hand gesture recognition methods: features used, classification methods, and reported applications.

Work Features used Classification method Application

[10] Direction of hand movement HMM Browsing commands in PowerPoint(R) presentation

[11] Hand location, angle and velocity HMM HCI- recognizing alphanumeric characters and graphic elements

[14] Fourier descriptors/optical flow HMM Taiwanese sign language

[12] Hand shape and hand motion HMM Remote robot control

[17] 3D articulation data Accumulative HMM Controlling lights and curtains in smart home

[13] 3D trajectory, hand displacement, color and shape of hand blob HMM and IOHMM Interact-play, manipulation

[25] Haar-like features Statistical/syntactic anal. Not specified

[24] Directional features DBN Controlling media player

[39] 3D motion trajectory Curve fitting 3D bioinformatics data visualization navigation

[37] Hand shape/trajectory Predictive eigen tracker Audio player control

[32] 2D motion field/trajectory NN American sign language

[34] Fourier descriptors (shape of hand blob) RBF, HMM and RNN Manipulation of objects in windows user interface

[29] Hand motion (motion energy) FSM HRI

[42] 3D hand motion features CDFD and Q-DFFM Dutch sign language

Descriptions: HMM—hidden Markov model, IOHMM—input/output hidden markov model, HCI—human computer interaction, DBN—dynamic Bayesian network, NN—neural network,

RBF—radial basis function, RNN—recurrent neural networks, FSM—finite state machines, HRI—human robot interaction, CDFD—combined discriminative feature detectors, and Q-

DFFM—quadratic classification on discriminative features fisher mapping.

Table 2

Hand gesture recognition methods: features of the algorithms and experimental methodology adopted in algorithm testing (list at bottom provides description of column titles).

Features in column 6 onwards are binary, 1 represents compliance of the work to the feature whereas 0 represents non-compliance.

Work Accuracy Class Subject Sample UI Spot BG Noise Scale Light Extensibility CV Data

[10] 93.14 10 8 6.2 0 1 0 0 0 0 0 0 0

[11] 93.25 48 20 5 0 1 0 0 1 1 0 0 0

[14] 93.6 20 20 3 0 0 1 0 1 0 0 0 0

[12] 81.71 5 5 14 0 1 1 1 0 1 0 0 0

[17] 95.42 8 1 60 0 1 0 0 0 0 0 0 0

[13] 75 and 98 16 and 7 20 and 7 50 and 10 0 0 0 0 0 0 0 0 1

[25] 87.21 4 1 25 0 1 0 0 1 1 0 0 0

[24] 99.59 10 7 1 0 1 0 0 0 0 0 1 0

[39] 97.9 10 4 2.38 0 0 1 0 0 1 0 0 0

[37] 100 8 1 2 0 0 0 0 1 0 0 0 0

[32] 96.21 40 1 7.6 0 1 1 0 1 0 1 0

[34] 91.9 14 1 21.07 0 1 0 0 1 0 0 0 0

[29] Not reported 5 1 1 0 0 0 0 0 0 0 0 0

[42] 92.3 120 75 15 1 1 0 1 0 0 0 1 0

Descriptions: Accuracy—recognition accuracy of the algorithm in %, Class—number of classes considered, Subject—number of subjects in the test set, Sample—number of test samples

per class per subject, UI—user independence, is the algorithm tested using different subjects than used for training, Spotwhether algorithm can spot gestures, BG—complex or

simple background, 1 for complex, Noise—presence of other human in the background, Scale—variation in scale/size considered or not, Light—variation in lighting considered or not,

Extensibility—online or offline learning, 1 for online, CV—cross validation or not, and Data—public or private dataset, 1 for public.
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Dynamic time warping (DTW), an application of dynamic pro-

ramming, has been widely used in isolated gesture recognition. An-

rea Corradini [41] proposed a template based approach with DTW

or the time alignment and normalization by computing a tempo-

al transformation between the two signals to be matched. Lichte-

auer et al. [42] proposed Statistical DTW (SDTW) for time warping

nd two classifiers, namely combined discriminative feature detec-

ors (CDFDs) and quadratic classification on discriminative features

sher mapping (Q-DFFM), for classification. The classifiers are shown

o outperform HMM and SDTW.

A summary and comparison of the features of hand gesture

ecognition algorithms surveyed in this section are provided in

ables 1 and 2.

.2. Recognition of hand postures

The hand posture recognition methods reviewed are classified as

a) Supervised learning based methods [35,44–60], (b) unsupervised
Fig. 4. Taxonomy of hand posture rec
earning based methods [61], (c) graph matching [62–67], and (d) 3D

odel based methods [68–72] (Fig. 4).

.2.1. Unsupervised learning

A distributed locally linear embedding (DLLE) algorithm is pro-

osed in [61] for hand posture recognition and dynamic gesture

racking. Locally linearly embedding (LLE) [73] is an unsupervised

earning algorithm that attempts to map high-dimensional data to

ow-dimensional space while preserving the neighborhood rela-

ionship. The paper modified LLE to DLLE to discover the inherent

roperties of the input data, by noticing that some relevant pieces

f information are distributed. DLLE extracts the intrinsic structure

f data such as neighborhood relationship. The distances between

rojected data points in the low-dimensional space depend on the

imilarity of the input images. A probabilistic neural network (PNN)

s used to classify different postures based on the distances in the low

imensional space. PNN has good training speed and classification

ccuracy with negligible retraining time.
ognition techniques reviewed.
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2.2.2. Supervised learning

Supervised learning in LLE algorithm is introduced in [52], for

recognizing postures in Chinese sign language (CSL). Supervised LLE

(SLLE) makes use of the class label information during the classifier

training. Hand is detected using skin color and the intrinsic geometry

of hand is used for the recognition.

Zhao et al. [51] proposed recursive induction learning based on

extended variable-valued logic for hand pose recognition. In induc-

tive learning knowledge is acquired by inducing rules from sets of

examples or sets of feature vectors. The paper modified and extended

the old concept of Variable-Valued Logic into Extended Variable-

valued Logic (EVL) which provided a more powerful representation.

A heuristic algorithm namely RIEVL (Rule Induction by Extended

Variable-valued Logic) is proposed to learn rules both from examples

as well as rule sets. RIEVL produced more compact rules than other

induction algorithms. This capability allows to apply a large feature

set to hand poses during training, and to derive a reduced rule set

with a subset of the training features during recognition. The algo-

rithm automatically selects the most effective features, which makes

it suitable for realtime gesture recognition systems.

A common problem of training based methods is their depen-

dence on training data. In order to increase generality and user inde-

pendence, Licsar and Sziranyi [49,50] proposed a user-adaptive hand

posture recognition system with interactive online training. The sys-

tem is retrained online for faulty detected postures if the recogni-

tion accuracy decreases, realizing fast adaptation to new users. A

supervised training method corrects for the unrecognized posture

classes, and an unsupervised method continuously runs to follow

slight changes in posture styles.

A solution to the complex background problem in hand posture

detection and recognition is provided in [44]. The algorithm can han-

dle backgrounds including skin-colored complex backgrounds. The

system utilizes a Bayesian model of visual attention to generate a

saliency map, and to detect, identify, and segment out the hand re-

gion from the complex backgrounds. Feature based visual attention is

implemented using a combination of high level (shape, texture) and

low level (color) image features. The segmented hand postures are

classified using the shape and texture features, with a support vector

machines (SVM) classifier.

Huang et al. [58] proposed an algorithm for hand posture recogni-

tion under varying illumination and pose conditions. The invariance

to lighting conditions is achieved using an adaptive skin color model

switching method. Insensitivity to hand pose variations is gained us-

ing a Gabor filter based pose angle estimation and correction method.

The posture are classified using an SVM classifier.

2.2.3. Graph algorithms

Starting from the late seventies, graph-based techniques are used

as a powerful tool for pattern representation and classification. After

the initial enthusiasm, graph algorithms have been practically left un-

used for a long period of time. This is due to the high computational

cost of graph algorithms, which still remains an unresolved problem.

However, the use of graphs in computer vision and pattern recog-

nition obtained a growing attention from the research community

recently, as the computational cost of the graph-based algorithms

is now becoming compatible with the computational power of new

generation computers [74].

Elastic graph matching (EGM), a type of graph matching, is a

neurally inspired pattern recognition architecture [75]. EGM has the

inherent ability to handle geometric distortions, does not require a

perfectly segmented input image, and can elegantly represent the

variances in object appearance [63].

Image regions are represented by vertices in a graph representa-

tion. These vertices are related to each other by edges, expressing

structural relationships between regions. Triesch et al. [63–66] uti-

lized the elastic graph matching (EGM) technique to develop a system
or person independent hand posture recognition against complex

ackgrounds. Hand postures are represented by labeled graphs with

n underlying two dimensional topology. Attached to the nodes are

ets, a local image description (image feature) based on Gabor filters.

his approach provided scale invariant and user independent recog-

ition, without explicit segmentation of hand region. Different hand

ostures are represented as attributed graphs and comparisons are

ade between model graphs (in the database) and data graph (cor-

esponding to the realtime image). The nodes are compared using a

imilarity function, and the pattern is recognized by calculating the

verage node similarities.

Bunch graphs [76] are used to model the variability in object ap-

earance. The natural variability in the attributes of corresponding

oints in several images (of the same object or a class of objects) is

aptured by labeling each node with a bunch of attribute values, ex-

racted from the corresponding points. This method is used by Triesch

t al. [63,64] to model complex background in hand posture images.

or the matching process, each of the attribute value in the bunch is

ompared with the local image information in the data graph, and the

aximum of the similarities is taken as the similarity of the bunch

raph.

Li and Wachs [67] proposed a hierarchical EGM algorithm for hand

esture recognition. The major improvement to the EGM algorithm is

he use of levels of hierarchies assigned to the nodes. The visual fea-

ures with higher likelihood (to be found on the target image) receive

higher hierarchy level compared to features those are less consis-

ent with the graph model.

.2.4. Topology/3D model based methods

Three dimensional model fitting is used in [69] for hand pose es-

imation. The method estimates all joint angles reconstructing the

and pose as a voxel model. Then model fitting is done between the

and model and the voxel model, in the 3D space. The method uses

nly geometric information of hand model and the voxel model for

odel fitting and does not need any heuristic or priori information.

owever the algorithm requires faster implementation for realtime

pplications.

Yin and Xie [70] introduced a computer vision model of hand,

nstead of a kinematic model. The algorithm avoids the complexity

n estimation of the angular and linear parameters of the kinematic

odel. They utilized topological features of the hand for 3D hand pos-

ure recognition. The edge point of fingers are extracted as points of

nterest. The hand is segmented from complex backgrounds using a

estricted coulomb energy (RCE) neural network based on color seg-

entation.

A summary and comparison of the features of hand posture recog-

ition algorithms reviewed in this section are provided in Tables 3

nd 4.

. Recent trends in hand gesture recognition: RGB-D sensor

ased methods

Depth cameras have been used in computer vision for several

ears. However the applicability of depth cameras was limited due

o its high price and poor quality. The release of low cost color-depth

RGB-D) camera Kinect [77,78] by Microsoft has created a revolution

n gesture recognition by providing high quality depth images, ad-

ressing issues like complex backgrounds and illumination variation.

he device calculates a three dimensional map of the scene using a

ombination of RGB and IR camera. Recently Han et al. [79] provided

review of how Kinect is useful in addressing the fundamental prob-

ems in computer vision. The sensors such as MicrosoftKinect(R) and

SUS Xtion PRO LIVE(R) provide reliable tracking of human body pos-

ures in gaming scenarios. Based on the tracking these devices pro-

ide features such as the coordinates of a skeletal model, which are

tilized for gesture recognition.
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Table 3

Hand posture recognition methods: features used, classification methods, and reported applications.

Work Features Classification method Application

[61] Geometric distance DLLE/PNN Manipulation of objects in windows user interface

[52] Intrinsic geometry of hand SLLE Chinese sign language

[51] Multivalued features (centroid, compactness, area of hand) RIL Gesture commands

[50] Discrete Fourier transform based distance metric Nearest neighbour/maximum likelihood Gesture commands

[44] Shape, texture and color features SVM Recognition against complex backgrounds

[63] Gabor jets EGM HRI

[69] Joint angles 3D model fitting Not specified

[45] Shape and texture features Fuzzy-rough classifier HRI

[62] Shape features EGM Not specified

[58] Gabor features SVM Recognition under varying illumination

[67] Histogram of Oriented Gradient EGM Not specified

Descriptions: PNN—probabilistic neural network, DLLE—distributed locally linear embedding, SLLE—supervised locally linear embedding, RIL—recursive induction learning, SVM—

support vector machines, EGM—elastic graph matching, and HRI—human robot interaction.

Table 4

Hand posture recognition methods: features of the algorithms and experimental methodology adopted in algorithm testing (list at bottom provides description of column titles).

Features in column 6 onwards are binary, 1 represents compliance of the work to the feature whereas 0 represents non-compliance.

Work Accuracy Class Subject Sample UI Spot BG Noise Scale Light Extensibility CV Data

[61] 93.2 14 1 20 0 1 0 0 1 1 0 0 0

[52] 90.6 30 1 55 0 1 0 0 0 1 0 0 0

[51] 94.4 20 1 45.4 0 1 0 0 0 0 0 0 0

[50] 98.5 9 4 44.44 1 0 1 0 0 0 1 0 0

[44] 94.36 10 40 5 1 0 1 1 1 0 0 1 0

[63] 85.8 12 19 1.48 1 0 1 0 0 0 0 1 1

[69] Not reported 4 1 1 0 0 0 0 0 0 0 0 0

[45] 98.75 10 19 18 1 0 0 0 1 1 0 1 1

[62] 96.35 10 19 2.52 1 0 0 0 0 0 0 0 1

[58] 96.1 11 10 6 0 0 1 0 1 1 0 0 0

[67] 99.85 10 24 2.7 1 0 1 0 0 0 0 1 1

Descriptions: Accuracy—recognition accuracy of the algorithm in %, Class—number of classes considered, Subject—number of subjects in the test set, Sample—number of test samples

per class per subject, UI—user independence, is the algorithm tested using different subjects than used for training, Spot—whether algorithm can spot gestures, BG—complex or

simple background, 1 for complex, Noise—presence of other human in the background, Scale—variation in scale/size considered or not, Light—variation in lighting considered or not,

Extensibility—online or offline learning, 1 for online, CV—cross validation or not, and Data—public or private dataset, 1 for public.
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The skeletal data from these RGB-D sensors is to be converted to

ore meaningful and high level features, and algorithms are to be de-

eloped for the robust classification of gestures. Recognition of hand

estures is especially challenging due to the complex articulation and

elatively smaller area of hand region. In addition, a robust hand ges-

ure recognition algorithm must have invariance with respect to the

ize and speed of the gesture, and the orientation of gesturer. Rafael

t al. [80] evaluated the influence of depth information in the ges-

ure recognition process and concluded that use of depth silhouettes

ncreases the recognition accuracy significantly. Dominio et al. [81]

roposed an algorithm to combine multiple depth-based descriptors

or hand gesture recognition.

The RGB-D cameras are mostly used for whole body gesture recog-

ition [78,82–85], as these cameras provide skeletal tracking. This

ection of the paper surveys RGB-D camera based HGR algorithms1 by

lassifying the related literature into two categories, (a) Kinect based

pproaches, and (b) other RGB-D sensor based approaches.

.1. Kinect based methods

Zhang et al. [98] proposed a new higher level descriptor called

he Histogram of 3D Facets (H3DF), to explicitly encode the 3D

hape information from lower level depth information. Kinect based

eatures are utilized for both dynamic hand gesture recognition

89–93,95–97,99–111] and hand posture recognition [88,112–120].
1 Many of the articles in this area are published conference proceedings reporting

evelopmental work using Kinect sensor. The current survey is limited to selected rel-

vant research articles.

n

m

i

d

.1.1. Recognition of dynamic hand gestures

Wu et al. [90] proposed a system to learn gestures from only one

earning example per class, namely One-shot-learning. Features are

xtracted based on Extended-Motion-History-Image (Extended-MHI)

nd the gestures are classified by calculating the maximum correla-

ion coefficient. Motion history images (MHI) [121] are used to repre-

ent motions of an object in a video. All frames in a video sequence

re projected onto one image across the temporal axis, to capture the

emporal information of the motion sequence. The extended-MHI is

roposed to improve the performance of MHI by compensating on

he non-moving regions and repetitive actions. Multi-view Spectral

mbedding (MSE) algorithm is used to fuse the RGB and depth data

n a physically meaningful manner. The MSE algorithm discovers the

ntrinsic relationship between RGB and depth features, improving on

he recognition rate of the algorithm.

Lui [92,99] proposed a gesture recognition algorithm based on a

onlinear regression framework on manifolds. The underlying ge-

metry and a least squares fitting is used to develop the algorithm.

he least squares regression is formulated as a composite function,

onsidering geometric properties. Gallo et al. [89] proposed a Kinect

ased gesture recognition system with its application to exploration

f medical image data. Various gestures for functions like zooming,

nimation, region of interest extraction, rotation and translation of

edical images are recognized by topological analysis of the hand

egion. Euclidean distance metric and covariances of a log-Euclidean

etric are used as features in [93]. The gestures are classified using

earest neighbor classifier.

A novel one-shot-learning approach for gesture recognition from

otion depth images based on template matching is presented

n [100]. The method is based on the computation of space-time

escriptors from the query video which measures the likeness of a
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2 Table 7 and 8 list and describe the first 22 hand gesture databases. The other 4

related hand databases are provided in Section 4.23.
gesture in a lexicon. The classifier is based on correlation coefficient

from standard deviation of Fourier transform of the image and the

MHI.

An algorithm for detection and recognition of hand gestures by

combining DTW with probability estimates is proposed in [102]. The

algorithm has robustness against position and orientation of the ges-

turer and speed of the gesture. Cheng et al. [103,104] proposed DTW

based algorithms for 3D hand gesture recognition. A parameterized

searching window is introduced in the cost matrix of traditional DTW

approach to detect the beginning and end of specific gestures from an

infinite trajectory gesture sequences.

Another algorithm for one-shot learning gesture recognition from

RGB-D data is proposed by Wan et al. [101]. A new spatio-temporal

feature representation called 3D enhanced motion scale-invariant

feature transform (3D EMoSIFT) is used. The new feature set is in-

variant to scale and rotation as it fuses RGB-D data. A sparse coding

method namely simulation orthogonal matching pursuit (SOMP) is

applied to represent each feature by a linear combination of a small

number of codewords.

3.1.2. Recognition of hand postures

A novel hand motion capture procedure based on 14-patch hand

partition scheme is proposed in [117] for collecting real posture

dataset in unconstrained conditions. Liang et al. [122] proposed a ro-

bust hand parsing scheme to extract a high-level description of the

hand from the depth images. The method is robust to complex hand

configurations.

Ren et al. [88,112] proposed a hand posture recognition system

having robustness against variations in hand orientation, scale, and

articulation. A distance metric called Finger-Earth Mover’s Distance

(FEMD) is proposed for hand dissimilarity measure. The algorithm

can recognize hand postures in spite of the variations, as it only

matches the fingers (not the whole hand shape). A comparison of

FEMD with shape context algorithm [123] is provided in [113]. The

FEMD based algorithm has better accuracy and computational speed

in comparison. In addition Zhou et al. [113] presented an application

of FEMD based hand posture recognition algorithm for playing Su-

doku game.

An algorithm for static and dynamic hand shape classification us-

ing randomized decision forests is proposed in [91]. The hand shape

is classified using the data from depth sensors. The system performs

independent of lighting conditions and it does not need a hand regis-

tration step. Class labels are assigned to each pixel on a depth image,

and the final class label is determined by voting.

Kirac et al. [116] proposed a scheme for extracting the hand skele-

ton using random regression forests in realtime. The algorithm is ro-

bust to self-occlusion and low resolution of the depth camera, and can

estimate the joint positions even if all of the pixels related to a joint

are out of the camera frame. A feature set namely Oriented Radial

Distribution is proposed in [118], which can simultaneously localize

fingertips and encode hand postures globally.

3.2. Other RGB-D sensor based methods

3.2.1. Recognition of dynamic hand gestures

Holte et al. [86] utilized an intensity-depth camera (CSEM Swis-

sranger SR-2) to develop a view invariant gesture recognition algo-

rithm. On contrary to the usual trajectory based approach gestures

are recognized based on motion primitives in the 3D data. The prim-

itives are represented in a view invariant manner using harmonic

shape context. A probabilistic edit distance classifier is used for classi-

fication. The algorithm has orientation invariance, it is trained on data

from one viewpoint and tested on data from a different viewpoint.

Probabilistic 2D templates created using hand motion trajectory

are used in [94] for the recognition of dynamic gestures. The prob-

abilistic template takes into account different trajectory distortions
ith different probabilities. A longest common subsequence (LCS)

lassifier is modified to most probable longest common subsequence

MPLCS) classifier, to measure the similarity between the probabilis-

ic template and the hand gesture sample. Erden et al. [124] designed

hand gesture based remote control system which combines infrared

ensors with an RGB camera.

.2.2. Recognition of hand postures

Time-of-flight (ToF) and RGB cameras are combined in [87] to de-

elop a hand detection algorithm based on depth and color. The po-

ition of hand is tracked in 3D in spite of its overlap with body parts

nd other hands in the background. The gestures are recognized us-

ng a nearest neighbor search after a dimensionality reduction using

verage Neighborhood Margin Maximization (ANMM) [125].

A summary and comparison of the features of hand gesture and

osture recognition algorithms surveyed in this section are provided

n Tables 5 and 6.

. Hand gesture databases

Researchers from University of Cambridge and Microsoft Research

ave conducted a study [126] on how to instruct subjects to develop

est representative gesture datasets for training machine learning al-

orithms. They used two measures, correctness and coverage, to eval-

ate how good the dataset is in representing real world data from

deployed system. The measure correctness refers to the similarity

f subject movements to what the system developer needs them to

erform. It depends on the understanding by the subject. The measure

overage refers to completeness of the dataset in representing natural

nd possible variations of associated movement patterns. Coverage is

ecided by the freedom given to the subject. They investigated the

ost appropriate semiotic modality of instructions and their order

o achieve the best correctness and coverage, both for the dataset and

he learnt gesture recognition system. The modalities investigated in-

lude descriptive text, static image sequence, and video. Video fol-

owed by text is selected as the best order of modality to facilitate

oth understanding and freedom of subjects.

Standard hand gesture databases are necessary for the reliable

esting and comparison of hand gesture recognition algorithms. The

vailability of hand gesture databases was limited till the year 2007

nd has been increased recently (Fig. 6). This section provides a

eview of publicly available hand gesture datasets. Table 7 lists hand

osture and gesture databases with the web-links for their down-

oad. Table 8 describes these datasets with details such as number

f classes, subjects, and samples available. The works utilized the

atasets are also included to facilitate possible comparative study.

total of 26 datasets2 are available at the publication time of this

eview.

.1. Sebastien-Marcel hand posture and gesture datasets

The dataset contains three hand posture datasets, the Jochen Tri-

sch Static Hand Posture Database [64], the Jochen Triesch Static

and Posture Database II [63], and the Sebastien Marcel Static Hand

osture Database [133], and one dynamic hand gesture database, the

ebastien Marcel Dynamic Hand Posture Database [15]. The hand

osture datasets have simple as well as complex backgrounds. The

ynamic gestures include various commanding signals for Click, Stop-

rasp-ok, Rotate, and No.

.2. Cambridge hand gesture dataset

This dataset contains hand posture images. It has sequences of

tatic images corresponding to hand motions, making it suitable for
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Table 5

RGB-D sensor based methods: a comparison.

Work S/D Sensor Features Classification method

[86] D CSEM Swissranger SR-2 Motion primitives Probabilistic edit distance classifier

[87] S ToF and RGB camera Haarlets NeN

[88] S Kinect Hand/finger shape Template matching using FEMD

[89] D Kinect Hand area Classifier based on topology

[90] D Kinect Extended-Motion-History-Image Maximum correlation coefficient

[91] S Kinect Depth pixel values Randomized classification forests and voting

[92] D Kinect Underlying geometry Least squares fitting

[93] D Kinect Euclidean and log-Euclidean distance NeN

[94] D PrimeSense 3-D camera Probabilistic 2D templates from trajectory MPLCS classifier

[95] D Kinect Spatial and motion features Conditional density propagation

[96] D Kinect Position, angle, and direction features Probability; pairwise coupling

[97] D Kinect Conditional distance Dynamic time warping

S—static, D—dynamic, ToF—time of flight, NeN—nearest neighbor, FEMD—finger earth mover’s distance, and MPLCS—most probable longest common subsequence.

Table 6

RGB-D sensor based methods: features of the algorithms and experimental methodology adopted in algorithm testing (list at bottom provides description of column titles). Features

in column 6 onwards are binary, 1 represents compliance of the work to the feature whereas 0 represents non-compliance.

Work Accuracy Class Subject Sample UI Spot BG Noise Scale Light Extensibility CV Data

[86] 92.9 4 10 3 0 1 0 0 0 0 0 0 0

[87] 99.54 6 1 29.17 0 1 1 1 0 0 0 0 0

[88] 93.9 10 10 1 0 1 1 0 1 1 0 0 0

[89] Not reported 9 1 1 0 1 0 0 0 0 0 0 0

[90] Not reported 8–15 Multiple (ChaLearn) Multiple (ChaLearn) 1 1 1 1 1 1 0 0 1

[91] 84.3 and 74.3 24 and 9 4 and 5 100 and 10 1 0 0 0 0 1 0 1 1

[92] 91.7 9 2 80 1 0 0 0 0 1 0 1 1

[93] 99.75 8 20 5 1 0 0 0 1 0 0 1 0

[94] 98.7 10 8 5 1 1 0 0 1 0 0 1 0

[95] 95.9 4 4 1 1 1 1 0 0 0 0 1 0

[96] 97.26 10 6 1 1 1 1 0 1 0 0 1 0

[97] 82 179 18 Multiple (ChaLearn) 1 0 1 1 1 1 0 1 1

Descriptions: Accuracy—recognition accuracy of the algorithm in %, Class—number of classes considered, Subject—number of subjects in the test set, Sample—number of test samples

per class per subject, UI—user independence, is the algorithm tested using different subjects than used for training, Spot—whether algorithm can spot gestures, BG—complex or

simple background, 1 for complex, Noise—presence of other human in the background, Extensibility—online or offline learning, 1 for online, Scale—variation in scale/size considered

or not, Light—variation in lighting considered or not, CV—cross validation or not, and Data—public or private dataset, 1 for public.
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esting dynamic hand gesture recognition algorithms [137]. The data

et consists of gestures defined by 3 primitive hand shapes (flat,

pread, and V-shape) and 3 primitive motions (leftward, rightward, and

ontract). The target task for this data set is to classify hand shapes

nd motions at the same time. The dataset has fairly large intra-class

ariations in spatial and temporal alignment of hand gestures.

.3. Gesture dataset by Shen et al.

The database is useful in testing both hand gesture and posture

ecognition algorithms, as it contains both movement patterns and

pecific hand shapes [35]. It has 10 classes of dynamic hand gestures

eg. move right, move left, rotate up) performed with 7 different hand

oses (eg. thumb, fist, all fingers extended), summing to 70 gesture

amples per subject.

.4. NATOPS aircraft handling signals database

The database includes 24 body and hand gestures, selected from

ATOPS (Naval Air Training and Operating Procedures Standardiza-

ion) aircraft handling signals [132]. A stereo camera was used to col-

ect the database. The database consists of videos with RGB and depth

ata. It also contains the extracted body and hand feature sets in Mat-

ab and CSV formats.

.5. Gesture dataset by Yoon et al.

This dataset contains 48 class alphabetical gestures (alphanu-

eric characters & graphic elements) recorded from 20 persons, 10

imes each gesture [11]. The dataset contains sequences of x–y coor-

inates representing unspotted gestures.
.6. Sebastien Marcel interact play database

The dataset contains 3D trajectories of segmented hand gestures,

ncluding the coordinates of head and torso [13,131]. Each trajectory is

tored as a text file in the dataset. The dataset has both single handed

like stop, point left, point right) and two handed (like swim, fly, clap)

estures. Gesture trajectories contain 3D coordinates of center of the

ead, two hands and the torso.

.7. Keck gesture dataset

The gesture dataset consists of 14 dynamic gestures, which are

ubsets of military signals (like turn left, go back, and speed up) [136].

he dataset is divided into two, training and testing sets. Training set

s captured using a fixed camera with the person viewed against a

imple and static background. Testing set is captured from a moving

amera, in the presence of background clutter and other moving

bjects.

.8. 6D motion gesture database

The 6D motion gesture database (6DMG) provides a compre-

ensive data of motion gestures, including the position, orientation,

cceleration, and angular speed [130]. The data is stored in raw binary

orm and the dataset comes with sample C++ programs to access and

isualize the data.

.9. ChaLearn gesture data

This dataset is created as part of a gesture recognition challenge;

he ChaLearn gesture challenge [82,90–92,100,127]. The ChaLearn
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Table 7

Publicly available hand gesture databases and their sources. See Table 8 for descriptions.

No. Name, year Source

1 ChaLearn gesturea datab, 2011 http://gesture.chalearn.org/data

2 MSRC-12 Kinect gesturea datasetb, 2012 http://research.microsoft.com/en-us/um/cambridge/projects/msrc12/

3 ChaLearn multi-modal gesture datab, 2013 http://sunai.uoc.edu/chalearn/

4 NUS hand posture dataset-II, 2012 http://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/

5 6D motion gesture databasea, 2011 http://www.ece.gatech.edu/6DMG/6DMG.html

6 Sebastien Marcel interact play database, 2004 http://www.idiap.ch/resource/interactplay/

7 NATOPS aircraft handling signals databasea, 2011 http://groups.csail.mit.edu/mug/natops/

8 Sebastien Marcel hand posture and gesture datasets, 2001 http://www.idiap.ch/resource/gestures/

9 Gesture dataset by Shen et al., 2012 http://users.eecs.northwestern.edu/˜xsh835/GestureDataset.zip

10 Gesture dataset by Yoon et al., 2001 Available on e-mail request to yoonhs@etri.re.kr

11 ChAirGest multi-modal datasetb, 2013 https://project.eia-fr.ch/chairgest/Pages/Download.aspx

12 Sheffield KInect Gesture Datasetb, 2013 http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm

13 Keck gesture dataset, 2009 http://www.umiacs.umd.edu/˜zhuolin/Keckgesturedataset.html

14 NUS hand posture dataset-I, 2010 http://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/

15 Cambridge hand gesture data set, 2007 http://www.iis.ee.ic.ac.uk/˜tkkim/ges_db.htm

16 Posture dataset by Ren et al.b, 2011 http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/HandGesture.htm

17 ColorTip datasetb, 2013 https://imatge.upc.edu/web/res/colortip

18 NYU Hand Pose Datasetb, 2014 http://cims.nyu.edu/˜tompson/NYU_Hand_Pose_Dataset.htm

19 General-HANDS data-setb, 2014 http://wildhog.ics.uci.edu:9090

20 VPU Hand Gesture dataset (HGds), 2008 http://www-vpu.eps.uam.es/DS/HGds/

21 Dataset by Kawulok et al., 2014 http://sun.aei.polsl.pl/˜mkawulok/gestures/

22 ASL Finger Spelling Datasetb, 2011 http://personal.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=FingerSpellingDataset

a All the gestures in this dataset are not hand gestures. Some are body gestures.
b These are RGB-D sensor based datasets, containing depth/skeletal information.

Table 8

Description of publicly available hand gesture databases (in the same order as in Table 7).

No. Description S/D Works

1 ChaLearn Gesture Challenge, 62,000 samples D [82,90–92,100,127]

2 12 classes, 30 subjects, 6244 samples D [126]

3 20 classes, 27 subjects, 13,858 samples D [128]

4 10 classes, 40 subjects, 2750 samples, complex background S [44,129]

5 20 classes, 28 subjects, 5600 samples D [130]

6 16 classes, 22 subjects, 50 samples/ subject D [13,131]

7 24 classes, 20 subjects, 9600 samples S and D [132]

8 Three hand posture datasets, with 10 (gray scale), 12 (color), and 6 (gray scale) classes. One hand gesture dataset with 4 classes S and D [63–65,133]

9 10 classes, 15 subjects, 1050 samples S and D [35]

10 48 classes, 20 subjects, 9600 samples D [11]

11 10 classes, 10 subjects, 1200 samples recorded with Kinect and inertial motion units D [134]

12 10 classes, 6 subjects, 2160 samples recorded with Kinect and RGB cameras D [135]

13 14 classes, 3 subjects, 126 training and 168 testing samples D [136]

14 10 classes, 1 subject, 240 samples, color as well as gray scale S [45]

15 9 classes, 2 subjects, 900 image sequences, with different illumination conditions S and D [137]

16 10 classes, 10 subjects, 1000 samples, color as well as depth maps, cluttered background S [88]

17 7 subjects, 9 classes, 7 training sequences of between 600 and 2000 depth frames S [118]

18 2 users, data from 3 Kinects (frontal and 2 sides), 72,757 and 8252 frames in training and test sets S [138]

19 22 sequences, different view-points, scales, poses, and occlusions S –

20 12 classes, 11 subjects, 1 video per gesture (252 frames) S [139]

21 32 classes, 18 subjects, gestures from Polish Sign Language and American Sign Language (ASL) S [140]

22 24 classes, 9 subjects, 65,000 samples S [141]

S—static, and D—dynamic.
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gesture data 2011 consists of a total of 62,000 samples. The dataset

from 20 subjects is grouped into different batches each with 100 sam-

ples. The data is recorded with Kinect camera and consists of both

RGB and depth videos of dynamic gestures. The dataset also 8000

samples of translated, scaled and occluded data.

In comparison to other datasets, the gestures in ChaLearn gesture

data are useful in wide application domains. It contains nine cate-

gories of gestures corresponding to various application domains. The

categories are (a) emblems (e.g. Indian Mudras), (b) illustrators (e.g.

Italian gestures), (c) regulators (gesticulations performed to accom-

pany speech), (d) pantomimes (gestures made to mimic actions), (e)

signs (from sign languages for the deaf), (f) signals (e.g. marshal-

ing signals to guide machinery or vehicle), (g) body language ges-

tures (e.g. scratching head, crossing arms), (h) actions (e.g. drinking

or writing), and (i) dance postures. Each set of data contains a num-

ber of actions presented separately once for training purpose. Com-

u

inations of one or more actions in a video sequence are available for

esting.

.10. ChaLearn multi-modal gesture data

In comparison to the ChaLearn gesture data, the testing using

haLearn multi-modal gesture data [128] is more challenging. The

haLearn multi-modal gesture data includes recording of continuous

equences, presence of distracter gestures, relatively large number of

ategories, lengthy gesture sequences, and gestures by a variety of

sers. Several modalities are provided in the data set, including au-

io, RGB, depth maps, user masks, and user skeletal model.

.11. ChAirGest multi-modal dataset

This data is acquired using a Kinect camera and 4 inertial motion

nits attached to the right arm and the neck of subjects. Gestures are

http://gesture.chalearn.org/data
http://research.microsoft.com/en-us/um/cambridge/projects/msrc12/
http://sunai.uoc.edu/chalearn/
http://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/
http://www.ece.gatech.edu/6DMG/6DMG.html
http://www.idiap.ch/resource/interactplay/
http://groups.csail.mit.edu/mug/natops/
http://www.idiap.ch/resource/gestures/
http://users.eecs.northwestern.edu/~xsh835/GestureDataset.zip
https://project.eia-fr.ch/chairgest/Pages/Download.aspx
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html
http://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/
http://www.iis.ee.ic.ac.uk/~tkkim/ges_db.htm
http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/HandGesture.htm
https://imatge.upc.edu/web/res/colortip
http://cims.nyu.edu/~tompson/NYU_Hand_Pose_Dataset.htm
http://wildhog.ics.uci.edu:9090
http://www-vpu.eps.uam.es/DS/HGds/
http://sun.aei.polsl.pl/~mkawulok/gestures/
http://personal.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=FingerSpellingDataset
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Fig. 5. Chart depicting the growing research efforts in hand gesture and posture recognition.
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3 Based on relevant articles covered in this review.
tarted from 3 different resting postures and recorded in 2 different

ighting conditions [134].

.12. Sheffield KInect gesture (SKIG) dataset

SKIG dataset [135] has 10 categories of hand gestures, recorded

rom 6 subjects using RGB and Kinect cameras. The dataset is

ecorded with 3 different backgrounds (wooden board, white paper,

nd paper with characters) and 2 illumination conditions (light and

ark).

.13. MSRC-12 kinect gesture dataset

Microsoft Research Cambridge-12 (MSRC-12) is a 12 class dynamic

esture dataset recorded using the skeletal data from Kinect [126].

he dataset consists of sequences of human movements, represented

sing body-part locations (20 skeletal joints). The data set includes

94 sequences and 719,359 frames.

.14. NUS hand posture dataset-I

The postures in this dataset are captured with various position and

ize of the hand within the image frame. Both color and gray-scale

ersions of the dataset are available. The hand postures in the dataset

ave less inter-class variation in appearance, which makes the recog-

ition task challenging [45].

.15. NUS hand posture dataset-II

This complex background hand posture dataset [44] has three

ubsets; A, B, and C. Subset A has images with complex natural back-

rounds and subset B has images with noises like body/face of the

osturer or a group of other human in the background. Subset C con-

ists of only background images (to be used as negative images for

and posture detection). The postures have various hand shapes and

izes, and are collected from subjects with various ethnicities. Subset

has 2000 images, B has 750 images, and C has 2000 images.

.16. Posture dataset by Ren et al.

This is a kinect posture dataset [88] with 10 classes. It contains

oth color images and depth maps. The dataset is collected under

luttered backgrounds.

.17. ColorTip dataset

The hand gesture annotation in this dataset [118] is done among

gesture classes and the dataset has strong intra-class variation. Fin-

ertip annotation is done in the dataset using colored gloves, easing

he detection and localization of fingertips.
.18. NYU hand pose dataset

The NYU hand pose dataset [138] has 72,757 and 8252 numbers of

rames in the training and test sets respectively. The data is captured

sing 3 Kinect sensors providing a frontal view and 2 side views.

raining set is captured form 1 user and test set is captured from 2

sers.

.19. General-HANDS data-set

This dataset contains a variety of 22 sequences, demonstrating dif-

erent view-points, scales, poses, occlusions, and camera technolo-

ies. The dataset is useful to evaluate hand detection and pose esti-

ation algorithms.

.20. VPU hand gesture dataset

This hand gesture dataset [139] contains 12 class data from 11 sub-

ects. Also it contains synthetically generated data and is useful in

valuating hand posture recognition algorithms.

.21. Dataset by Kawulok et al.

This dataset [140] contains gestures from Polish Sign Language

nd ASL, and is organized into three series acquired under different

onditions. It has up to 32 gesture classes acquired from 18 different

ubjects.

.22. ASL Finger Spelling Dataset

ASL Finger Spelling Dataset [141] consists of 24 hand postures, En-

lish letters from a to y except j. It contains an easy set, Dataset A,

aptured from 5 subjects without lighting variation, and a hard set,

ataset B, captured from 9 subjects with lighting variations.

.23. Other related hand databases

A few other publicly available databases relevant to hand ges-

ure recognition research are (a) MSRA Hand Tracking database

142] (http://research.microsoft.com/en-us/um/people/yichenw/

andtracking/index.html), (b) American Sign Language Lexicon

ideo Dataset [143] (http://www.bu.edu/asllrp/cslgr/), (c) Bosphorus

and databases (http://bosphorus.ee.boun.edu.tr/hand/Home.aspx),

nd (d) UNIGE-HANDS Hand detection dataset [159]

http://alejobetancourt.com/resume/dataset?id=1).

. Discussion

The chart in Fig. 5 shows the fast growth in hand gesture recogni-

ion research3 and that in Fig. 6 shows the growth in release of hand

http://research.microsoft.com/en-us/um/people/yichenw/handtracking/index.html
http://www.bu.edu/asllrp/cslgr/
http://bosphorus.ee.boun.edu.tr/hand/Home.aspx
http://alejobetancourt.com/resume/dataset?id=1
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Fig. 6. Chart depicting the growth in publicly available hand posture and gesture

datasets.
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gesture databases. In spite of these developments there are still unre-

solved challenges in gesture recognition. This section briefly reviews

some of the unresolved issues in the field, provides a comparison of

different approaches, and discusses a few future research directions.

5.1. Recognition of illustrators

The recognition of illustrators is challenging as the meaning of

these gestures is depended on the context. The context reference is

to be recognized in addition to the recognition of an illustrator ges-

ture. Among various illustrators, the pointing gesture is very useful in

applications like mobile robot commanding. Understanding a point-

ing gesture in 3D involves detection of the gesture, finding the hand

position, and identification of the pointed direction. The difficultly in

accurate estimation of the pointing direction makes pointing gesture

recognition challenging. Heuristic such as the direction at which the

subject looks is useful in recognizing a pointing gesture. For example

a line joining the center of the eyes with the tip of the index finger

can provide an estimate of the pointed direction, which in turn can

be utilized to identify the targeted point [144,145].

The pointing direction estimation using head-hand line is effec-

tive when pointing hand extends outwards and lies on the surface of

an imaginary hemisphere centered on the shoulder [146,147]. How-

ever this method is not effective in the case of compact pointing ges-

tures in which a person moves only the forearm. Such small pointing

gestures can be recognized by modeling the kinematic characteristics

of forearm and pointing finger [146]. Head orientation can be utilized

as a feature to improve the performance of pointing gesture recog-

nizer [148]. In comparison, the direction estimation using head-hand

line outperforms that based on orientation of the forearm, in the case

of a normal pointing gesture [148]. Raheja et al. [149] proposed an al-

gorithm for hand gesture pointing location detection which is based

on locations of head, shoulders and elbows. The method proposed

by Pateraki et al. [150,151] combined face pose and head orientation

with the hand direction.

5.2. Comparison of approaches, features, and classification methods

5.2.1. Appearance and model based approaches

Appearance-based approaches provide better realtime perfor-

mance compared to 3D hand model based approaches, as the image

feature extraction process is faster. Appearance-based models lead

to computationally efficient algorithms that work well under con-

strained situations, but lack the generality desirable for human com-

puter interaction. Appearance based methods mainly utilizes the 2D

shape data of the hand which is dependent on the viewing angle. The

use of such methods is limited by the viewing perspectives. A wide

class of hand gestures could be covered in 3D hand model based

approaches, as the models offer a way for elaborate hand gesture

modeling. However 3D models need large image database to cover

all the characteristic shapes and its variations under different views.

Matching the test image with all the models in the database is time
onsuming and computationally expensive which limits the usage of

D models for realtime applications.

.2.2. Features

Selectivity and invariance are two desired qualities for any im-

ge based pattern recognition process. Template based approaches

rovide good selectivity for shape patterns, lacking invariance. His-

ogram based approaches have invariance property. However his-

ogram approaches consider the integrated image information, which

akes it unsuitable for shape recognition tasks like hand posture

ecognition. Shape-texture patterns extracted using biologically in-

pired approaches [152] provide features having both selectivity and

nvariance, and are useful in hand posture recognition [44].

Orientation and angular features of gestures provide better invari-

nce compared to positional features. On the other hand positional

eatures are simple and can be extracted with better accuracy. Tex-

ure based features have the capability to capture spatial properties

etter in comparison to that captured by features such as color.

The RGB-D sensors enable extraction of invariant features in spite

f complex backgrounds and variations in scale, lighting, and view-

oints. The accurate depth data and position information form these

ensors speed-up the extraction of hand models, increasing the utility

f model based approaches.

.2.3. Classification methods

HMM based methods are effective and are widely used for HGR.

owever HMM based approaches require a large number of train-

ng samples and have the disadvantage of elaborate training proce-

ure. The computational costs of HMM based algorithms increase

ith the gesture vocabulary. In addition, the performance of HMM

ased algorithms reduces when there are variations between train-

ng and testing conditions. Finding the optimal parameter sets and

rajectory spotting for temporal segmentation are other bottlenecks

n using HMM.

The design of a TDNN is attractive as its compact structure econo-

izes on the weights, and makes it possible to develop more generic

eature detectors. The hierarchy of delays in TDNN optimizes these

eature detectors by increasing their scope at each layer. Temporal

ntegration of features at the output layer makes the network shift

nvariant (insensitivity to exact hand position). The total number of

eights in the network is relatively small since only a small window

f the input pattern is fed to TDNN at any instance. This helps to re-

uce the training time.

Graph based algorithms have the disadvantage of high computa-

ional complexity, which leads to its unsuitability for realtime ap-

lications. However each node in the graph can be modeled with a

unch of node features, which is useful in addressing issues due to

omplex backgrounds [63] and size or shape variations.

.3. Challenges and future research directions

Identification of the gesturing phase is a major challenge in HGR.

he presence of unpredictable and ambiguous non-gesture hand

otions makes the task challenging. Capability to reject unknown

lasses is one of the important requirements for an automatic ges-

ure recognizer. The threshold model concept introduced by Lee and

im [10] is useful for this purpose. The simultaneous gesture segmen-

ation and recognition algorithm proposed by Kim et al. [17] utilized

continuous probability estimation of gestures and non-gestures to

nd the start/ end points. Kang et al. [153] proposed a recognition

ased gesture spotting scheme to filter out unintentional movements.

ecently Yin et al. [154] used a concatenated HMM to perform ges-

ure spotting in continuous data stream, attaining encouraging ex-

erimental results.

The transition movements between adjacent gestures is an-

ther related issue in automatic recognition of continuous gestures,
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specially in applications like sign language recognition. Yang et al.

155] addressed the issue of handling movement epenthesis using a

ynamic programming based approach. Li et al. [156] proposed and

ompared three methods based on a gesture model for end point

ocalization. The methods investigated are a multi-scale search, dy-

amic time warping, and dynamic programming. In comparison, the

ynamic programming based method outperformed the other two.

nested, level-building based dynamic programming approach is

roposed by Sarkar et al. [157] to address the uncertainties of sign

oundaries in sentences.

Matching an image sequence to a model is a central issue in HGR.

ang et al. [158] proposed a minimization algorithm to match groups

f image primitives with statistical (HMM) as well as non-statistical

sample-based) models. The algorithm neither needed a perfect seg-

entation of the scene nor the tracking of features across frames.

The recent trend of One-shot-learning [90,97,100,101] in gesture

ecognition is promising. The one-shot-learning consists of learning

gesture by observing only one instance of that gesture, similar to

he learning in human. It has created the opportunity to take-up the

hallenge of extraction of discriminative features as well as design

f competitive classifiers using only one training example per class.

lso one-shot-learning facilitates critical comparison between ges-

ure recognition algorithms.

The hand gestures utilized in existing gesture recognition sys-

ems are limited to a carefully chosen vocabulary of symbolic ges-

ures (emblems and illustrators), mainly used for issuing commands.

ecognition of gestures from regulators, affect displays, and adaptors

Section 1) are necessary for the natural interaction between humans

nd machines. Algorithms with better invariance capabilities, having

he potential to recognize a wide number of classes without extensive

raining, are to be developed for making machines with capability to

nderstand human intentions and motion patterns better.

The impact of embodied interactions through gestures on enhanc-

ng visual processing and attention is least explored. For example ex-

loring how a waving hand captures human attention will be useful

or developing the attentional mechanism of an interactive robot. An-

ther future research direction is the exploration of primate brain ar-

as to develop computational models to imitate the gestural pattern

ecognition process.
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