
2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, TBD-2016-07-0141 1

Handling Big Data Using a Data-Aware HDFS
and Evolutionary Clustering Technique

Mustafa Hajeer, Member, IEEE, and Dipankar Dasgupta, Fellow, IEEE

Abstract— The increased use of cyber-enabled systems and Internet-of-Things (IoT) led to a massive amount of data with
different structures. Most big data solutions are built on top of the Hadoop eco-system or use its distributed file system (HDFS).
However, studies have shown inefficiency in such systems when dealing with today’s data. Some research overcame these
problems for specific types of graph data, but today’s data are more than one type of data. Such efficiency issues lead to large-
scale problems, including larger space required in data centers, and waste in resources (like power consumption), that in turn
lead to environmental problems (such as more carbon emission) [1], as per scholars. We propose a data-aware module for the
Hadoop eco-system. We also propose a distributed encoding technique for Genetic Algorithms. Our framework allows Hadoop
to manage the distribution of data and its placement based on cluster analysis of the data itself. We are able to handle a broad
range of data types as well as optimize query time and resource usage. We performed our experiments on multiple datasets
generated via LUBM.

Index Terms— Clustering methods, Distributed Computing, Information Management, Optimization, Scalability

—————————— ——————————

1 INTRODUCTION

uilding a science out of data faces many challenges.
One major problem is that today's data is big, dy-

namic, and heterogeneous, collected from multiple sources
and frequently has no standard structure.

The majority of modern data analytics, management
tools and services are designed to use Hadoop Distributed
File System (HDFS) as a data warehouse; sometimes these
analytic tools use services provided by the Hadoop eco-
system for processing. From a price/performance stand-
point, Hadoop stands well.

The flexibility Hadoop provides to scale on data man-
agement problems is the reason why users perform ineffi-
ciently as per [1]. As per Huang et al. (a) the way users add
machines to overcome computation issues made them fo-
cus less on how their codes use resources, and (b) many
HDFS users are convinced that it is designed for batch pro-
cessing. Hence, it’s okay to have the codes running for a
long time in the background without even thinking about
the resources these processes are using.

In Bajda-Pawlikowski et al. work Hadapt [2], the authors
gave an example of such inefficiency, and overcame it for
structured data by a factor of 50. However, the enterprise
data explosion is mostly semi, multi and unstructured ac-
cording to Michael Walker in the survey he referenced in
his blog [3]. The International Data Corporation (IDC) es-
timates that the volume of digital data will grow 40 to 50
percent per year [4]. By 2020, IDC [4] predicts the number
will have reached 40 Zettabytes (ZB). By 2020, the world
will generate 50 times the amount of data and 75 times the

number of data containers [3]. There is an intense need for
the current data analytic tools to scale on big data and pro-
cess it efficiently to utilize the resources.

Rohloff et al. in 2011 [5] explained how to store graph
data in Hadoop using a representation of triples. They also
showed how to perform sub-graph pattern matching in a
scalable fashion on graphs of data. Even though the focus
was Semantic Web graphs, the techniques presented in the
paper are generalizable to other types of graphs. The sys-
tem SHARD was a result of that paper. Its techniques sup-
port Hadoop with the capacity to scale sub-graph pattern
matching.

In 2011, the work of Huang et al. on Scalable SPARQL
querying of large RDF graphs [1] showed an efficiency
problem in the techniques presented by Rohloff et al. [5].
Huang et al. [1] introduced a factor of 1340 times less effi-
cient in Rohloff et al. [5] than other alternative techniques
for processing sub-graph pattern matching queries within
a Hadoop-based system.

In some situations, Big Data solutions do not use HDFS
as a storage. However, they use the same methodology of
horizontal scalability. We proposed and experimented with
solutions that work on the core HDFS and can be general-
izable in those cases. Examples of such tools that use HDFS
as storage are Apache Spark [6] and Mesos [7]. An example
of a system that supports Hadoop through Yarn resource
negotiator and HDFS as a data source is HAMR [8]. Hence,
optimizing HDFS with the proposed data-aware HDFS
framework will lead to optimizing a large number of cur-
rent big data solutions.

Spark [6] and Storm [9] are the colorful new Big Data
toys. Apache Storm [9] is another big data solution that
uses yarn to run real-time analysis on unbounded streams
of data. Storm is building on what Hadoop did for batch
processing. Some efforts have been made on optimizing
Storm. An example of scheduling optimization is found in

————————————————

• Mustafa Hajeer Ph.D. at computer science department – The University
of Memphis, Memphis, TN 38152 USA (e-mail: mhhajeer@gmail.com).
Mustafa also works at Intel Data Center Group.

• Dipankar Dasgupta is a Professor of Computer Science at The University
of Memphis, a Director of Center for Information Assurance as well as a
Director of Intelligent Security Systems Research Laboratory, Memphis,
TN 38152 USA (e-mail: ddasgupt@memphis.edu).

B

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

2 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

[10], and extensions to Storm were proposed in [11]. Our
focus in this study is on optimizing HDFS as a data ware-
house (where data already resides on HDFS). However, in
some cases, Storm [9] processes streams of data and stores
the output results for further processing on HDFS, where
our approach facilitates the data-analytic packages around
Hadoop.

As concerns about semi/multi/unstructured data
growth and the ability to process such data efficiently be-
came a lead concern, our primary goal aimed at improving
the Hadoop distributed file system (HDFS) efficiency to
handle modern data and to improve utilization of HW re-
sources. Even though techniques in SHARD [5] and Scala-
ble SPARQL [1] are generalizable, there are some limita-
tions on how to deal with modern data. Furthermore, there
are other limitations on how to handle the stream of dy-
namic changes that occur in the data. One may add to these
limitations the scalability and storage usage of the cluster-
ing and placement algorithm that was used in such work,
as discussed in Hajeer et al. [12].

We transformed the data and stored it in graph-based
scalable stores to give it a sense of structure and to be able
to stream changes, constructing vertex-to-vertex triples for
data points, then adding cluster affiliation data to these tri-
ples to form quadruples as described in the architecture
section. These techniques allowed us to (1) collect data
from multiple sources and convert them into quads with a
sense of structure for different data, (2) stream changes dy-
namically and push to the graph database, and (3) prepare
the data for application to a new version of Hajeer et al.
[12]. A novel encoding of chromosomes was used to handle
the modern data clustering problem along with novel
crossover, mutation and evaluation techniques to deliver
the needs of the new distributed encoding technique. Later,
we distributed the sub-graphs over HDFS based on the
cluster affiliations to produce optimized data to query and
process.

Fig. 1 illustrates the contribution and modules on the
proposed framework as follows: (1) after collecting the
data or gathering old datasets, this module converts the
data into the desired network graphs; (2) finding patterns
in the graphs, the module distributes the data into the right
data blocks; (3) distributes the blocks into the right ma-
chine accordingly; and (4) an optimized DHFS serves as a
data source for services to execute queries and provide a
platform to apply graph algorithms efficiently as well as

reduce resource usage.
To summarize the above, the proposed framework im-

proves the ability of HDFS to handle modern data by
building data awareness modules that detect, distribute,
and manage data over the scalable file system. Thus, the
framework results in optimization and efficient resource
usage of the Hadoop eco-system and other tools and ser-
vices that use HDFS as a distributed storage.

Promising solutions in next generation analytics and
lambda architecture have been presented in recent studies.
Song et al. [13] reviewed the recent research in data types,
storage models, analysis methods and application to net-
work Big Data. They also summarized the challenges and
development of big data to predict current and future
trends. Song et al. [13] showed how streaming and real
time data has been accompanied by the rise in online
streaming services, and they also showed how a system
based on SQL called DBStream [14] relies on surveys for
continuous data analysis.

Studies [15], [16], [17] and [18] have focused on real time
analysis, including efforts on lambda architecture, where
the authors in [18] have introduced an architecture for
time-critical Big Data systems. They showed how current
Big Data infrastructures lack the requirement to work with
time-critical applications and only focus on the general-
purpose applications. Basanta-Val et al. [18] proposal ad-
dressed the issue from the perspective of the real-time sys-
tems community. Their architecture considered the time-
critical (TC) analytic as a group of TC off-line batch pro-
cessing and TC on-line stream processing. Basanta-Val et
al. [18] transformed the general purpose Big Data stack
into a TC Big Data stack by imposing the requirement and
challenges of TC applications on the general-purpose
stack.

T-Hoarder [19] is a framework that collects tweets along
with the associated spatiotemporal data; it also displays
summarized and analytical information about the Twitter
activity with respect to a certain topic or event in a web-
page. Studies in next-generation analytics and lambda ar-
chitecture along with Apache Kudu [20] and a set of stud-
ies in [21] proved to be fast and more efficient in processing
of OLAP workloads and showed a strong performance in
running time-critical workloads. It is worth the effort, how-
ever, to study the impact of intelligent data placement on
such methods, especially with new technologies that can
reduce the tradeoff of data processing, such as Intel’s first
public demo of persistent memory in SAPPHIRE2017 [22].
Intel showed a new type of persistent memory with huge
space compared to DRAM and less latency compared to
SSDs.

2 SCOPE OF WORK
The current workloads running on systems (where inef-

ficiency exists) lead to requiring more space in data centers,
and some severe environmental consequences from the in-
creased carbon emissions due to the extra power consump-
tion [1]. This can influence enterprises because of the addi-
tional power consumption and low performance for the

Fig. 1. Computational steps of the proposed framework.

I

II

III

Transforming data into
network graphs

Graph Clustering via GA

Graph distribution on physical
resources

Optimized user queries and
applications

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 3

same hardware resources. We need systems to scale effi-
ciently.

Graph theory is a well-studied discipline. Dr. Roy
Marsten noted in his blog [23] that Graph Theory was a key
approach in understanding and leveraging big data. Dr.
Marsten focused on how Google started the graph analysis
trend in the modern era using links between documents on
the Web to understand their semantic context. As a result,
“Google produced a Web search engine that massively out-
performed its established competitors and saw it jump so
far ahead that ‘Google’ became a verb” [23]. Lots of data
can be transformed into graphs. Conversely, many prob-
lems can be transformed into graph problems. Using graph
theories and algorithms, most of these problems can be
solved efficiently.

We consider SHARD within the work of Rohloff et al.
[5] as a win for today’s data, since we are proposing a way
to convert various kinds of data into quadruple graphs, as
we show in the architecture section. There are ways to scale
graph data using distributed eco-systems, such as Hadoop,
as we discuss in the graph databases section. Furthermore,
a larger success occurred when Huang et al. [1] adopted
the scholarship of Rohloff et al. [5] and optimized it to deal
with RDF data and to overcome limitations concerning
techniques in Rohloff et al.

Previous efforts have been achieved for graph queries
optimization; SHARD, [5] for example, hash-partitioned
the data. However, hashing led to subject-to-object joins
limitations in RDF graphs due to the need for moving in-
termediate data over the network. Another example is
Huang et al. [1], where the objects connected to a subject
were processed to fall into the same blocks for one or two
hops between subject and object (one to two edges travel
distance between subject and objects). However, space lim-
itations due to increase in data size were present. Also,
there is a limitation of applying such an algorithm to a
highly-connected graph. Other works like Sempala [24], or
HIVE, PigSPARQL [25] & [26], MapMerge [27] and MAP-
SIN [28] overcame scalability to some extent. However,
such work uses a different storage than triples and relies
on the advantages of MR, HIVE and Impala where parti-
tioning can be optimized using our framework.

Frameworks like Sempala, PigSPARQL, MapMerge and
MAPSIN use different techniques to store RDF graphs.
These frameworks transform all predicates into columns
and create tables’ schemas accordingly, then transform tri-
ples into traditional database records. Such frameworks
have a limitation of updating all data when new predicates
become available along with new data, and furthermore,
updating schemes! Thus, getting far away from the idea of
RDF and graph-based databases, where the updates come
with new predicates, is easier.

2.1 Graph Databases
The current data and modern applications have led to

limitations in storing and processing using traditional da-
tabases, particularly using the relational model. The atten-
tion toward graph databases has increased, and the topic
that almost died in the early nineties [29] got attention
again. The importance of such databases came along with

the fact that information in modern data relies on the rela-
tions, equally or even more than the information of the en-
tities sometimes [30]. Projects in different fields gave atten-
tion to such databases (e.g. Biology [31], semantic web [32],
web mining [33] and chemistry [34]).

As per Silberschatz et al. [35], the most general sense of
a data model (database model) is a collection of conceptual
tools used to model real-world entities and the relations
among these entities. As per [35] the three components of
this model, from a database point-of -view, are: (1) the set
of data structure types, (2) the set of integrity rules and (3)
the operators and interface rules.

As per Renzo, “Graph database models can be charac-
terized as those where data structures for the schema and
instances are modeled as graphs or generalizations of
them, and data manipulation is expressed by graph-ori-
ented operations and type constructors” [30].

Many graph databases have been developed in research
and industry fields. Some differences were found in [30]
such as AllegroGraph, DEX, HypergraphDB, Infinite-
Graph, Neo4J and Sones. Some of them were even de-
signed to deal with triple data format as described in
Huang et al. work [1].

A triple or RDF store is a graph-based database for the
storage and retrieval of triples through semantic queries. A
triple is a data entity composed of subject-predicate-object.
Triple stores represent information as triples and retrieve it
via a query language; yet, there are some key differences
from relational databases, mainly that a triple store is opti-
mized for triples.

Triples in triple store are illustrated in Fig. 2. There has
been some progress in research made towards clustered
RDF database systems. Clustered RDF databases that are
currently available, such as SHARD [5], YARS2 [36], Jena
and Jena Elephas [37] and Virtuoso [38], generally hash
partition triples across multiple computing nodes and par-
allelize access to these nodes at query time.

2.2 Community Detection and Multi-Objective
Evolutionary Algorithms

In graph theory, clusters are often defined algorithmi-
cally when certain measures of density and sparseness are
optimized by an algorithm, the result of which is the parti-
tioning of a network into communities [39]. In many cases,
finding optimality of these measures is NP-hard. Usually,
approximate but faster algorithms are used for tackling

Fig. 2. RDF triple store and its representation as a graph.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

4 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

NP-hard problems. One of the practical meta-heuristic al-
gorithms for approximate solving of NP-hard tasks is evo-
lutionary algorithms (EA) described in [40]. The applica-
tion of GA (genetic algorithms) to community detection
was described in [41], [42], [43], [44], [45], and [46], and the
application of EA was described in [47] and [48]. Chang et
al. [49] described an application of ant colony optimization
to community detection.

Modularity [50] is one of the most popularly used met-
rics for concluding the quality of non-overlapping graph
clustering, particularly in the network analysis community
[42], [43], [44], [45]. The problem of discovering a clustering
with maximal modularity is NP-Complete [51]. As a result,
many polynomial time heuristic algorithms have been de-
veloped [52], [53] [54] [55].

One popular community detection algorithm is the Gir-
van-Newman algorithm [56], where edges having maxi-
mal betweenness centrality are consecutively removed
from the network until no edges remain. Modularity may
be defined as in equation (1) [57], where nc is a total number
of communities, m is the number of edges in the graph, li is
the total number of edges within community i, di is the sum
of degrees of all nodes in i.

 (1)

As per Yi et al. [58], “In Genetic Algorithms (GA), a pop-
ulation of chromosomes, which encode candidate solu-
tions/individuals to an optimization problem, evolves to-
ward better solutions. After the solution is genetically rep-
resented in the chromosome format and the fitness func-
tions are defined, GA proceeds to initialize a population of
solutions randomly/deterministically. Then, GA aims to
improve it through repetitive applications of several ge-
netic operators such as selection, crossover, and mutation.
Finally, local search and boundary search operators are ap-
plied to fine tune the results.”

Li and Song [46] described an extended compact genetic
algorithm. We chose our previous works using GA of [12],
[59] and [60] for various reasons, mainly: (1) due to the
huge search space, (2) NP-completeness of maximizing
modularity [51], (3) being able to scale on large graphs, as
well as (4) being able to reflect dynamic changes coming
from different data sources. However, some changes on
GA from [12] were necessary to adapt to our proposed
data-aware HDFS framework. In the architecture section,
we describe our distributed genetic algorithm where we
developed, using open sources for multi-objective optimi-
zation and genetic algorithms, Jmetal [61] and Apache Jena
Elephas [37] to store and manage RDF data. Later, we val-
idate it on well-known datasets and experiment with it on
the big RDF graph generated by the Lehigh University
Benchmark (LUBM).

2.3 Service deployments over HDFS
As mentioned before, HDFS serves as a distributed data

source for modern big-data solutions, such as Apache
Spark [6], Mesos [7], HAMR [8] and hundreds of others.
Such solutions have many deployments, mostly over

HDFS or over a service that runs on HDFS (see Fig. 3).

3 HDFS PERFORMANCE & EFFICIENCY PROBLEM
The utilization of the Hadoop eco-system to process en-

terprise data and build applications on top of it is depend-
ent upon the enterprise use-cases and the data. Since IT BI
teams (business intelligence) in businesses and enterprises
configure such systems to meet their goals and roadmaps,
they focus on the data and use-cases.

Most enterprise data are collected for specific use cases.
Later, these data reside on storages waiting for the BI team
to make use of them, thus resulting in data collected from
multiple sources having multiple structures.

As per Huang et al. [1] and Rohloff et al. [5], the imple-
mentation of Hadoop and the services that are designed to
run on HDFS lack optimization for graphs. Some of the
causes for HDFS inefficiency include the following as per
[1]: (1) the default hash partitioning provided by Hadoop
may lead related data to end up far away physically over
the set of computing resources, effectually resulting in a
massive amount of data transfer between resources to fin-
ish graph operations. Thus, combining related data is a win
as per [1]; (2) Hadoop considers the same importance for
all data blocks and partitions, so maintaining the locality
of inter-cluster neighbors and keeping them physically
close-by improves efficiency, and (3) HDFS is not opti-
mized for graph data.

Huang et al. [1] showed an efficiency problem with the
said technique in Rohloff et al. [5] within a Hadoop-based
system. However, the manner in which Huang et al. [1] and
Rohloff et al. [5] worked around the problem can be gener-
alized. Since they focus on one particular file type and one
simple clustering algorithm, we believe that this technique
has some drawbacks when we deal with big and dynamic
un/semi/multi-structured data. In a previous study,
Hajeer et al. [12], we confirmed such limitations. The study
showed how to use genetic algorithms to cluster such data.
We used this technique in Hajeer et al. [12], Pizzuti [43] and
[42] along with a list of other work, such as [48], [46], [62],
and [63], after building a transformation method to convert
desired data into graph data. The results of extending the
work in [12] were used to generalize Huang et al. [1] and
Rohloff et al. [5].

In Hadoop, the main idea is to bring the computations
to the data; for example, MapReduce, the Map part, can
quickly bring the computations to the container that has

Fig. 3. Services and applications deployments on HDFS.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 5

part of the data as its resource. On the other hand, the re-
duce phase collects data from the mappers’ outputs, and in
most cases, these data parts have to travel over the network
to the right containers that run some specific reducers.
Such mappers’ output usually gets collected from multiple
mappers to each reducer. Programmers have to control
such problems to some extent. That is why even at
Cloudera's training for developers they tend to give a
guideline for programmers to use mapper side joins rather
than reducers. Cloudera's training also encourages devel-
opers to use Hive [64] query planner when possible to take
care of such joins. Hence, we strongly believe that the Ha-
doop cluster itself should have a sense of data awareness,
where data from mappers’ outputs for the same key should
be in the same, or at least a nearby, machine as much as
possible.

Since applications and jobs are different from one use-
case to another, it is impossible to cover all cases and future
cases. One solution to optimize such jobs is to cluster the
data as the proposed framework does. Not all algorithms
are covered in such cases, but most graph algorithms spe-
cifically rely on the data that are related and connected (e.g.
graph traversing).

4 DATA-AWARE HDFS INDICES

4.1 Graph Transformation
We discussed in the introduction the sources and prob-

lems of modern data. And we mentioned that data could
come from different sources where SN is
source Z and Z . These various sources generate or con-
tain data with different structures, sometimes for the same
entities but different data and different structures.

 where is the structure of data com-
ing from source Z and contained to the infinite superset DS
(Structure) ⊂ ∞

Data with the structure ∈ D were transformed into a
graph G (V, E) as an undirected graph and with the number
of vertices |V|=m and the number of edges |E|=n. This
transformation is further explained in the Overall Archi-
tecture section.

4.2 Graph Clustering
We referred to a graph of vertices V and edges E as G (V,

E), as a directed graph. Also, the number of vertices
|V|=m, number of edges |E|=n and the clustering

 as a partition of V as disjoint sets. We call C a
clustering of G containing J clusters. The number of clus-
ters j has a minimum of j=1 when C contains only one sub-
set , and a maximum of j=m when every cluster
contains only one vertex. We identify the cluster Cj as a sub-
graph of G. The graph where

 Then is the
set of intra-cluster edges and E/E(C) is the set of inter-clus-
ter edges. The number of intra-cluster edges denoted by
m(C) and (C) is the number of inter-cluster edges.

In our clustering algorithm, we used modularity as a fit-
ness measure in Hajeer et al. [12]. Modularity Q is then de-
fined as the fraction of edges that fall within group 1 or 2,
minus the expected number of edges within groups 1 and

2 for a random graph with the same node degree distribu-
tion as the given network. Hence, the actual number of
edges between v and w minus expected number of edges
between them is . Modularity can be ex-
pressed in Equation (2) [57]:

 (2)

Notice that Equation (2) partitions the network only for
two groups. To identify multiple communities in a graph;
the formula has to be generalized as (3) [57]:

 (3)

 Where eij is the fraction of edges with one-end vertices
in community i and the other in community j as (4) [57]:

 (4)

And is the fraction of ends of edges that are attached
to vertices in community i as in Equation (5) [57]:

 (5)

4.3 Graph Distribution and Assumptions
As described previously, three major challenges faced

HDFS optimization; two of them were about how Hadoop
hashes and distributes the data. Our assumption and ex-
periments showed that (1) storing intra-cluster data to-
gether on the same machine and (2) storing close inter-clus-
ters data on close-by machines were a huge step toward
optimizing HDFS. Let a set of machines
that represent Hadoop computing resources, where I∈ [0,
∞) belongs to the finite natural numbers set. And

 are machines where physical network distance be-
tween and are closer than and . The cluster

 with all its vertices and edges should be placed in the
same graph partition or at least on the same machine .
When there is no place left on it should be placed at least
to and so on; the closer the machine, the better the re-
sults. For Cj and where there are more inter-cluster
edges than and then Cj and should be placed into
the smallest possible m, Mi and (closest machine phys-
ically) where 0≤m≤I.

5 OVERALL ARCHITECTURE
Our clustering framework (DEGA-Gen) is a part of the

proposed data-awareness module running on top of the
distributed data storage as shown in Fig. 4.

The framework interacts with HDFS and its available
services to provide updated clusters as data flows in
HDFS. Our goal is to achieve optimization by placing re-
lated data together and reducing overhead on data move-
ment between hosts. Data transfer mostly happens in ag-
gregation processes or joins.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

6 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

5.1 Building Distributed RDF Graphs
The first step performed by the data-aware HDFS

framework is converting datasets into a distributed RDF
graph. This process was done using the open sources
Apache Jena and Apache Jena Elephas. The proposed data-
aware HDFS turns the datasets into quadruples rather than
triples; reasons for this process are explained in the Ge-
netic-Based Clustering. Unlike the widespread use of
quadruple representation, we used the extra field in the
quads to represent cluster affiliation of the triple rather
than the graph membership of the quad; we called the field
(Chromosome ID). This process leverages the usage of
quad stores to enhance the sub-process (encoding and rep-
resentation for distributed clustering).

Not all types of data can be transformed into graphs.
However, Big Data is about the use-case and the data in
some cases. This transformation is direct (SHARD), and re-
lational database records (for example) can be represented
as an RDF graph where each attribute of each record is a
relation between two nodes, one node represents the value
of the key field and the other node is the value of the at-
tribute field. In other cases, (like text data), relations be-
tween data points can be defined based on the use case.
Take natural language processing, for example, one can de-
fine relations of (word comes before) and (word comes af-
ter) for each word to build a prediction model.

5.2 Genetic-Based Clustering

5.2.1 Encoding & Representation
We used the encoding from [65] to overcome the big en-

coding issues found in previous studies and listed in [65].
Such encoding derives from the definition of clusters.

However, even with such encoding in [65], solutions can
still have a very long representation as the data scales up.
Eventually, the GA client will run out of memory handling
solutions itself as the data scales up. Another technique we
used to reduce the overhead of manipulating solutions was
to store it as extra information along with graph triples on
HDFS, by converting data points from <Node> <Predi-
cate><Node> triples, as in Rohloff et al. [5], into <Chromo-
some_part><Node><predicate> <Node> quadruples. We
referred to <chromosome_part> as a list of solution_IDs

that this particular node belongs to in the population. This
encoding leads to a population of a fixed size list of Inte-
gers on the GA client side called solution_IDs. This tech-
nique allows the client to scale the clustering GA on larger
size datasets that the HDFS can hold.

The idea was to treat solutions as data and to inherit all
scalability properties that apply to the graph. Thus, the
population of a size X on the client side has a constant
size(X) regardless of the data size. We referred to this novel
technique as Distributed chromosomes, and as a concept,
it is about the distribution of genes from the solutions
along with the data. Fig. 5 explains how the graph data
were stored in RDF format and how we performed the in-
tegration of solution encoding on RDF data.

We used Apache Jena and Jena Alephas and modified
these open sources to match our needs. Con-
vert_to_quads_Chromo class was developed to convert
RDF graph Triples to Quads as in Fig. 5. This class con-
tained Mapper, reducer, combiner, and appropriate writa-
bles as well as input and output classes formatted to deal
with RDF data. It takes each triple from each block of data
and converts it into a quad with a random gene (part of
solutions) that it belongs to then stores it back into HDFS.

5.2.2 Objective Functions
In our clustering algorithm, we maximize modularity as

an objective in Hajeer et al. [65]. As per [57], Modularity Q
is defined then as the fraction of edges that fall within
group 1 or 2, minus the expected number of edges within
groups 1 and 2 for a random graph with the same node
degree distribution as the given network. Hence, the actual
number of edges between v and w minus expected number
of edges between them is Avw-(kv kw)/2m. Please refer to
Equations 1-5 in the Data-aware HDFS Indices section.
Note that modularity maximization is not the only objec-
tive. Another objective is to minimize the solution length.
Considering intra-cluster edges as inter-cluster edges re-
sults in some longer solutions with no difference in modu-
larity. Hence, those solutions need to be given a smaller fit-
ness but not totally ignored (a combination with other so-
lutions may lead to a better clustering).

Since our evaluation on the datasets used considers
predicates and relations to work both ways (an undirected
graph), we used modularity in Equation (3). For use cases
where the defined relationships result in a directed graph,
there is an extended modularity that was proposed for a
directed graph that can be utilized. On the other hand, the

Fig. 4. Data awareness module and Distributed evolutionary
clustering algorithm as part of Hadoop.

Fig. 5. RDF-triples to RDF-quadruples (solution encoding).

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 7

clustering purpose is to find a better placement for graph
data. Hence, considering directed graphs as undirected
graphs while clustering does not necessarily force the user
to have the same assumption while querying the data.

5.2.3 Details Steps of Genetic Clustering
Population Initialization

Population initialization is the process of creating a col-
lection of diverse solutions. As described in the Encoding
& Representation sub-section, we transform the triples in
RDF data into quads, adding the ability to hold a gene (part
of the solution) for each vertex, where this gene is a list of
random solution IDs to which a particular vertex belongs.
For example, if a Quadruple D has S1 and S5 as genes, then
that is translated as solutions S1 and S5; both consider the
edge D as an inter-cluster edge connecting two separate
clusters.

In ∀ Ti T there is a set of solutions ∪STi , where T is ∪
of triples t that constructs the graph G, and S is the set of
solutions s in the population. It is critical to keep in mind
that the maximum size of such a list is the integer size of
the population. The initialization process for populations
is shown in Fig. 5. The GA client only holds a two-dimen-
sional array of solution-IDs and Modularity Fitness (Inte-
gers and floats), allowing the client to start the selection
process and initiate the distributed GA operators. Working
on a fixed, small size two-dimensional array, where the real
genes are stored in the data blocks in a distributed manner
taking advantage of HDFS, proved to provide more scala-
bility.

Solutions Evaluation
The evaluation was done using the objective functions

described in the objectives section. Each solution is evalu-
ated by computing modularity on the analogous graph, a
graph where edges in the solution are marked as inter-clus-
ter edges. We identified the clusters by removing the
marked edges and considering the disconnected graph
components as communities. Then, we computed the
modularity considering the marked edges again as inter-
cluster edges.

The process of computing the modularity on a large
graph is both resource and time consuming, so we decided
to improve it using distributed tasks to be run on the quad-
ruple store created with extra data for solutions. Using
HDFS and distributing the dataset over multiple machines,
we were able to batch process each set of solutions (gener-
ation) at once.

After the client side of the algorithm injects current pop-
ulation solutions data into the quadruples stored in HDFS,
it sends the list of solution IDs (list of integers) to be eval-
uated. Fig. 6 illustrates the evaluation Map tasks.

The map function is called for each Quad in the graph
chunk that represents part of the graph. Jena Elephas is
used with modified input and output class to use Chromo-
some quads rather than default graph quads. Each con-
tainer on the HDFS cluster performs a map operation on
the graph chunks it has been assigned. After mapping all
the chunks into pairs of <Keys, Values> representing solu-
tion IDs and Quads that are part of the corresponding so-
lution, the shuffling task takes place. All values for the
same key are grouped together as <Key, List of Values>
that represent each solution and the list of marked and un-
marked Quads (Graphs where inter-cluster edges are
marked). The final stage consists of the reduce tasks that
are described in Fig. 7.

The FindComponents function was implemented using
a modified linear finding component algorithm to store
also the number of intra-cluster edges and the number of
inter-cluster edges for each community. When reduce tasks
finish, the results of reducers are written to HDFS, and the
results contain each solution with its modularity. The re-
sults consist of a fixed size two-dimensional array of inte-
ger solution IDs and a fitness for each solution. The evolu-
tionary algorithm reads this file and continues working on
an evaluated generation ready for selection, crossover and
mutation processes. In the last generation, an extra piece of
information controlled by a boolean configuration variable
is written to HDFS as well; this piece contains the cluster-
ing affiliation for each node. The reason they are only writ-
ten in the last generation is to lower the write overhead on
HDFS while affiliations are not needed any time before it.

Crossover, Mutation and Selection
Since we stored the chromosomes in a distributed man-

ner, we needed to modify the GA operators used in Jmetal
open source to be able to run them on the corresponding
quadruples that represent the graph. This procedure was

Given a Population_ID list S that contain ID’s of solu-
tions to be evaluated

 Map (Key index, Value Quad):
ForEach solutionID in S:
 If Quad.GetGenes in solution:
 Quad.marked = True
 Emit (solutionID , Quad)
 Else:
 Quad.marked = False

Fig. 6. Distributed evaluation of solutions (map task).

Given a solution S and a set of Quads marked based on
S, as mappers’ outputs and reducers’ input for a graph
G with N Quads

 Reduce (Solution S, EdgesQuads [E1,E2,E3,….EN]):
 ForEach Quad E in QuadssList:
 If E.marked = True:
 MarkedQuads.append(E)
 Else:
 UnMarkedQuads.append(E)
 Endfor
 Communities = FindComponents(MarkedQuads, UnMarked-
Quads)
 Modularity = 0
 ForEach Community C in Communities:

 DegreeFraction =

 Modularity += (C. InnerEdges /N)-(DegreeFraction)^2
 Endfor
 Emit (S, Modularity)

Fig. 7. Distributed evaluation of solutions (reduce task).

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

8 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

done by developing distributed crossover and distributed
mutation modules, which in return created jobs of crosso-
ver and mutations to be performed on the corresponding
population.

After evaluating the population, the selection process
starts based on each solution ID and its fitness. Tourna-
ment selection is the selection used, and the reason is to
avoid converging to locally optimal solutions, which are a
lot based on our encoding technique. By ranking the pop-
ulation and choosing solutions from each class, a set of par-
ents along with the new offspring IDs were constructed.
Fig. 8 is a high-level diagram showing the steps in which
the algorithm creates GA operator’s tasks.

Encoding and storing solutions in a distributed manner
delivered the advantage of small and fixed size popula-
tions on a client side. However, GA operators in the open
source Jmetal needed to be modified as well as NSGAII,
which was used in our case. The original NSGAII creates a
population's and offspring's solutions and evaluates it one
solution at a time; such a situation creates an overhead of
tasks on HDFS. Rather, we modified NSGAII to DNSGAII
(Distributed NSGAII) by creating a set of solutions then
performing evaluation and GA operators at once in one
MR2 task. Fig. 9 illustrates the task of distributed crossover
and distributed mutation.

The distributed crossover and mutation task takes the

population as inputs along with the selection results, then
for each quad in the data changes the partial chromosomes
accordingly. The task removes any solution ID (gene) that
does not belong to the current population to save space
and computations. Then, as shown in Fig. 8, the new off-
spring population is sent to evaluation. Here we have to
note that solutions that belong to a previous generation
will not be evaluated since they already have fitnesses.
This copy technique of fitnesses saved an enormous
amount of computations when we dealt with big data for
a long series of generations.

The processes of representation, population initializa-
tion, evaluation, selection and offspring evaluation to pop-
ulation are illustrated in Fig. 10. The numbers represent the
processes and tasks order. Since we were dealing with dy-
namic data as one of the Big-Data five V limitations (Veloc-
ity, Variety, Veracity, Value and Volume), the algorithm gets
suspended when it converges to the same solution for a se-
quence of generations then continues working as new data
arrives to start from the last generation reached.

Suspension of the algorithm ensures that clustering will
apply to the new data while old data have the best affilia-
tion found, so there is no need for the clustering process to
start from the beginning.

5.3 Partitioning and Placement
After clustering the RDF data, the last step was to rep-

artition the data and place graph quadruples accordingly.
The goal in this step was to place quadruples that belong
to the same cluster and have a high degree of connectivity
into the same partition to ensure locality of intra-cluster
quadruples. Another goal was to place highly connected
inter-clusters into a close partition physically, to map the
inter-cluster distance onto the physical distance of parti-
tions. Fig. 11 illustrates the desired allocation of quadru-
ples, assuming that the horizontal distance in the figure
represents the physical distance between the computing
nodes (the distance of network routing).

We account for the distance of HDFS nodes by how
many routing hops between them (networks, routers,
switches…). We set up HDFS over machines connected us-
ing multiple networks to create a distance in routing. The
placement script placed quadruples as in Fig. 11.

Fig. 8. Distributed genetic algorithm for RDF clustering.

Fig. 9. Distributed crossover & mutation in genetic search.

Fig. 10. Distributed genetic algorithm clustering process flow.

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 9

Partitions are created based on the number of machines;
each machine has its own partition. A MapReduce job
scans the quadruples and places quadruples related to one
random cluster in one partition then emits the placed
quadruples, leading to where all connected clusters’ IDs
are stored for the next scan. The second scan places the
quadruples for the closest inter-clusters in the same parti-
tion and emits from the original dataset. Further, the se-
cond closest inter-clusters are placed into the next closest
partition. When there are no more interconnected clusters
left, another random cluster is chosen from the dataset un-
til no more data is available. Fig. 11, for example, illustrates
how clusters with three inter-cluster connectivity are
placed in the same HDFS node, and with two inter-cluster
connectivity are placed in the next HDFS node, further
clusters are placed in further nodes.

6 EXPERIMENTS AND RESULTS
We divided the experiment into two sections: the first

section is the design and the testing of the clustering algo-
rithm on the graph store to test the clustering results, and
the second section is about the tests and comparisons of the
effect of optimization framework on HDFS. All graphs and
trend models are processed using Tableau [66].

6.1 Graph Conversion and Clustering
We validated the correctness of our clustering algorithm

and made sure it produced valid and comparable results.
We chose some well-known small datasets carefully and
made sure they were the same datasets used in previous
studies for comparison. These sets are:
Zachary Karate Club: Graph contains 34 vertices and 78
edges. Nodes represent members of university karate club,
and connections between them represent communication
patterns. It was collected in 1997 [67].
Bottlenose Dolphins: Network made of 62 dolphins and
their interactions, collected over a period of 7 years, 1994.
US Political books: Network of 105 nodes and 441 edges.
Network represents books about US politics, frequently
bought together.
American College football: Network of 115 nodes repre-
senting the teams, and 613 edges connecting them.

TABLE 1 shows the results of the algorithm validation
and compares it to some of the popular algorithms. Our
algorithm achieved a maximized modularity in some cases
and close modularity in the rest. Some algorithms were
omitted because of a very high modularity; such results are

impossible for hard clustering as per Daniel Aloise, Sonia
Cafieri et al. [68] since they found and proved the optimal
modularity for each one of these datasets.

The results in TABLE 1 and [68] prove that our approach

provides results that converge to optimal solutions, and
the quality of the results (compared to other popular algo-
rithms) are better in most cases. Some cases showed a
slightly lower modularity.

We found that selection plays a role in how the solutions
converge. Furthermore, for certain datasets, binary selec-
tion converges to higher modularity in a smaller amount
of generations, whereas, random selection can provide a
higher rate of jumps from local optimal fitnesses.

The evaluations after each population were reported to
analyze the convergence of solutions over generations. We
generated graphs and computed trend models by dump-
ing the population array and using the scatter plot to create
a visual representation of the outcomes for each genera-
tion. We found a correlation between the distribution of
modularities and the number of generations to extract such
modularities. Fig. 12 shows the distribution of modularity
vs. Generation.

To scale our approach to Big Data we used LUBM to
generate RDF graph data and deploy on a cluster with the
following properties, as in TABLE 2. The configurations we
used yielded 87 containers. Each container has access to all
48 disks, two CPU cores and 4 GB of memory.

We used six computing nodes compared to 10 and 20
nodes in similar studies. We looked at the number of nodes
only to validate the effect of network-communications and
distance in the network. However, in the presence of
YARN and the notion of containers, it makes more sense to

Fig. 11. Quadruples placement in different HDFS nodes.

TABLE 1 MODULARITY MAXIMIZATION COMPARISON

Dataset GN CNM L
Max

GATHB MOG
A-Net

Our
Method

Karate 0.4 0.380 0.419 0.4 0.416 0.416

Dolphins 0.52 0.495 0.523 0.52 0.505 0.528
Football 0.6 0.577 0.61 0.55 0.515 0.539
Books 0.51 0.502 0.526 0.52 0.518 0.523

Fig. 12. Population fitness vs. generation scatter plot (karate
club network).

Network

Inter-Cluster
Intra-Cluster

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

10 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

compare resources than the number of nodes. Our compu-
ting cluster and our configuration yield to 86 containers,
each with 4 GB of memory and 2 Threads (one Core) of
CPU (Max of 2.93 GHz and Min of 2.00 GHz), a total of 344
GB of memory and 172 CPU Threads (86 Cores), compared
to a total of 80 GB of memory and 40 CPU cores and 40
Disks divided equally between 20 computing nodes per
Huang et al. [1].

The Lehigh University Benchmark (LUBM) is a univer-

sity domain ontology for synthetic OWL and RDF data
scalable to an arbitrary size and fourteen queries represent-
ing a variation of properties. LUBM is the most widely
used benchmark of the Semantic Web community.

We generated multiple datasets with different sizes to
compare the behavior of our algorithm. We removed pred-
icates of value “type” or similar before clustering, which is
a previously adopted way to increase the quality of clusters
and simplify the complexity of the graph [1]. We analyzed
the execution time of initializing a population of solutions;
the population size is 1000 solutions per generation. TA-
BLE 3 presents the execution time for graph conversion
into quadruples and the initialization of the first popula-
tion. The penalty of having a large amount of time to pre-
pare the data is a tradeoff with the amount of processing
and querying that is done on the data and can be further
optimized with new technologies [22]. It is important to
note that our framework, best used when the data will be
processed heavily or queried continuously in the future, is
a good idea to prepare the system for fast response and re-
duced hardware overhead.

We further analyzed LUBM data. Although there is an

enormous amount of triples, initialization of the first pop-
ulation with random inter-cluster edge affiliations does not
take a long period of time. Fig. 13 shows the population
convergence over time to a maximized modularity for a
dataset of 30M quads.

The trend model for LUBM 30 million triples dataset is
illustrated in Fig. 14.

The encoding technique we introduced created a solu-
tion space with many locally optimal solutions. Hence, us-
ing a mutation rate of 100 percent and multiple-point
crossovers prevented falling in locally optimal solutions.
Even though the mutation rate was set to 100 percent, con-
sidering intra-cluster edges as inter-cluster edges results in
no difference in modularity for a given solution. On the
other hand, due to the proposed encoding, the chances that
the solution is affected by the mutation is less than a 100%
(~72% of the solutions were affected on the data used). The
encoding proposed is less influenced by mutation than tra-
ditional encoding. Hence a higher mutation rate is neces-
sary to affect solutions.

Fig. 15 describes the modularities and its count in all
generations (each bin is a range from the bin x-value until
the next bin x-value). Since most of the intra-cluster edges
do not affect the number of communities produced, having
such edges in solutions do not affect the total fitness and
explains these high modularity counts for non-maximal
modularity. Yet, having these quadruples in the solution
did not affect the algorithm’s ability to jump out of such

TABLE 2 HADOOP CLUSTER AND CONFIGURATIONS

Machine Threads Memory Disks

Master Intel(R) Xeon(R) CPU
E5-2699 v3 @ 2.30GHz

72 64 10

Node1 Intel(R) Xeon(R) CPU
E5-2683 v3 @ 2.00GHz

56 64 10

Node2 Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60GHz

40 64 10

Node3 Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60GHz

40 64 10

Node4 Intel(R) Xeon(R) CPU
X5570 @ 2.93GHz

16 96 2

Node5 Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz

16 48 6

TABLE 3 POPULATION INITIALIZATION & ALGORITHM RUN
TIME (LUBM DATASETS)

Number of triples Initialize Popula-
tion (S)

Algorithm Run
Time (Minutes)

8,970,048 13.556 21.7

20,637,270 19.621 31.6

30,285,222 28.611 47

221,140,408 207.314 261(~4.3 hours)

Fig. 13. Convergence to maximum modularity (LUBM 30 mil-
lion Triples).

Trend Lines Model

A polynomial trend model of degree 3 is computed for Modularity
given Generation. The model may be significant at p <= 0.05.

Equation:

Modularity = -2.13096e-07*Genera-
tion^3 + 2.51096e-05*Generation^2
+ 0.00253695*Generation +
0.0567858

Model degrees of free-
dom: 4

R-Squared: 0.820795
p-value (significance): < 0.0001

Fig. 14. Trend model description (30 million Triples).

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 11

cases.

On a larger scale, we used 221M Quads initialized by
converting LUBM triples. Fig. 16 shows the distribution
and the correlation between the fitness measure and its fre-
quency across all generations.

Fig. 17 shows the minimum, maximum, average and
Median for each generation modularity fitness. A high mu-
tation rate kept a space for some diverse generations.

6.2 System Performance Experiments
In this section, we measure the performance of our sys-

tem against multiple RDF stores including SHARD after
clustering and placement. We used Cloudera Impala to cre-
ate a table on the data. We focused mainly on time and re-
source usage. The system configurations used are the same
as in TABLE 2. We refer to our framework as cluster parti-
tioning.

In our experiments, we generate a dataset using LUBM.
The generated dataset’s size was from 37 to 142 GB in N-
Triples format and contained from 200 million to 600 mil-
lion triples (see TABLE 5). TABLE 6 shows each query’s
complexity as the number of joins in each query in regards
to the benchmark.

6.2.1 Clustering and Load Time
The results of loading 270 million RDF triples into a

twenty-machine HDFS cluster as per Huang et al. [1], are
shown in TABLE 4. For a ten-machine cluster, as per
Alexsander et al. [24], the loading time was 40 minutes.
Our results are shown in TABLE 5.

Because of the differences in resources, for benchmark-
ing queries in the Query Performance Comparison section,
we normalize results to be able to compare query response
time. There is a noticeable workload in terms of time to
prepare the Cluster-based partitioned RDF against hash-
partitioning the data. However, the effect on optimization
during query time and storage is a trade off, as we describe
in the Query Performance Comparison section. It is critical
to point out that the number of triples has a larger effect
than the storage size in GB; since different compression can
solve the storage size issue but not the amount of infor-
mation needed to be processed. It is also very important to
note that clustering results are stored by our proposed ar-
chitecture, so when new data and changes become availa-
ble, the algorithm does not need to start over. In other
words, adding changes to data, to some extent, happens in
close to real time by adding the new triples to the physical
server that has the data-cluster it connects to.

TABLE 4 Loading time as per Huang et al. [1] for 270

Million triples

Fig. 15. Count of modularity for all generations as modularity
bins (LUBM 30 million triples).

Fig. 16. Convergence to maximum modularity over genera-
tions (LUBM 221 million triples).

Fig. 17. Convergence to maximum modularity over genera-
tions (LUBM 221 million triples).

System Load Time
RDF-3X 2.5 H
SHARD 6.5 H
Hash Partitioning 0.5 H
Graph Partitioning 4.2 H

TABLE 5 CLUSTER PARTITIONING LOAD TIME

Number of Triples Size (GB) Load Time (~)
221,278,374 37.1 3.8 Min Conversion

4.3 H clustering and placement
427,016,108 82.7 6.5 Min Conversion

7.2 H clustering and placement
613,190,853 142.3 8.1 Min Conversion

9.4 H clustering and placement

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

12 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

6.2.2 Query Performance Comparison
To compare to other studies, we need first to understand

the complexity of each query of the 14 queries. As shown
in TABLE 6 [1], each query has a count of subject-to-subject
joins (S-S) and subject-to-object joins (S-O).

Hash partitioning maps the same keys (subjects) to the
same blocks. Thus, optimization issues are less likely to
happen in subject-to-subject than subject-to-object joins.
subject-to-object joins are the ones that cause most of the
optimization issues in hash partitioning the data since it
does not ensure the values of the same key (related data
points) to be in the same data blocks.

Huang et al. [1] showed that the queries could be char-

acterized into two groups. Queries 1, 3, 4, 5, 7, 8, 10, 11 and
12 run fast on single-machine RDF stores like RDF-3X; que-
ries 2, 6, 9, 13 and 14 run slower on single machine RDF
stores. For fast queries, data size does not matter as much
since it is reduced before scans are required [1]. Hence, par-
alyzing such stores on multiple machines does not have
many advantages and will only add a network delay for
queries to start [1]. On the other hand, the slow queries lack
scalability on single machine RDF stores.

Unlike a data-aware HDFS framework, some previous
efforts have been achieved for slow queries, for example
hash-partitioning the data on SHARD. However, hashing
led to subject-to-object joins’ limitations due to the need of
moving intermediate data over the network. Another ex-
ample is Huang et al. where the objects connected to a sub-
ject were processed to fall into the same blocks for one or
two hops between subject and object. However, space lim-
itations due to an increase in data size were present; also,
there is a limitation of applying such an algorithm to a
highly-connected graph [1]. We used clustering in our
framework rather than hops. So, triples do not need to be
replicated as many do in different partitions, and no in-
crease in the data size occurred (other than HDFS replica-
tion for reliability). Other works like Sempala [24], or using
HIVE, PigSPARQL [25] & [26], MapMerge [27] and MAP-
SIN [28] overcame scalability but used different storage

than triples.
Huang et al. [1] covered four different frameworks on

LUBM 270 million triples, evident in Fig. 18.
As observed in Huang’s et al. [1] results, changing the

data in each sub-graph partition to include vertices that are
two hops away from each subject in each triple increases
efficiency in regard to execution time. However, it in-
creases the data size dramatically as well as adding an ex-
tra step of processing duplicates after the query finishes.
Huang et al. [1] explained it as a tradeoff between size and
fast response time.

The two hops guarantee that the technique enabled the
optimization of queries 2, 7, 8, 9, 11 and 12. On the other
hand, it slowed down the rest of the queries compared to
hash-partitioned data, since there was an extra required
step to remove duplicates created by the replication algo-
rithm they used. Hops-guarantee had no optimization to
the rest of the queries. Queries 1, 3, 4, 5, 6, 10, 13 and 14
were equal or faster in the hash-partitioned graph than
Hops-guarantee since they only had subject-to-subject
joins and no duplicate removal steps were needed.

Comparing our cluster-based partitioning and SHARD
allows one to directly see the benefit of our proposed graph
partitioning technique on the naive triple placement on
HDFS. To compare our results, we first took into consider-
ation the difference in HDFS resources. It is very hard to
match the two different Hadoop ecosystems since we do
not have a clear idea about what are the exact configura-
tions or what other services are running on those machines
that might slow down the queries. However, one solution
is to perform SHARD on our Hadoop eco-system on the
same number of triples, then find the ratio of the differ-
ence. In other words, if Query Q1 on native HDFS took X
time on cluster (A) and 2X on cluster (B) with the same na-
tive HDFS, then cluster (A) has 2 times speed up for Q1.
So, optimizing Q1 to be Y speed up using a specific algo-
rithm means Q1 time will be X/Y on cluster A and 2X/Y
on cluster B for that specific algorithm. Note that optimi-
zation of a specific algorithm is measured in terms of Y
times efficient than native HDFS regardless of the cluster
used. Fig. 19 shows the comparative results (mean) for our
data-aware HDFS framework (Cluster-Based partitioning)
after running each query 20 times with an average variance
of 0.06.

Results reported an increase of execution time efficiency
for queries 2, 3, 6, 9, 13, and 14. Close efficiency occurred
in queries 1 and 10. A less efficiency occurred in 4, 5, 7, 8,

TABLE 6 LUBM QUERY COMPLEXITY [1]

Query S-S Joins S-O Joins Total
Q1 1 0 1
Q2 3 3 6
Q3 1 0 1
Q4 4 0 4
Q5 1 0 1
Q6 0 0 0
Q7 1 2 3
Q8 3 1 4
Q9 3 3 6
Q10 1 0 1
Q11 1 1 2
Q12 2 1 3
Q13 1 0 1
Q14 0 0 0

Fig. 18. Huang’s query time (LUBM 270 million triples).

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 13

11 and 12. The reason behind the improvement in subject-
to-subject joins is the extra step of removing duplicates in
graph-partitioning that Huang et al. used [1]. On the other
hand, the efficiency increase related to subject-to-object
joins was caused by the least amount of data scanned and
moved by cluster-based partitioning, since cluster-based
partitioning ensured the presence of most objects related to
subjects in the same partition without the duplicates in an-
other (less scans). Such results also reported less storage
space than graph partitioning reported in [1].

We further analyzed the network traffic on each HDFS
computing node using Linux performance monitoring
tools. SAR commands were used to monitor network
adapters on each machine during each query. The results
were aggregated from the report of each HDFS node to one
file. Our framework effect on network traffic optimization
for LUBM queries on a 221 million triple RDF graph is as
follows: a great optimization factor on mostly S-O joins, a
reduction by a factor of ~200X for Q7 hash partitioning of
SHARD and cluster based triple placement. Furthermore,
~160X for Q8 and ~150X for Q9 optimization also were re-
ported on network traffic.

Even though one of our goals is to deal with dynamic
data, we looked at frameworks like Sempala, PigSPARQL,
MapMerge and Sempala-Using-Hive, regardless of their
limitations in dealing with dynamic updates. Fig. 20 illus-
trates results for 221 million RDF record.

7 CONCLUSION
In this article, we presented a data-aware HDFS and the

services running on top of HDFS that optimize state-of-
the-art RDF stores. We proposed a cluster-based data par-
titioning to manipulate the physical locality of the data to

match the graph locality as well as the causality in HDFS
processes. This allowed parallel processing of queries for
data on HDFS that required less resource usage. Our
framework was able to perform faster than some attempts
and slightyly slower than other attempts for scalable RDF
data stores. However, with less resource usage. Studies in
next-generation analytics and lambda architecture [15],
[16], [17] and [18], along with Apache Kudu [20] and a set
of studies in [21] proved to be fast and more efficient in
processing of OLAP workloads and showed a strong per-
formance in running time-critical workloads. It is worth
the effort, however, to study the impact of intelligent data
placement on such methods. For future work, we plan to
further improve the distributed encoding and the genetic
operators to reduce computation overhead. We also plan to
experiment with dynamic updates for a larger velocity of
data flow and to utilize tools and frameworks of the
lambda architecture and next-generation analytics pre-
sented in the recent studies.

REFERENCES
[1] J. Huang, D. J. Abadi and K. Ren, "Scalable SPARQL querying

of large RDF graphs," Proceedings of the VLDB Endowment, vol.
4, no. 11, pp. 1123-113, 2011.

[2] K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz and E.
Paulson, "Efficient processing of data warehousing queries in a
split execution environment," in Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, 2011.

[3] M. Walker, "Data Science Central," 19 Dec 2012. [Online].
Available:
http://www.datasciencecentral.com/profiles/blogs/structure
d-vs-unstructured-data-the-rise-of-data-anarchy. [Accessed 16
Oct 2015].

[4] J. Gantz and D. Reinsel, "The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east," IDC
iView: IDC Analyze the future, vol. 2007, no. 2012, pp. 1--16.

[5] K. Rohloff and R. E. Schantz, "Clause-iteration with
MapReduce to scalably query datagraphs in the SHARD graph-
store," in Proceedings of the fourth international workshop on Data-
intensive distributed computing, 2011.

[6] T. A. S. Foundation, "Apache Spark," The Apache Software
Foundation, [Online]. Available: http://spark.apache.org.
[Accessed Jan 2016].

[7] T. A. S. Foundation, "Apache Mesos," The Apache Software
Foundation., [Online]. Available: http://mesos.apache.org.
[Accessed 19 Jan 2016].

[8] E. I. Inc., "HAMR - Faster than the speed of data," ET
International, Inc., [Online]. Available:
http://www.hamrtech.com/index.html. [Accessed 19 Jan
2016].

[9] Apache Storm, "Apache STORM," Apache Software
Foundation , [Online]. Available: http://storm.apache.org.
[Accessed 16 9 2016].

[10] L. Aniello, R. Baldoni and L. Querzoni, "Adaptive online
scheduling in storm," in Proceedings of the 7th ACM international
conference on Distributed event-based systems, 2013.

[11] P. Basanta-Val, N. Fernandez-Garcia, A. Wellings and N.

Fig. 19. Data-aware HDFS, query execution time (LUBM 270
million triples).

Fig. 20. Data-aware HDFS, query execution time (LUBM
221M triples).

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

14 IEEE TRANSACTIONS ON BIGDATA, TBD-2016-07-0141

Audsley, "Improving the predictability of distributed stream
processors," Future Generation Computer Systems, vol. 52, pp. 22-
-36, 2015.

[12] M. Hajeer, D. Dasgupta, A. Semenov and J. Veijalainen,
"Distributed evolutionary approach to data clustering and
modeling," in Computational Intelligence and Data Mining
(CIDM), 2014 IEEE Symposium, 2014.

[13] H. Song, P. Basanta-Val, A. Steed, M. Jo and Z. Lv, "Next-
generation big data analytics: State of the art, challenges, and
future research topics," IEEE Transactions on Industrial
Informatics, p. In Press, 2017.

[14] N. Agnihotri and A. K. Sharma, "Proposed algorithms for
effective real time stream analysis in big data," in Image
Information Processing (ICIIP), 2015 Third International Conference
on, 2015.

[15] L. Aniello, R. Baldoni and L. Querzoni, "Adaptive online
scheduling in storm," in Proceedings of the 7th ACM international
conference on Distributed event-based systems, 2013.

[16] P. Basanta-Val, N. Fernandez-Garcia, A. J. Wellings and N. C.
Audsley, "Improving the predictability of distributed stream
processors," Future Generation Computer Systems, vol. 52, pp. 22-
-36, 2015.

[17] P. Basanta-Val and M. Garcia-Valls, "A distributed real-time
java-centric architecture for industrial systems," IEEE
Transactions on Industrial Informatics, vol. 10, no. 1, pp. 27--34,
2014.

[18] P. Basanta-Val, N. C. Audsley, A. J. a. G. I. Wellings and N.
Fernandez-Garcia, "Architecting Time-Critical Big-Data
Systems," IEEE Transactions on Big Data, vol. 2, no. 4, pp. 310--
324, 2016.

[19] M. Congosto, P. Basanta-Val and L. Sanchez-Fernandez, "T-
Hoarder: A framework to process Twitter data streams," Journal
of Network and Computer Applications, vol. 83, pp. 28--39, 2017.

[20] T. A. S. Foundation, "Introducing Apache Kudu," The Apache
Software Foundation, 2017. [Online]. Available:
https://kudu.apache.org/docs/. [Accessed 5 April 2017].

[21] N. Marz and J. Warren, Big Data: Principles and best practices
of scalable realtime data systems, Manning Publications Co.,
2015.

[22] M. Ferron-Jones, "It Peer Network," 16 May 2017. [Online].
Available: https://itpeernetwork.intel.com/new-
breakthrough-persistent-memory-first-public-demo/.
[Accessed 1 June 2017].

[23] E. Roy Marsten, "Is graph theory key to Understand Big Data,"
March 2014. [Online]. Available:
http://www.wired.com/insights/2014/03/graph-theory-key-
understanding-big-data/. [Accessed Oct 2015].

[24] A. Schatzle, M. Przyjaciel-Zablocki, A. Neu and G. Lausen,
"Sempala: Interactive SPARQL query processing on hadoop,"
The Semantic Web--ISWC 2014, pp. 164--179, 2014.

[25] A. Schatzle, M. Przyjaciel-Zablocki, T. Hornung and G. Lausen,
"PigSPARQL: a SPARQL query processing baseline for big
data," in Proceedings of the 2013th International Conference on
Posters Demonstrations Track-Volume 1035, 2013.

[26] A. Schatzle, M. Przyjaciel-Zablocki and G. Lausen,
"PigSPARQL: Mapping SPARQL to Pig Latin," in Proceedings of

the International Workshop on Semantic Web Information
Management, 2011.

[27] M. Przyjaciel-Zablocki, A. Schatzle, E. Skaley, T. Hornung and
G. Lausen, "Map-side merge joins for scalable SPARQL BGP
processing," in Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on, 2013.

[28] A. Schatzle, M. Przyjaciel-Zablocki, C. Dorner, T. Hornung and
G. Lausen, "Cascading map-side joins over HBase for scalable
join processing," SSWS+ HPCSW, p. 59, 2012.

[29] R. Angles and C. Gutierrez, "Survey of graph database models,"
ACM Computing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[30] R. Angles, "A comparison of current graph database models,"
in Data Engineering Workshops (ICDEW), 2012 IEEE 28th
International Conference on, 2012.

[31] B. A. Eckman and P. G. Brown, "Graph data management for
molecular and cell biology," IBM journal of research and
development, vol. 50, no. 6, pp. 545-560, 2006.

[32] J. Hayes and C. Gutierrez, "Bipartite graphs as intermediate
model for RDF," in The Semantic Web--ISWC 2004, Springer,
2004, pp. 47-61.

[33] A. Schenker, Graph-theoretic techniques for web content
mining, World Scientific, 2005, p. 62.

[34] A. Nayak and I. Stojmenovic, Handbook of applied algorithms:
Solving scientific, engineering, and practical problems, John
Wiley & Sons, 2007.

[35] A. Silberschatz, H. F. Korth and S. Sudarshan, "Data models,"
ACM Computing Surveys (CSUR), vol. 28, no. 1, pp. 105-108,
1996.

[36] A. Harth, J. Umbrich, A. Hogan and S. Decker, "Yars2: A
federated repository for querying graph structured data from
the web," Springer, 2007, pp. 211--224.

[37] Apache, "Apache Jena Elephas," Apache, [Online]. Available:
https://jena.apache.org/documentation/hadoop/. [Accessed
10 Feb 2016].

[38] O. Erling and I. Mikhailov, "Towards web scale RDF," Proc.
SSWS, 2008.

[39] S. Fortunato, "Community detection in graphs," Physics Reports,
vol. 486, no. 3, pp. 75-174, 2010.

[40] Goldberg, D. Edward and others, Genetic algorithms in search,
optimization and machine learning, vol. 412, Addison-wesley
Reading Menlo Park, 1989.

[41] M. Tasgin, A. Herdagdelen and H. Bingol, "Community
detection in complex networks using genetic algorithms," arXiv
preprint arXiv:0711.0491, 2007.

[42] C. Pizzuti, GA-Net: A genetic algorithm for community
detection in social networks, Springer, 2008, pp. 1081-1090.

[43] C. Pizzuti, A multi-objective genetic algorithm for community
detection in networks, IEEE, International Conference on Tools
With Artificial Intelligence. ICTAI, 2009, pp. 379-386.

[44] M. Gong, L. Ma, Q. Zhang and L. Jiao, "Community detection
in networks by using multiobjective evolutionary algorithm
with decomposition," Physica A: Statistical Mechanics and its
Applications, 2012.

[45] R. Shang, J. Bai, L. Jiao and C. Jin, "Community detection based
on modularity and an improved genetic algorithm," Physica A:

2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2782785, IEEE
Transactions on Big Data

HAJEER ET AL.: HANDLING BIG DATA WITH A DATA-AWARE HDFS USING EVOLUTIONARY CLUSTERING TECHNIQUE 15

Statistical Mechanics and its Applications, vol. 392, no. 5, pp. 1215-
1231, 2013.

[46] J. Li and Y. Song, "Community detection in complex networks
using extended compact genetic algorithm," Soft Computing,
vol. 17, no. 6, pp. 925-937, 2013.

[47] M. Gong, X. Chen, L. Ma, Q. Zhang and L. Jiao, "Identification
of multi-resolution network structures with multi-objective
immune algorithm," Applied Soft Computing, vol. 13, no. 4, pp.
1705-1717, 2013.

[48] G. K. Kumar and V. K. Jayaraman, "Clustering of Complex
Networks and Community Detection Using Group Search
Optimization," arXiv preprint arXiv:1307.1372, 2013.

[49] C. Honghao, F. Zuren and R. Zhigang, Community detection
using Ant Colony Optimization, IEEE CEC, 2013, pp. 3072-
3078.

[50] M. E. Newman and M. Girvan, "Finding and evaluating
community structure in networks," Physical review E, vol. 69, no.
2, p. 026113, 2004.

[51] U. Brandes, D. Delling, M. Gaertler, R. G{\"o}rke, M. Hoefer, Z.
Nikoloski and D. Wagner, "On modularity clustering,"
Knowledge and Data Engineering, IEEE Transactions on, vol. 20, no.
2, pp. 172--188, 2008.

[52] M. E. Newman, "Fast algorithm for detecting community
structure in networks," Physical review E, vol. 69, no. 6, p. 066133,
2004.

[53] A. Clauset, M. E. Newman and C. Moore, "Finding community
structure in very large networks," Physical review E, vol. 70, no.
6, p. 066111, 2004.

[54] M. E. Newman, "Modularity and community structure in
networks," Proceedings of the national academy of sciences, vol. 103,
no. 23, pp. 8577--8582, 2006.

[55] Y. Zhang, J. Wang, Y. Wang and L. Zhou, "Parallel community
detection on large networks with propinquity dynamics," in
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009.

[56] M. Girvan and M. E. Newman, "Community structure in social
and biological networks," ConferenceProceedings of the National
Academy of Sciences, vol. 99, no. 12, pp. 7821-7826, 2002.

[57] Wikipedia, "Modularity (Networks)," Wikipedia, [Online].
Available:
https://en.wikipedia.org/wiki/Modularity_(networks).
[Accessed 10 March 2016].

[58] Y. Gu, S.-L. Shenq, Q. Wu and D. Dasgupta, "On a multi-
objective evolutionary algorithm for optimizing end-to-end
performance of scientific workflows in distributed
environments," in Proceedings of the 45th Annual Simulation
Symposium, 2012.

[59] M. H. Hajeer, D. Dasgupta and K.-I. Lin, "Distributed
Evolutionary Algorithm for Clustering Multi-Characteristic
Social Networks," in Proceedings of the International Conference on
Data Mining (DMIN), 2014.

[60] A. Semenov, J. Veijalainen, M. Hajeer and D. Dasgupta,
"Political Communities in Russian Portion of LiveJournal," in In
the Proceedings of International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, USA,
2014.

[61] J. J. Durillo and A. J. Nebro, "jMetal: A Java framework for
multi-objective optimization," Advances in Engineering Software,
vol. 42, no. 10, pp. 760--771, 2011.

[62] M. E. Newman and M. Girvan, "Finding and evaluating
community structure in networks," Physical review E, vol. 69, no.
2, p. 026113, 2004.

[63] F. D. Malliaros and M. Vazirgiannis, "Clustering and
community detection in directed networks: A survey," Physics
Reports, vol. 533, no. 4, pp. 95-142, 2013.

[64] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff and R. Murthy, "Hive: a warehousing
solution over a map-reduce framework," Proceedings of the
VLDB Endowment, vol. 2, no. 2, pp. 1626-1629, 2009.

[65] M. Hajeer, D. Dasgupta, A. Semenov and J. Veijalainen,
"Distributed evolutionary approach to data clustering and
modeling," in Computational Intelligence and Data Mining
(CIDM), 2014 IEEE Symposium on, Orlando, 2014.

[66] T. SOFTWARE, "Tableau," TABLEAU, [Online]. Available:
https://www.tableau.com. [Accessed 1 Oct 2017].

[67] W. Zachary, "An Information Flow Model for Conflict and
Fission in Small Groups," Journal of Anthropological Research, vol.
33, no. 4, pp. 452-473, 1977.

[68]
.

D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron and L.
Liberti, "Column generation algorithms for exact modularity
maximization in networks," Physical Review E, vol. 82, p. 046112,
2010.

Mustafa Hajeer is a computer science Ph.D. re-
cent graduate from The University of Memphis.
He has his B.Sc. from Yarmouk University and
his M.Sc. from The University of Memphis. Mus-
tafa worked as a programmer at Alkena Group
in Jordan and as a computer science instructor
at Alqusor Academy. He also worked as a re-
search assistant at the FedEx Institute of Tech-
nology within the Institute of Intelligent Systems
at The University of Memphis. His most recent

internship was done at the Intel Corporation at the Data Center Group
and now is working at the same group at Intel. His research involves
BigData, Data analysis, and machine learning.

Dipankar Dasgupta is a Professor of Computer
Science at the University of Memphis. His re-
search interests are broadly in the area of sci-
entific computing, design, and development of
intelligent cyber security solutions inspired by
biological processes. He is one of the founding
fathers of the field of artificial immune systems
in which he has established himself. Dr. Das-
gupta is at the forefront of research in applying
bio-inspired approaches to cyber defense, hav-

ing served as a program co-chair at the National Cyber Leap Year
Summit organized at the request of the White House Office of Science
and Technology Directorate (2009). Dr. Dasgupta has more than 240
publications with 10000+ citations and having h-index of 52 as per
Google Scholar. Dipankar Dasgupta is an IEEE Fellow.

