
European Journal of Operational Research 218 (2012) 789–800
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.

Supply chain design considering economies of scale and transport frequencies

Kerstin Baumgartner a,1, André Fuetterer b,2, Ulrich W. Thonemann b,⇑
a McKinsey & Company, Inc., Herrengasse 1-3, 1010 Vienna, Austria
b Department of Supply Chain Management & Management Science, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
a r t i c l e i n f o

Article history:
Received 3 July 2009
Accepted 22 November 2011
Available online 1 December 2011

Keywords:
Supply chain design
Economies of scale
Transport frequencies
Iterative linearization
0377-2217/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.ejor.2011.11.032

⇑ Corresponding author. Tel.: +49 221 470 7935; fa
E-mail addresses: kerstin_baumgartner@mckins

andre.fuetterer@uni-koeln.de (A. Fuetterer), ulr
(U.W. Thonemann).

1 Tel.: +43 1 5370 6156; fax: +43 1 5370 6157.
2 Tel.: +49 221 470 7938; fax: +49 221 470 7950.
a b s t r a c t

In this paper we consider a 3-echelon, multi-product supply chain design model with economies of scale
in transport and warehousing that explicitly takes transport frequencies into consideration. Our model
simultaneously optimizes locations and sizes of tank farms, material flows, and transport frequencies
within the network. We consider all relevant costs: product cost, transport cost, tank rental cost, tank
throughput cost, and inventory cost. The problem is based on a real-life example from a chemical com-
pany. We show that considering economies of scale and transport frequencies in the design stage is cru-
cial and failing to do so can lead to substantially higher costs than optimal. We solve a wide variety of
problems with branch-and-bound and with the efficient solution heuristics based on iterative lineariza-
tion techniques we develop. We show that the heuristics are superior to the standard branch-and-bound
technique for large problems like the one of the chemical company that motivated our research.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Increasing globalization and vertical disintegration have
resulted in a large increase of transportation volumes. One of the
industries that has experienced radical changes is the chemical
industry. During the last decade, many companies in this industry
have established global production sites and use these sites to meet
global demands. Bayer (2007), for instance, planned to invest
1.8 billion USD into a Toluylen–Diisocyanat (TDI) production site
in Shanghai by 2009, doubling the production capacity of this site
to 300,000 tons per year. Similar investments have been made by
many other companies. BASF (2007) expanded the capacities of its
plants in Nanjing, Ludwigshafen, Antwerp, and Pasir Gudang from
2002 to 2006 and opened a new plant in Pudong in 2006. SABIC
(2006, 2007), the Saudi Basic Industries Corporation, a leading man-
ufacturer of chemicals, fertilizers, plastics, and metals, expanded its
global network by taking over the petrochemicals business of the
Dutch group DSM (2002), Huntsman’s UK petrochemical operations
(2006), and GE Plastics’ US-based operations (2006). In 2006, SABIC
used nearly 500 vessels to ship over 8.6 million metric tons of chem-
icals and gases to more than 90 ports in over 35 countries around the
world.

To match global demand with global supply, chemical compa-
nies use global supply chains. Typically, products are produced at
ll rights reserved.
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a few plants and are shipped to regional tank farms, where they
are stored. Customer demand is then met utilizing these regional
tank farms. In most situations, the tanks are owned by a tank farm
operator that rents the tanks to chemical companies. When design-
ing a supply chain, companies must make a number of decisions:
they must decide on the product mix and production quantities
at the production sites, on the locations of the tank farms and tank
capacities, and on the frequency of deliveries between plants.
These supply chain design decisions are medium- to long-term
decisions and are typically made annually or bi-annually.

The cost structure of chemical supply chains exhibits several
important economies of scale that have to be considered when
designing the supply chain. The most important ones are econo-
mies of scale in transportation quantities and economies of scale
in tank capacities. The freight rate between Europe and South
America, for instance, decreases from about 400 USD/m3 to
200 USD/m3 when the transportation volume increases from
1000 m3 to 10,000 m3. The costs of tank rentals exhibit similar
economies of scale. The rental cost of a typical 500 m3 tank, for in-
stance, is 54 USD/m3/year, whereas the cost of a 2000 m3 tank is
only 24 USD/m3/year.

Previous research has addressed some of the issues that are rel-
evant when designing supply chains like the one we consider.
However, to our best knowledge, there does not exist an approach
that considers all of the main characteristics simultaneously:
design of product mixes, transportation routes, transportation fre-
quencies, storage locations, and storage sizes, taking into account
non-linearities in transportation and storage costs. Since the deci-
sions greatly impact one another, they must be made simulta-
neously to obtain an efficient supply chain design and cannot be

http://dx.doi.org/10.1016/j.ejor.2011.11.032
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List of symbols

I set of plants
i plant
P set of products
p product
J set of tank farm locations
j tank farm location
K set of customers
k customer
t transport schedule
qð1Þijpt volume of product p shipped from plant i to tank farm j

on schedule t
Cip unit production cost of product p at plant i

ZP total production cost
Oð1Þt shipping frequency for transport from plants to tank

farm locations on schedule teZT1
ijt transport cost per trip between plant i and tank farm j

on schedule t
N set of cost levels/cost-function segments in eZT1

ijt

n cost level/cost-function segment in eZT1
ijt

Bð1Þijn quantity at which the nth breakpoint in eZT1
ijt occurs

V ð1Þijn slope/variable cost of the nth segment in eZT1
ijt

Fð1Þijn Y-intercept/fixed-cost equivalent of the nth segment ineZT1
ijt

ZT1 total annual cost for transport between plants and tank
locations

qð3Þjp volume of product p stored at tank farm location jeZS1
jp tank rental cost for product p at tank location j

M set of cost levels/cost-function segments in eZS1
jp

m cost level/cost-function segment in eZS1
jp

Bð3Þjm quantity at which the nth breakpoint in eZS1
jp occurs

V ð3Þjm slope/variable cost of the nth segment in eZS1
jp

Fð3Þjm Y-intercept/fixed-cost equivalent of the nth segment ineZS1
jp

ZS1 Total tank rental cost across all tank locations and prod-
ucts

Rj tank turn cost for tank location j per volume

ZS2 total tank turn cost across all tank locations and prod-
ucts

H annual inventory holding cost rate
ZS3 total inventory holding cost across all tank locations and

products
ZS total storage cost
O(2) shipping frequency for transport from tank farm loca-

tions to customers
qð2Þjkp volume of product p shipped from tank farm j to cus-

tomer keZT2
jk transport cost per trip between tank farm j and cus-

tomer k
V ð2Þjk slope/variable cost in eZT2

jk

Fð2Þjk Y-intercept/fixed-cost in eZT2
jk

ZT2 total annual cost for transport between tank locations
and customers

Z(q) general cost function (for explanatory purpose)
q quantity (explanatory)
Bn quantity at which the nth breakpoint in Z(q) occurs
Vn slope/variable cost of the nth segment in Z(q)
Fn Y-intercept/fixed-cost equivalent of the nth segment in

Z(q)
qn quantity in the nth segment of Z(q)
xn binary decision variable, 1 if qn > 0, otherwise 0
Dkp demand for product p from customer kbZT1 linearized version of eZT1bZS1 linearized version of eZS1bZS linearized version of ZSbZT2 linearized version of eZT2

Wð1Þ
ijt mixed-cost coefficient in bZT1

Wð2Þ
jk mixed-cost coefficient in bZT2

Wð3Þ
jp mixed-cost coefficient in bZS1

hð1Þij total flow of all products from tank farm j to customer k
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made independently. The main contribution of the paper is that it
provides an approach for modeling and solving such complex sup-
ply chain design problems with economies of scale and transport
frequencies and that it provides numerical results from a real-
world application.

The resulting model is a non-convex piecewise linear network
flow problem, which is known to be NP-hard (e.g. Kim and Pardalos,
2000b). We apply the technique of Balakrishnan and Graves (1989)
to state our model as a mixed-integer program. To solve problems
of realistic size efficiently, we developed new heuristic solution
methods. Our work is based on a project for a chemical company
that redesigned its sea freight supply chain and we base our numer-
ical analyses on data of this company. However, the application of
the model and the solution approaches are not limited to this set-
ting. They can also be used for designing supply chains in other
industries that exhibit similar characteristics as the chemical indus-
try, such as the coal, metal, stone, oil, and gas industries.

The remainder of the paper is organized as follows. In Section 2,
we review the relevant literature. In Section 3, we model the sup-
ply chain design problem mathematically. We place particular
emphasis on modeling non-linearities in costs accurately and on
incorporating delivery frequencies as decision variables. In Section
4, we develop several heuristics for solving real-world supply chain
design problems. We also show how the optimal solutions can be
computed for small to medium-sized problems and how a lower
bound on the performance of the optimal policy can be computed.
In Section 5, we solve a number of problems and compare the
performances of the heuristics. Our results indicate that the heuris-
tics generate solutions that are close to optimality. We also show
the advantages of our comprehensive model versus simplified
models. In Section 6, we draw conclusions.
2. Literature review

Related to our research are the literature on supply chain design
models with non-linear storage cost and linear transportation cost,
models with linear storage cost and non-linear transportation cost,
and models with non-linear storage and non-linear transportation
cost. We review the corresponding literature in this section.

Models with non-linear storage cost and linear transportation cost
have been developed for uncapacitated and capacitated sites. Feld-
man et al. (1966) introduced an uncapacitated model that they
solved with add and drop heuristics. Refinements of the add and
drop heuristic for uncapacitated problems have been developed
by Spielberg (1969a,b), Drysdale and Sandiford (1969), Khumawala
and Kelly (1974), and Whitaker (1985). Baxter (1984) used a con-
tinuous version of the problem, where warehouses can be located
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anywhere and are not restricted to a set of predefined potential
locations. He solved the problem with an adaptive location-
allocation and perturbation method. Optimal solution approaches
have been developed by Efroymson and Ray (1966), who used
branch-and-bound to solve the problem, and by Broek et al.
(2006), who relied on Lagrangian relaxation.

One of the first capacitated models was introduced by Kelly and
Khumawala (1982). They modeled the problem as a transportation
problem and solved this problem iteratively using marginal costs
that depend on the current volume allocated to each site. Iterative
linearization techniques have been used by Klincewicz (1985) for a
multi-product problem and by Klincewicz et al. (1988) for a multi-
period problem. Holmberg (1984, 1994) and Holmberg and Ling
(1997) developed various solution techniques for capacitated
problems with staircase warehousing cost functions. Correia and
Captivo (2003) solved a modular capacitated location problem
using Lagrangian relaxation. A stochastic model that also includes
inventory cost was analyzed by Romeijin et al. (2007).

Models with linear storage cost and non-linear transportation cost
treat warehousing cost quite differently. In a number of models,
warehousing cost is excluded. Klincewicz (1990) analyzed the
design of a multi-product, 3-echelon distribution system and
developed an exact solution for several special cases. Lapierre
et al. (2004) considered a location model with comprehensive cost
functions, for instance taking into account full truckload discounts
and various transportation modes. They solved the model with a
combination of tabu and variable neighborhood search algorithms.
O’Kelley and Bryan (1998) analyzed a single product, multi-
echelon hub location problem with non-linear transportation cost
between hubs and solved a small problem with a commercial sol-
ver. Klincewicz (2002) applied a variety of solution approaches,
such as enumeration, tabu search, and greedy random adaptive
search to solve a hub location problem with hubs on two levels,
encouraging interhub flows through discounts. Kim and Pardalos
(2000a) developed a slope-scaling and domain contraction
approach for solving hub location problems with continuous piece-
wise linear cost functions. Kim and Pardalos (2000b) extended the
approach to discontinuous functions. A model that includes fixed
but no variable warehousing cost has been analyzed by Lin et al.
(2006). They determined transportation cost based on total arc
flow and assumed that it was independent of the order size.
Models that add linear warehousing cost in addition to a fixed
charge have been developed by Gümüs and Bookbinder (2004)
for a cross-docking model that combines less-than-truckload ship-
ments into full truckloads and by Syam (2002) for capacitated stor-
age locations. Syam (2002) also optimized transport frequencies.

Models with non-linear storage cost and non-linear transportation
cost were first analyzed by Baumol and Wolfe (1958). They ana-
lyzed a model with non-linear storage and transportation cost
and showed how locally optimal solutions can be determined. Their
model did not include inventory cost or replenishment frequencies.
Similar models were solved by Zangwill (1968), who proposed a
minimum cost network flow algorithm, and by Soland (1974),
who used a branch-and-bound algorithm for solving the problem.
Paraschis (1989) included inventory cost in his model but assumed
that replenishment frequencies are exogenously given. Fleisch-
mann (1993) expanded this model to a stochastic environment
with safety stock. Both, Paraschis (1989) and Fleischmann (1993),
used flow models and solved the problem heuristically.

The literature review shows that existing research has addressed
subsets of the factors that are relevant when designing supply
chains for situations like the one faced by the company that moti-
vated our research. However, previous research has not addressed
all of these simultaneously, i.e., optimization of product mix, loca-
tions, material flows, and transport frequencies in an environment
with economies of scale in transport and warehousing. We fill this
gap in this paper.
3. Model formulation

Subsequently, we will state the model of the supply chain we
consider: let I be the set of all plants indexed in i and P be the
set of all products indexed in p. Each plant in I can produce a subset
of products from P, which can be shipped via a set of J potential
tank farm locations indexed in j. From there, they can be shipped
to serve the demand of a set K of customers indexed in k. (Fig. 1).

In the application that motivated our research, the tank farms
are supplied by plants via sea transport, where the transportation
cost between plants and tank farms is highly non-linear. The prod-
ucts are then stored in the tanks of the tank farms. The unit rental
cost of large tanks is much less than the unit rental cost of small
tanks, i.e., the storage cost is highly non-linear. Customers are sup-
plied from tank farms via regional sea freight operators that expe-
rience economies of scale in terms of fixed-cost degression, albeit
with constant cost factors. We will use superscripts (1), (2), and
(3) to denote parameters and variables associated with transporta-
tion from plants to tank farm locations, transportation from tank
farms to customers, and storage at the tanks, respectively.
3.1. Transportation cost between production sites and tank farms

Products are shipped from production sites to tank farms, typi-
cally via liquid bulk ships. Since there exist large economies of
scale in transportation, transportation cost exhibits a highly non-
linear structure. A typical example is the transportation cost from
Rotterdam to Buenos Aires. The logistics service provider that is
currently used by the chemical company charges a fixed price of
454,300 USD for volumes of up to 1100 m3 and 413 USD/m3 for
volumes between 1100 m3 and 2000 m3. Volumes above 2000 m3

and below 5000 m3 receive an additional unit discount and are
priced at 227 USD/m3. Volumes above 5000 m3 receive a further
additional unit discount and are charged at 97 USD/m3. Note that
the discount only applies to the incremental volume, e.g., for a
shipping volume of 2500 m3, 1100 m3 are charged at a bulk rate
of 454,300 USD, 900 m3 are charged at 413 USD/m3 and 500 m3

are charged at 227 USD/m3. In practice, this type of discount is usu-
ally referred to as incremental discount. For this example, Fig. 2
shows how the transportation cost depends on the transportation
volume.

The volume per shipping depends in the chosen shipping fre-
quency. Therefore, it is important to include frequencies already
in the strategic planning of the supply chain in order to correctly
evaluate economies of scale and required tank sizes. Failing to
incorporate these factors can lead to suboptimal supply chain
designs, as we will show in Section 5.2. In our model, we will there-
fore use the notion of a set T of transport schedules indexed in t.
The transport schedule is an index that specifies the frequency at
which a tank farm is served from a plant. In theory, more than
one schedule could be used for a product along a certain route.
However, in practice we find that it is generally optimal to choose
one schedule in order to exploit economies of scale. Table 1 shows
the schedules that the chemical company has been considering and
reports the corresponding frequencies Oð1Þt of the shipments from
plants to tank farm locations. In the optimization process, different
frequencies can be chosen for different products, customers, and
plants.

We denote the volume of product p that are shipped from pro-
duction site i to tank farm j at a schedule t as qð1Þijpt . Since different
products are usually shipped in separate tanks but on a single ves-



Fig. 1. Schematic supply chain structure.

Fig. 2. Transportation cost between Rotterdam and Buenos Aires.

Table 1
Delivery schedules.

t 1 2 3 4

Frequency Bi-weekly Monthly Bi-monthly Quarterly

Oð1Þt
26/yr 12/yr 6/yr 4/yr
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sel, the freight rate is charged based on the total volume of all
products shipped per trip, i.e.,

P
pqð1Þijpt=Oð1Þt .

We model the transportation cost eZT1
ijt ðq

ð1Þ
ijptÞ per trip between pro-

duction sites i and tank farms j on transport schedules t as a piece-
wise linear function. We denote quantities at which breakpoints in
the cost function for transport from production site i to tank farm j
occur with Bð1Þijn , where n 2 {1, . . . ,N} refers to the cost level (i.e., the
segment of the piecewise linear function) and consecutively num-
bers the breakpoints. Since we consider an uncapacitated model,
we set Bð1ÞijN to a ‘‘Big M.’’ Let V ð1Þijn and Fð1Þijn denote the slope and the
intercept of the nth segment of this function. In our setting, V ð1Þijn

are the variable transportation costs per m3 from plant i to tank
farm j at cost level n and Fð1Þijn can be directly derived from the corre-
sponding fixed cost. Note that shipping companies charge each
booked schedule separately, meaning that when two schedules
happen to coincide, there is no extra discount given due to the
larger volume on this particular shipping. The two bookings are
charged as separate shippings. The transportation cost per trip from
a production site i to a tank farm j for a specific schedule t is

eZT1
ijt ðq

ð1Þ
ijptÞ ¼

Fð1Þijn þ V ð1Þijn

P
p

qð1Þ
ijpt

Oð1Þt

if Bð1Þij;n�1 <

P
p

qð1Þ
ijpt

Oð1Þt

6 Bð1Þijn

0 if
P

p
qð1Þijpt ¼ 0

8>><>>: 8i; j; t:

ð1Þ

The total annual transportation cost for all production sites i, tank
farms j, and transport schedules t can be calculated as

ZT1ðqð1ÞijptÞ ¼
X
i;j;t

eZT1
ijt ðq

ð1Þ
ijptÞO

ð1Þ
t

� �
: ð2Þ

We show how to transform Eq. (1) into mixed-integer form in
Section 3.5.

3.2. Production cost

The volume of product p that is produced at production site i
can be computed as

P
j;tq
ð1Þ
ijpt – which is the total volume of product

p shipped from a plant i to all tank farms j for all schedules t or, in
other words, the total outbound shippings of the respective plant.
Note that in general only one t will be active on a specific route for
a specific product so that economies of scale can be exploited,
although we do not include constraints to hinder more than one
transport schedule from being chosen. We sum over all t because
ships headed to different locations j can have different schedules.
Since different production sites have different labor costs, efficien-
cies, equipment, etc., the unit production cost differs according to
production site. Let Cip denote the unit production cost of product
p at site i. Then the total production cost ZP can be computed as

ZPðqð1ÞijptÞ ¼
X

i;p

Cip

X
j;t

qð1Þijpt

 !
: ð3Þ
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3.3. Storage cost

Liquids are shipped from production sites to tank farms, where
they are stored before distribution to the customers. A separate
tank is needed for each product to prevent liquids from mixing.
Three types of costs are incurred for storage: the cost for renting
a tank, the cost for tank turns, and inventory holding cost.

Tank rental cost is subject to economies of scale, since tank farm
owners charge lower fees per m3 for larger tanks than for smaller
tanks. The tank rental cost structure of the tank farm located in
the harbor of Durban in South Africa is a typical example where
unit tank rental cost is reduced by 50% if sufficiently large volumes
are rented. Table 2 shows the detailed rate structure.

We denote the amount of product p stored at tank farm location

j and thus the required tank size with qð3Þjp . Note that these are aux-
iliary variables, since the stored amount is equal to the size of all
shipments arriving at a tank within a shipping cycle, i.e.,P

i;t qð1Þijpt=Oð1Þt

� �
. Bð3Þjm denotes the storage quantities at which break-

points in the tank rental cost function of tank farm j occur, where
m 2 {1, . . . ,M} refers to the respective cost level and consecutively
numbers the breakpoints. Since we use an uncapacitated model,

we set Bð3ÞjM to a ‘‘Big M.’’ Tank rental cost at location j consists of

a fixed annual fee incurred per tank rented, Fð3Þjm , and of a variable

cost portion charged annually per m3 of the rented tank, V ð3Þjm . The
resulting tank rental cost for a location j and product p is given by

eZS1
jp ðq

ð3Þ
jp Þ ¼

Fð3Þjm þ V ð3Þjm qð3Þjp if Bð3Þj;m�1 < qð3Þjp 6 Bð3Þjm ;

0 if qð3Þjp ¼ 0;

8<: 8j;p: ð4Þ

In total, the tank rental cost across all tank locations j and products
p is calculated as

ZS1 ¼
X

j;p

eZS1
jp ðq

ð3Þ
jp Þ: ð5Þ

We show how to transform Eq. (4) into mixed-integer form in Sec-
tion 3.5.

Tank turn cost is charged on top of the rental fees. One tank turn
is included in the rental fee. For additional tank movements at
location j (i.e., inflows and outflows), a variable fee Rj based on vol-
ume is charged. The relevant quantity per location j and product p
is calculated by subtracting the included tank turn (i.e., qð3Þjp , the
size of the tank) from total throughput, i.e.,

P
i;tq
ð1Þ
ijpt . The resulting

cost for all locations j and products p is

ZS2ðqð1Þijpt; q
ð3Þ
jp Þ ¼

X
j;p

X
i;t

qð1Þijpt � qð3Þjp

 !
Rj

 !
: ð6Þ

Inventory holding cost is calculated based on average working
capital. The average volume of stored product p coming from pro-
duction site i is

P
j;t qð1Þijpt=ð2Oð1Þt Þ
� �

. To calculate the holding cost, we
need to obtain the monetary value of the average inventory level
based on the product cost Cip and charge an annual holding fee
H, which is given by the company’s cost of capital:
Table 2
Example warehouse rental rates.

Quantity Fixed rental rate Variable rental rate

Less than 900 m3 4800 USD 44 USD/m3

Between 900 m3 and 1350 m3 4800 USD 31 USD/m3

Greater than 1350 m3 4800 USD 22 USD/m3
ZS3ðqð1ÞijptÞ ¼
X

i;p

X
j;t

qð1Þijpt=ð2Oð1Þt Þ
� �

Cip

 !
H: ð7Þ

By adding the three components of the storage cost, we obtain the
total storage cost

ZSðqð1Þijpt; q
ð3Þ
jp Þ ¼ ZS1ðqð3Þjp Þ þ ZS2ðqð1Þijpt; q

ð3Þ
jp Þ þ ZS3ðqð1ÞijptÞ: ð8Þ
3.4. Transportation cost between tank farms and customers

Customers are supplied from tank farms on a fixed shipping
schedule. These shipping schedules are given by customer
demands. They are more frequent and volumes are smaller in com-
parison to the shipments from the plants to the tank farms. We use
the parameter O(2) to denote the number of shippings per year, i.e.,
we assume that all customers are served with the same schedule.
This assumption holds for the chemical company that motivated
our research, where customers are served with a weekly schedule.
We comment in Section 6 on how the model would change and
how it could be solved in situations where this assumption does
not hold. We denote the quantity of product p shipped from tank
farm j to customer k with qð2Þjkp. Different fixed and variable trans-
portation costs apply on each route from tank farm j to customer
k and we denote them with Fð2Þjk and V ð2Þjk , respectively. Note that
there are no volume discounts in the tariff structure. Economies
of scale only exist in the form of fixed-cost degression. We discuss
how volume discounts for this transport step could be incorpo-
rated in Section 6. Since multiple products p can be shipped on
one vessel by using separate tanks, the volume of each shipment
going from tank farm j to customer k can be computed asP

pqð2Þjkp

.
Oð2Þ. The resulting transportation cost from tank farm j to

customer k is

eZT2
jk ðq

ð2Þ
jkpÞ ¼

Fð2Þjk þ V ð2Þjk

P
p

qð2Þjkp

 ,
Oð2Þ

!
if
P

p
qð2Þjkp > 0;

0 otherwise;

8><>: 8j; k:

ð9Þ

The total transport cost from all tank farms to all customers can be
computed as

ZT2ðqð2ÞjkpÞ ¼
X

j;k

eZT2
jk ðq

ð2Þ
jkpÞO

ð2Þ: ð10Þ

In the next section, we will transform this notation into mixed-inte-
ger form, interpreting the function as a piecewise linear cost func-
Fig. 3. Example for modeling technique of piecewise linear functions.
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tion with one piece. Note that we include a charge for a fixed fee for
using a route. This cost structure models well the situation of the
chemical company, which uses a third-party shipping company
for serving its customers under a tariff with a fixed fee for each
delivery.

3.5. Linearization of transportation and storage cost

Parts of the supply chain costs stated before are characterized
by piecewise linear cost functions. We now introduce the general
method we use to model these piecewise linear cost functions in
mixed-integer form. This methodology was first proposed by Bala-
krishnan and Graves (1989). In general, let Z : R! R be an arbi-
trary, piecewise linear cost function of quantity q that consists of
N different, linear sections (i.e., cost levels), defined by

ZðqÞ ¼
Fn þ Vnq if Bn�1 < q 6 Bn;

0 if q ¼ 0;

�
ð11Þ

where 0 = B0 < B1 < � � � < Bn < � � � < BN denote the breakpoints
between the nth and (n + 1)th segment and Fn and Vn denote the
intercept and the slope of the nth segment. Fig. 3 gives an example
of such a function.

In order to transform Eq. (11) into mixed-integer form, we
introduce qn as the quantity in segment n, i.e.,

qn ¼
q if Bn�1 < q 6 Bn;

0 otherwise;
8n

�
ð12Þ

We also define a binary variable xn that, in our setting, represents
the decision to open or close some route or warehouse at cost level
n, i.e.,

xn ¼
1 if qn > 0;
0 otherwise;

8n:
�

ð13Þ

The mixed integer model that results for a given quantity q is

ZðqÞ ¼
X

n

ðFnxn þ VnqnÞ; ð14ÞX
n

qn ¼ q; ð15ÞX
n

xn 6 1; ð16Þ

qn 6 xnBn 8n; ð17Þ
qn P xnBn�1 8n; ð18Þ
qn P 0 8n; ð19Þ
xn 2 f0;1g 8n: ð20Þ

Function (14) calculates the cost for a piecewise linear cost struc-
ture depending on the volume. Constraint (15) states that the total
quantity q needs to be distributed among different cost levels n by
assigning portions of this quantity q to different qn. The cost level
essentially specifies which piecewise linear part of the cost curve
is used and depends on the volume. Constraint (16) states that at
most one xn may be set equal to 1. For functions that continuously
exhibit economies of scale, this constraint is not necessary because
it is always more favorable to pool volumes in order to capture
economies of scale. Constraint (17) states that the quantity assigned
to qn may not exceed the upper bound Bn of the cost function for the
respective cost level n. Similarly, Constraint (18) states that the
quantity may not be lower than the lower bound Bn�1 of the cost
function for the respective cost level n. (18) is only necessary for
non-concave functions. For concave functions, it is never optimal
to select a cost level lower than n for quantities in the range of cost
level n. Constraints (17) and (18) also force the xn that corresponds
to the qn > 0 to be set to 1. Constraints (19) and (20) are standard
non-negativity and integrality constraints. This model formulation
for piecewise linear functions automatically assigns the volume to
the correct portion of the cost function. We will apply this tech-
nique to transform Eqs. (1), (4), and (9) into mixed-integer form.
Next, we present the mathematical model of our supply chain
design problem.

3.6. Mathematical model

The chemical company was faced with the challenge of finding
the right trade-off between the four cost factors introduced above
in order to meet the demand Dkp of each customer k for all products
p at optimal cost. We will now describe the mathematical model
used to solve this complex problem.

The objective is to minimize all relevant supply chain costs:

min
qð1Þ

ijpt
;qð2Þ

jkp
;qð3Þ

jp

ZPðqð1ÞijptÞ þ ZT1ðqð1ÞijptÞ þ ZSðqð1Þijpt; q
ð3Þ
jp Þ þ ZT2ðqð2ÞjkpÞ; ð21Þ

subject to (3)–(10), where all transformations of cost functions into
mixed-integer form are performed along the logic of (14)–(20), and
subject toX

j

qð2Þjkp ¼ Dkp 8k;p; ð22ÞX
i;t

qð1Þijpt ¼
X

k

qð2Þjkp 8j;p; ð23Þ

qð3Þjp ¼
X

i;t

qð1Þijpt=Oð1Þt

� �
8j; p; ð24Þ

qð1Þijpt; q
ð2Þ
jkp; q

ð3Þ
jp P 0 8i; j; k;p; t: ð25Þ

The objective function (21) comprises the total supply chain cost.
Constraint (22) ensures that the annual demand of each customer
is met. It requires the sum of all shipments to the customer to equal
the respective customer’s demand. Constraint (23) ensures that
material inflows and outflows match for each tank farm. For each
tank farm, the amount of each product shipped to the tank farm
from all production sites must be equal to the amount of the prod-
uct shipped from this tank farm to all customers (24). Constraint
(25) is a standard non-negativity constraint.
4. Solution approach

We implement three types of solution approaches: one exact
solution method and two heuristic approaches based on different
linearization techniques. For the heuristic approaches, we use a
deterministic method and a randomized variant. To make the per-
formance of the different approaches comparable, tests are limited
to a run time of one hour.

4.1. Direct solution with a standard branch-and-bound code

The first possibility for solving the problem is using a commer-
cial mixed-integer solver. Next to the best integer solution found in
the given time frame of one hour, we also record the lower bound
supplied by the solver as a benchmark for all solution methods.
Throughout the optimization process, lower bounds are deter-
mined by the mixed-integer solver with LP relaxations for the sub-
problems of the branch-and-bound tree. The lower bound we refer
to is the lower bound given by the MIP solver after a run time of
one hour, i.e., after pruning the branch-and-bound tree.

4.2. Linearization by integrality relaxation

The first type of linearization technique relaxes all integrality
constraints in the mixed-integer formulation corresponding to
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Constraint (20) and introduces box constraints of form (26); all
other components of the model remain unchanged.

0 6 xn 6 1 8n: ð26Þ

Different forms of volume reallocations and drop mechanisms are
utilized to improve the solution. We implement a deterministic
heuristic (D1) and a heuristic with a random element (R1).

D1– deterministic relaxed MIP drop heuristic: The relaxed mixed-
integer model is solved with the CPLEX LP solver. Due to the
relaxation, the LP solver determines solutions that entail opening
fractions of tanks in a location. This leads to suboptimal and invalid
choices in terms of the part of the piecewise linear cost functions
utilized. To restore feasibility and integrality, we calculate the
correct costs, making sure that the non-linear cost functions are
utilized correctly, with Eqs. (1)–(5), and (8)–(10).

Since fractions of tanks are allowed in the relaxed model, which
makes it much cheaper to open tanks, there are too many open
tanks in the initial solution. A drop heuristic is employed to
improve the solution. Tank farms are sorted in ascending order
by throughput. Then, location by location, all open tanks at the
respective tank farm are fixed to closed and the modified relaxed
problem is solved again. In our experience, closing entire locations
instead of single tanks leads to better results and is quicker. Once
again, the reallocations to the optimal part of each piecewise linear
cost function are performed according to Eqs. (1)–(5), and (8)–(10)
thus also restoring integrality. If closing the tank farm has
improved the solution, it is kept closed. If there is no improvement,
the drop step is undone and we proceed with the next tank farm.
Once all tank farm locations have been analyzed in this manner,
a new sorted list is generated with the remaining open tank farms
and the entire process is repeated until no more improvements can
be achieved. Algorithm 1 summarizes the procedure.

Algorithm 1: Deterministic relaxed MIP drop heuristic

1: Relax integrality constraints
2: Solve LP
3: Calculate correct cost of original mixed-integer model
before relaxation

4: repeat
5: Sort open tank locations by throughput volume in
ascending order

6: for all Tank locations in list do
7: Close location
8: Solve LP
9: Calculate correct cost of original mixed-integer
model before relaxation

10; if Current solution < best solution then
11: Fix location to be closed
12: else
13: Re-open tank location
14: end if
15: end for
16: until No improvement or runtime > 1 hour

R1 – randomized relaxed MIP Drop heuristic: This heuristic works
like its deterministic counterpart D1, except that the tank farms in
the drop heuristic are not sorted in ascending order. Instead, they
are sorted randomly: Each tank farm is assigned a probability pro-
portional to its share of the total throughput of all tanks. Then, all
tank farms are sorted according to their probability and we com-
pute the cumulative probability. We generate a random number
u from the uniform distribution on the interval [0,1] and search
for the first tank farm in the list whose cumulative probability is
greater or equal to u. This tank farm is added to the final sorted list
and its probability is set to 0. The cumulative probabilities are
updated and the procedure is repeated until all tank farms have
been added to the final list. This probabilistic element reduces
the likelihood of getting stuck in local minima. The heuristic is
repeated until a run time of one hour is reached.

4.3. Linearization by model reformulation

For the second type of linearization technique, we remove all
integer variables from the problem formulation and use mixed-
cost coefficients that combine fixed and variable cost parts in one
coefficient. The resulting LP relaxations can be solved very quickly.
In our approach, we solve successive LP problems, in which we
iteratively update these cost coefficients based on the volume
allocated to a certain route or tank in the current LP solution.
The technique is similar to that found in Kim and Pardalos
(2000a,b), who apply it to hub location problems.

For the adapted problem formulation, all binary decision vari-
ables corresponding to xn in Model (14)–(20) are removed from
the problem. The piecewise linear cost functions Eqs. (1)–(5), and
(8)–(10) are replaced by linear functions (28)–(31) with coefficients

W ð1Þ
ijt ; W ð2Þ

jk , and W ð3Þ
jp . We use bZT1ðqð1ÞijptÞ; bZS1ðqð3Þjp Þ; bZSðqð1Þijpt ; q

ð3Þ
jp Þ, andbZT2ðqð2ÞjkpÞ to denote the cost components of the linearized model.

The modified objective function reads

min
qð1Þ

ijpt
;qð2Þ

jkp
;qð3Þ

jp

ZPðqð1ÞijptÞ þ bZT1ðqð1ÞijptÞ þ bZSðqð1Þijpt; q
ð3Þ
jp Þ þ bZT2ðqð2ÞjkpÞ; ð27Þ

where

bZT1ðqð1ÞijptÞ ¼
X
i;j;p;t

qð1ÞijptW
ð1Þ
ijt

� �
; ð28Þ

bZS1ðqð3Þjp Þ ¼
X

j;p

qð3Þjp W ð3Þ
jp

� �
; ð29Þ

bZSðqð1Þijpt; q
ð3Þ
jp Þ ¼ bZS1ðqð3Þjp Þ þ ZS2ðqð1Þijpt; q

ð3Þ
jp Þ þ ZS3ðqð1ÞijptÞ; ð30ÞbZT2ðqð2ÞjkpÞ ¼

X
j;k;p

qð2ÞjkpW ð2Þ
jk

� �
: ð31Þ

The cost functions (3), (6), and (7) remain unchanged. We now no
longer need to linearize with the help of model (14)–(20), since
all cost functions are linear already. Constraints (22)–(25) remain
unchanged.

Observe that variable and fixed-cost parameters V ð1Þijn ; V ð2Þjk ;

V ð3Þjm ; Fð1Þijn ; Fð2Þjk , and Fð3Þjm are no longer used in the model formula-
tion. However, we need them when determining the values of
the corresponding linearized parameters W ð1Þ

ijt ; W ð2Þ
jk , and W ð3Þ

jp .
They contain the variable cost factor plus a portion of the fixed cost
resulting from spreading the fixed cost evenly across the current
volumes. They are updated after each optimization run based on
the volumes in the current LP solution. We include the index t in
W ð1Þ

ijt because it is necessary to track separate mixed-cost parame-
ters for each transport schedule in this heuristic. Similarly, we use
the index p in the variable W ð3Þ

jp because different mixed-cost levels
for tank rentals apply for different products, depending on the
quantity stored of each product.

Based on this method, we implement two heuristics. D2 is
deterministic whereas R2 has a random element.

D2– deterministic dynamic slope-scaling drop heuristic: To obtain
an initial solution, the mixed-cost coefficients are set to initial val-
ues according to Eqs. (32)–(34) and the linear model is solved. We
spread the fixed cost across the largest theoretically possible vol-
ume for the respective route or tank. This theoretical volume is
based on overall demand. For transport from production sites to
tank farms, this volume is calculated as total customer demand
divided by the number of shippings,

P
kpDkp=Oð1Þt . For transport
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‘‘temperature’’.
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from tank farms to customers, the maximum possible volume is
the respective customer’s demand across all products,

P
pDkp. For

storage at the tank farms, the largest possible volume per product
is the total demand for the respective product divided by the
smallest possible number of shippings,

P
kDkp=mintðOð1Þt Þ. Note that

the transport cost function from tank farm to customer only has
one piece.

W ð1Þ
ijt ¼ V ð1ÞijN þ

Fð1ÞijNP
kpDkp=Oð1Þt

8i; j; t; ð32Þ

W ð2Þ
jk ¼ V ð2Þjk þ

Fð2ÞjkP
pDkp

8j; k; ð33Þ

W ð3Þ
jp ¼ V ð3ÞjM þ

Fð3ÞjMP
kDkp=mintðOð1Þt Þ

8j; p: ð34Þ

After solving the LP, the mixed-cost coefficients are updated
depending on the volume allocated to each route and on the size
of the rented tanks at each tank farm location according to Eqs.
(35)–(37). These equations essentially calculate the total volume
allocated to the route or tank and then spread the fixed cost equally
across this volume, adding this fixed-cost portion to the variable
cost. The result is a ‘‘variable’’ cost factor that actually also contains
the relevant fixed-cost portion for the current volume. Note that
cost factors remain unchanged for those routes and tanks to which
no volume was allocated in the current run, i.e., the cost factor from
the current run is also used for the following run.

When determining the cost factor W ð1Þ
ijt for transport from plants

to tank farms, we distinguish between used and unused schedules
on those routes that are currently in use. For schedules currently in

use
P

pqð1Þijpt > 0
� �

, we use the volume transported on this route per

trip,
P

pqð1Þijpt=Oð1Þt , to determine the correct cost level. To facilitate
switching from one transport schedule to another in the optimiza-
tion process, we assign all unused schedules on a routeP

pqð1Þijpt ¼ 0
� �

with the theoretical cost for that route that would

apply if all the volume on the route across all schedules were allo-
cated to the respective schedule. We use the auxiliary variable

hð1Þij ¼
P

p;tq
ð1Þ
ijpt to calculate the total material flow of all products

p from plants i to tank farms j irrespective of schedule t. To evalu-
ate the cost level, we calculate the theoretical volume per trip,

hð1Þij =Oð1Þt for each unused schedule. This pooling of volumes facili-
tates switching to another schedule in the next iteration because
alternative, currently unused schedules are also assigned attractive
costs. It is important to differentiate between used and unused
schedules to ensure that the correct transportation cost is used
when calculating the cost for the routes actually in use.

W ð1Þ
ijt ¼

V ð1Þijn þ
Fð1Þ

ijnP
p

qð1Þ
ijpt
=Oð1Þt

if
P

p
qð1Þijpt >0 and Bð1Þij;n�1 <

P
p

qð1Þijpt=Oð1Þt 6Bð1Þijn

V ð1Þijn þ
Fð1Þ

ijn

hð1Þ
ij
=Oð1Þt

if
P

p
qð1Þijpt ¼0 and Bð1Þij;n�1 <hð1Þij =Oð1Þt 6Bð1Þijn

unchanged otherwise

8>>>>><>>>>>:
8i; j; t;

ð35Þ

To determine the cost factor W ð2Þ
jk for transport from tank farms to

customers, we first check which routes are in use in the current

solution
P

pqð2Þjkp > 0
� �

. For these routes, we spread the fixed cost

across the total volume per shipping,
P

pqð2Þjkp=Oð2Þ.

W ð2Þ
jk ¼

V ð2Þjk þ
Fð2Þ

jkP
p

qð2Þ
jkp
=Oð2Þ

if
P

p
qð2Þjkp > 0

unchanged if
P

p
qð2Þjkp ¼ 0

8>><>>: 8j; k; ð36Þ
To calculate the cost factor W ð3Þ
jp , we determine the correct cost level

for the storage volume qð3Þjp and spread the corresponding fixed cost
across this volume.

W ð3Þ
jp ¼

V ð3Þjm þ
Fð3Þ

jm

qð3Þ
jp

if Bð3Þj;m�1 < qð3Þjp 6 Bð3Þjm

unchanged ifqð3Þjp ¼ 0

8><>: 8j;p: ð37Þ

After each iteration, the open tank farms are sorted in ascending
order by throughput volume. Location by location, all the tanks at
each tank farm are closed and the problem is solved again. The
mixed-cost coefficients are updated according to the scheme
described above. If there is an improvement, the tank farm is fixed
closed and the updated cost coefficients are kept. Otherwise, the
drop step is undone, the previous cost coefficients are restored,
and we proceed with the next tank farm on the list. Once all tank
farms have been checked in this manner, a new sorted list with
the remaining open tank farms is generated and the whole process
is repeated until no more improvements can be achieved. After the
drop mechanism terminates, all variables are freed (i.e., no tank
farms are fixed closed anymore) and the model is solved once more.
Again, if there is a cost improvement, the solution and the updated
cost coefficients are kept. This process is repeated until the solution
does not change anymore or until a run time of one hour is
exceeded. Algorithm 2 provides an overview of the procedure.

Algorithm 2: Deterministic dynamic slope-scaling drop
heuristic

1: Initialize coefficients, i.e. Wð1Þ
ijt ;W

ð2Þ
jk ;W

ð3Þ
jp

2: Solve LP
3: Update coefficients
4: repeat
5: repeat
6: Sort open tank locations by throughput volume in
ascending order

7: for all Tank locations in list do
8: Close location
9: Solve LP

10: Update coefficients
11: if Current solution < best solution then
12: Fix location to be closed
13: else
14: Re-open tank location
15: Restore coefficients
16; end if
17: end for
18: until No improvement or runtime > 1 hour
19: Unfix all tank locations
20: Solve LP
21: Update coefficients
22: until No improvement or runtime > 1 hour
R2 – randomized dynamic slope-scaling drop heuristic: This
approach works like the deterministic heuristic D2, but occasion-
ally solutions that increase costs are kept in the drop heuristic in
order to leave local optima in pursuit of the global optimum. The
approach is inspired by Simulated Annealing (Kirkpatrick et al.,
1983).3

Let the difference between the current solution Zcur and the best
solution so far Zmin be D = Zcur � Zmin. The probability that a solu-
tion is accepted is



Fig. 4. Overview of locations of real-life supply chain.

K. Baumgartner et al. / European Journal of Operational Research 218 (2012) 789–800 797
probðacceptÞ ¼
1 if D < 0;
e�D=g if D P 0;

�
ð38Þ

where g is a control parameter. It determines the probability of non-
improving solutions being accepted. We tested different values for g
and found 0.06% of the current best solution to be effective. We
found that leaving the parameter g constant worked well.

After each drop-step, D is calculated and the probability of
accepting is determined. The decision on acceptance is made with
the help of a generated random number. If a solution is accepted,
the mixed cost coefficients associated with it are kept and the tank
farm closed in the drop step is fixed closed. The heuristic termi-
nates after a run time of one hour.
5. Computational results

We base all our computations on data from the chemical com-
pany. The company operates 2 plants, uses 35 potential tank farms,
serves 57 customer locations, and offers 38 products. Fig. 4 gives an
overview of the relevant locations. Based on the data characteris-
tics and data structure of the real-life problem, we create a large
variety of test problems of different sizes. We coded our models
and algorithms in CPLEX 12.1 and run the code on an Intel Xeon
5500 processor running at 2.66 GHz with 4 GB of memory. In Sec-
tion 5.1, we test our solution approaches on differently sized prob-
lems, conducting extensive tests on the performance of our
Table 3
Characteristics of random test problems for tests on heuristic performance.

Problem # Number of variables Thereof binary PL

1 73,232 4324 2
2 121,626 6264 2
3 186,340 8540 2
4 329,120 12,320 3
5 541,350 17,100 4
6 912,500 24,250 5
7 1,580,760 36,360 7
8 2,912,000 55,300 10
9 4,794,720 77,920 13

10 7,689,600 102,600 15
heuristics. In Section 5.2 we compare our comprehensive model
with simplified formulations for different problem sizes.

5.1. Comparison of exact and heuristic solution approaches

Small and medium-sized problems can be solved well using an
MIP solver. However, as problems grow, the MIP solver becomes
less effective. Some very large problems cannot be solved using
an MIP solver at all due to memory restrictions. Hence, heuristics
like those introduced in Section 4 are needed. To analyze the per-
formance of the various approaches, we create a number of test
problems that are based on the data of the chemical company.
The characteristics of the problems are summarized in Table 3.
We generate 20 test problems per problem size, thus testing 240
different data sets overall.

We solve each problem with the MIP solver and with all heuris-
tics, limiting the run time to one hour for all approaches. The
results are summarized in Table 4. The lower bound we refer to
in the table is the lower bound given by the MIP solver after one
hour run time, i.e., after pruning the branch-and-bound tree. The
MIP solver uses LP relaxations. Note that for problem 10, the MIP
solver could not generate the problem due to memory limitations.
We thus used the initial LP relaxation of the problem without
pruning the branch-and-bound tree as a lower bound. Time refers
to the convergence time (i.e., run time at which the best solution is
found).
TF CU PR T B1 B3

23 40 28 8 4 3
29 50 34 8 4 3
35 60 40 8 4 3
40 65 45 9 4 3
45 70 50 10 4 3
50 80 55 12 4 3
60 90 60 12 4 3
70 100 70 12 4 3
80 110 80 12 4 3
90 120 100 12 4 3



Table 4
Average gap of solutions to lower bound and best known solution and average convergence time. Results for best solution approach in bold.

Problem MIP solver D1 R1

Gap to LB
[%]

Gap to best sol.
[%]

Time
[seconds]

Gap to LB
[%]

Gap to best sol.
[%]

Time
[seconds]

Gap to LB
[%]

Gap to best sol.
[%]

Time
[seconds]

1 0.05 0.00 3583 0.24 0.19 9 0.21 0.15 2213
2 0.10 0.00 3600 0.27 0.17 20 0.23 0.12 2244
3 0.16 0.00 3600 0.28 0.12 39 0.26 0.10 2169
4 0.22 0.00 3600 0.46 0.23 73 0.41 0.19 2260
5 0.38 0.00 3600 0.71 0.33 161 0.63 0.25 2349
6 0.45 0.00 3600 0.80 0.35 250 0.72 0.27 2405
7 1.60 0.90 3600 1.03 0.34 492 0.95 0.25 2516
8 1.72 0.97 3600 1.17 0.43 1190 1.10 0.35 2798
9 3.54 2.71 3600 1.31 0.50 2378 1.26 0.45 2891

10 n/a n/a n/a 1.33 0.50 3600 1.27 0.44 3591

D2 R2

Gap to LB [%] Gap to best sol. [%] Time [seconds] Gap to LB [%] Gap to best sol. [%] Time [seconds]

1 0.16 0.11 3062 0.17 0.12 3600
2 0.20 0.09 2885 0.20 0.10 3600
3 0.25 0.10 3068 0.27 0.12 3600
4 0.33 0.11 2911 0.35 0.12 3600
5 0.50 0.12 3274 0.53 0.14 3600
6 0.56 0.11 3271 0.59 0.14 3600
7 0.70 0.01 3477 0.72 0.03 3600
8 0.75 0.01 3484 0.77 0.02 3600
9 0.81 0.01 3600 0.81 0.01 3600
10 0.87 0.04 3600 0.83 0.00 3600

Fig. 5. Linearization technique for transport cost from plants to tank farms.
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To evaluate the quality of the heuristics, we compare them in
terms of solution quality and speed. In terms of solution quality,
Table 5
Comparison of different models for random test problems.

Prob.
#

No. of
variables

Thereof
binary

PL TF CU PR T B1 B3 Opt. ga
(%)

1 9220 970 2 10 20 15 4 4 3 0.0

2 51,888 3588 2 23 40 28 4 4 3 0.2

3 140,420 7420 2 35 60 40 4 4 3 0.2

4 218,720 9920 3 40 65 45 4 4 3 0.4

5 321,030 12,780 4 45 70 50 4 4 3 0.4

PL. . . plants, TF. . . tank farms, CU. . . customers, PR. . . products, T. . . transport schedule
warehousing cost function.
the MIP solver finds the best solutions of all approaches analyzed
for small and medium-sized problems (Problems 1–6). For larger
problems, heuristics D2 and R2 find lower cost solutions than the
MIP solver. The largest problem, problem 10, cannot be solved
using the MIP solver due to memory restrictions. The numerical
analyses suggest that the MIP solver is the best choice for small
and medium sized problems, but that the heuristics are a better
choice for large problems.

We also compared the performances of four heuristics. The
numerical results show that heuristics D2 and R2 achieve higher
quality solutions than heuristics D1 and R1. This result is not sur-
prising, because D2 and R2 model economy of scale effects more
sophisticatedly than heuristics D1 and R1. Our numerical results
suggest that the performance differences between both heuristics
are small, but that D2 usually outperforms R2, though only margin-
ally. However, heuristic D1 can be beneficial in situations where
problem sizes are small and run times are critical. For small and
medium-sized problems, D1 achieves reasonably good solutions
at low run times.

To conclude our insights concerning the numerical analyses: for
small and medium-sized problems, the MIP solver seems to be the
best choice, but for larger problems D2 is superior.
p Solution w/ M1 D M2 vs M1 D M3 vs M1

388 (millon
dollar)

+0.7 (millon dollar)
(0.18%)

+2.1 (millon dollar)
(0.54%)

1579 (millon
dollar)

+1.1 (millon dollar)
(0.07%)

+3.4 (millon dollar)
(0.22%)

3464 (millon
dollar)

+1.5 (millon dollar)
(0.04%)

+5.0 (millon dollar)
(0.14%)

4300 (millon
dollar)

+1.4 (millon dollar)
(0.03%)

+7.1 (millon dollar)
(0.16%)

4903 (millon
dollar)

+1.9 (millon dollar)
(0.04%)

+10.1 (millon dollar)
(0.21%)

s, B1. . . pieces of transport cost function from plant to tank farm, B3. . . pieces of



Fig. 6. Average cost disadvantage of models M2 and M3 over M1.
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5.2. Effect of problem formulation on supply chain performance

In this section, we analyze the benefit of using a model that in-
cludes transport frequencies and non-linear cost functions as
opposed to models that ignore some or all of these aspects. We refer
to our comprehensive model as M1. We use two simple comparison
models, M2 and M3. Model M2 contains cost functions that ignore
quantity discounts (i.e., with the same fixed and variable cost factor
irrespective of volume). Transport frequencies are optimized in this
model. Model M3 ignores quantity discounts and does not optimize
transport frequencies. In M3, only one transport frequency is possi-
ble. We choose the transport frequency most heavily used in the
solution obtained by model M1 when testing M3. Both M2 and
M3 do not consider quantity discounts. It is thus necessary to apply
some linear approximation to the cost functions. We approximated
the original, piecewise linear cost functions Z(q) using the chord
between the points (0;F1) and (BN;Z(BN)), i.e., averaging the variable
cost portion over the complete domain. See Geoffrion (1977) for a
similar technique. We tested several other naı̈ve linearization
methods, but found this one performed best. Fig. 5 provides an
example of this technique for eZT1

ijt , the transport cost from plants
to tank locations. We hence reformulate the model using these cost
functions instead of the complex non-linear versions introduced in
Section 3.

We test five data sets each for five different problem sizes, rang-
ing from small to large. Our objective is analyzing the effect of the
model complexity on performance. To isolate this effect from other
effects, we solve all problems with a standard branch-and-bound
code. Due to the size of the problems, solving to optimality is not
feasible within a reasonable time for all problem sizes. Table 5
gives an overview of the problem sizes analyzed, the optimality
gap we deemed acceptable for our calculations, the cost of the best
solution obtained with M1, and the absolute and relative cost dis-
advantage obtained with M2 and M3.

We evaluate the solutions obtained by model M2 and M3 using
the original cost structures of model M1. Our experiments show
that model M1 leads to substantial cost savings over the simplified
models. For example, for a problem with 4 plants, 45 tank farms, 70
customers, 50 products, and 4 transport schedules, M1 has cost
advantages amounting to up to 10 million USD per year over M3.
Cost advantages over model M2 still amount to up to 2 million
USD per year. Fig. 6 gives an overview of the average results.

6. Conclusion

In this paper, we have developed a supply chain design model
exhibiting economies of scale in transport and warehousing that
explicitly takes transport frequencies into consideration. As our
tests on real data show, failing to consider economies of scale
and transport frequencies leads to significantly higher costs. Due
to their mixed-integer nature, realistically sized problems are very
time consuming to solve optimally. For very large problem
instances, they are even impossible to solve with standard optimi-
zation software. We have developed two solution heuristics with
deterministic and stochastic variants based on iterative lineariza-
tion techniques, exploiting the efficient optimization methods
available for linear problems. While standard branch-and-bound
codes perform well on small to medium-sized problems, like the
problem that motivated our research, our heuristics outperform
them in terms of solution quality for large problems within the
set time limits. Regarding solution time, our heuristics are superior
even for small problems.

While we assumed an uncapacitated supply chain, there can
exist capacity limits on production output, vessel size, and tank
size in real-life situations. The capacitated case can be easily imple-
mented. The model formulation requires no adaptation at all. The
upper bound of the respective cost functions is simply set to the
capacity limit instead of a ‘‘Big M.’’ The heuristics can also deal
with capacitated problems with some alterations to ensure that
the problem does not become infeasible by dropping tank farms
from the solution.

Different supply chain structures with elements such as cross-
docking or the possibility of direct deliveries from plants to cus-
tomers can also be included in the model. Both require additional
constraints. In the cross-docking case, we need to ensure that the
transport schedules from the plants to the cross-docks are the
same as those from the cross-docks to the customers. For direct
deliveries, a constraint is needed to exclude shipping schedules
that do not comply with customer demands.

In some situations, volume discounts also apply to the second
transport step from tank farm to customer. For example, this
may be the case for problems where this transport step is per-
formed using trucks, where discounts already play a role for smal-
ler quantities than in sea transport. In this case, the cost function in
the model formulation is replaced with a piecewise linear function.
In general, many different kinds of cost functions can be used in
our model since concavity is not required. This includes staircase
functions, functions exhibiting diseconomies of scale, etc.

In our model, transport frequencies for shipments from tank
farms to customers are fixed to the same schedule for all custom-
ers. However, the model and the proposed solution approaches can
be adjusted to scenarios with different shipping schedules for dif-
ferent customers by replacing the parameter O(2) with Oð2Þk , thus
feeding a different schedule into the model for each customer.
Additional constraints are needed to ensure that the transport
schedules from plants to tank farms are in sync with those from
tank farms to customers. Schedules are in sync when transport fre-
quencies from tank farms to customers are a multiple of transport
frequencies from plants to tank farms (e.g., delivery from tank
farms to customers every week; delivery from plants to tank farms
every four weeks). Otherwise, situations may arise where an insuf-
ficient quantity of chemicals is available at a tank farm when a
shipping to customers from this tank farm is due. Taking our think-
ing one step further, it is also possible to optimize transport
frequencies for the second transport step: from tank farms to cus-
tomers. In this case, the index t is added to the decision variables
for this transport step. Again, constraints to ensure the synchroni-
zation of schedules between transport from plants to tank farms
and transport from tank farms to customers are necessary.
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