

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

82

Survey on Hadoop and Introduction to YARN
Amogh Pramod Kulkarni

1
, Mahesh Khandewal

2

1
Dept. Of ISE, Acharya Institute of Technology, Bangalore 560107, Karnataka

2
Dept. Of ISE, M.Tech (CNE), Acharya Institute of Technology, Bangalore 560107, Karnataka

Abstract— Big Data, the analysis of large quantities of data

to gain new insight has become a ubiquitous phrase in recent

years. Day by day the data is growing at a staggering rate.

One of the efficient technologies that deal with the Big Data is

Hadoop, which will be discussed in this paper. Hadoop, for

processing large data volume jobs uses MapReduce

programming model. Hadoop makes use of different

schedulers for executing the jobs in parallel. The default

scheduler is FIFO (First In First Out) Scheduler. Other

schedulers with priority, pre-emption and non-pre-emption

options have also been developed. As the time has passed the

MapReduce has reached few of its limitations. So in order to

overcome the limitations of MapReduce, the next generation

of MapReduce has been developed called as YARN (Yet

Another Resource Negotiator). So, this paper provides a

survey on Hadoop, few scheduling methods it uses and a brief

introduction to YARN.

Keywords—Hadoop, HDFS, MapReduce, Schedulers,

YARN.

I. INTRODUCTION

In present scenario with the internet of things a lot of

data is generated and is analyzed mainly for business

intelligence. There are various sources of Big Data like

social networking sites, sensors, transactional data from

enterprise applications/databases, mobile devices, machine-

generated data, huge amount of data generated from high

definition videos and many more sources. Some of the

sources of this data have vital value that is helpful for

businesses to develop. So the question arises how such a

gigantic amount of data can be dealt out? Further, there is

no stopping of this data generation. There is a great demand

for improving the Big Data management techniques. The

processing of this huge can be best done using distributed

computing and parallel processing mechanisms. Hadoop

[1] is a distributed computing platform written in Java

which incorporates features similar to those of the Google

File System and MapReduce programming paradigm.

Hadoop framework relieves the developers from

parallelization issues while allowing them to focus on their

computation problem and these parallelization issues are

handled inherently by the framework.

In section II we discuss in more detail about Hadoop’s

two important components HDFS and MapReduce. In

section III we discuss Hadoop applications. Section IV

discusses about some basic types of schedulers used in

Hadoop and scheduler improvements. Further section V

talks about technical aspects of Hadoop. Section VI focuses

on next generation MapReduce paradigm YARN. Finally

section VII concludes the paper after which references

follow.

II. HADOOP

Hadoop is a framework designed to work with huge

amount of data sets which is much larger in magnitude than

the normal systems can handle. Hadoop distributes this data

across a set of machines. The real power of Hadoop comes

from the fact its competence to scalable to hundreds or

thousands of computers each containing several processor

cores. Many big enterprises believe that within a few years

more than half of the world’s data will be stored in Hadoop

[2]. Furthermore, Hadoop combined with Virtual Machine

gives more feasible outcomes. Hadoop mainly consists of i)

Hadoop Distributed File System (HDFS): a distributed file

system to achieve storage and fault tolerance and ii)

Hadoop MapReduce a powerful parallel programming

model which processes vast quantity of data via distributed

computing across the clusters.

A. HDFS- Hadoop Distributed File System

Hadoop Distributed File System [3] [4] is an open-

source file system that has been designed specifically to

handle large files that traditional file system cannot handle.

The large amount of data is split, replicated and scattered

on multiple machines. The replication of data facilitates

rapid computation and reliability. That is why HDFS can
also be called as self-healing distributed file system

meaning that, if a particular copy of the data gets corrupt or

more specifically to say if the DataNode on which the data

was residing fails then replicated copy can be used. This

ensures that the on-going work continues without any

disruption.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

83

Figure 1: HDFS

HDFS has master and slave architecture. The

architecture of HDFS is shown above in Figure 1. In figure

alphabets A, B, C represents data block and D fallowed by

a number represents a numbered DataNode. HDFS

provides distributed and highly fault tolerant ecosystem.

One Single NameNode along with multiple DataNodes is

present in a typical HDFS cluster. The NameNode, a

master server handles the responsibility of managing the

namespace of filesystem and governs the access by clients

to files. The namespace records the creation, deletion and

modification of files by users. NameNode maps data blocks

to DataNodes and manages file system operations like

opening, closing and renaming of files and directories. It is

all upon the directions of NameNode, the DataNodes

performs operations on blocks of data such as creation,

deletion and replication. The block size is of 64MB and is

replicated into 3 copies. The second copy is stored on the

local rack itself while the third on remote rack. A rack is

nothing but just a collection of data nodes.

B. Hadoop MapReduce

MapReduce [5] [6] is an important technology which

was proposed by Google. MapReduce is a simplified

programming model and is a major component of Hadoop

for parallel processing of vast amount of data. It relieves

programmers from the burden of parallelization issues

while allowing them to freely concentrate on application

development. The diagram of Hadoop MapReduce is

shown in Figure 2 below. Two important data processing

functions contained in MapReduce programming are Map

and Reduce.

The original data will be given as input to the Map phase

which performs processing as per the programming done

by the programmers to generate intermediate results.

Parallel Map tasks will run at a time. Firstly, the input data

is split into fixed sized blocks on which parallel Map tasks

are run. The output of the Map procedure is a collection of

key/value pairs which is still an intermediate output. These

pairs undergo a shuffling phase across reduce tasks. Only

one key is accepted by each reduce task and based on this

key the processing will be done. Finally the output will be

in the form of key/value pairs.

Figure 2: Hadoop MapReduce

The Hadoop MapReduce framework consists of one

Master node termed as JobTracker and many Worker nodes

called as TaskTrackers. The user submitted jobs are given

as input to the JobTracker which transforms them into a

numbers of Map and Reduce tasks. These tasks are

assigned to the TaskTrackers. The TaskTrackers scrutinizes

the execution of these tasks and at the end when all tasks

are accomplished; the user is notified about job completion.

HDFS provides for fault tolerance and reliability by storing

and replicating the inputs and outputs of a Hadoop job.

Hadoop framework is popular for HDFS and

MapReduce. The Hadoop Ecosystem also contains

different projects which are discussed below [7] [8]:

 Apache HBase: A column-oriented, non-relational

distributed key/value data store which is built to run on

top of the HDFS platform. It is designed to scale out

horizontally in distributed compute clusters.

NameNode

D1

1

A B C A C A B

D2

1

D3

1

D4

1

B

RACK 1 RACK 2

Map

Reduce

Reduce

Output

Output

Map

Map

Map

Map

At this stage shuffle and sort is

performed

Input data

 piltted

Output Data

Data

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

84

 Apache Hive: A data warehouse infrastructure built on

top of Hadoop for providing data summarization,

querying, and analyzing large datasets stored on Hadoop

files. It is not designed to offer real-time queries, but it

can support text files, and sequence files.

 Apache Pig: It provides a high-level parallel mechanism

for the programming of MapReduce jobs to be executed

on Hadoop clusters. It uses a scripting language known

as Pig Latin, which is a data-flow language geared

towards processing of data in a parallel manner.

 Apache Zookeeper: It is an Application Program

Interface (API) that allows distributed processing of data

in large systems to synchronize with each other in order

to provide consistent data to client requests.

 Apache Sqoop: A tool designed for efficiently

transferring bulk data between Hadoop and structured

data stores such as relational databases.

 Apache Flume: A distributed service for collecting,

aggregating, and moving large amount of log data.

III. APPLICATIONS OF HADOOP

Few of the applications of Hadoop are given below [9]

[10] [11]:

 Log and/or clickstream analysis of various kinds

 Marketing analytics

 Online travel booking

 Energy discovery and energy savings

 Infrastructure management

 Fraud detection

 Health care

 Tracks various types of data such as Geo-location

data, machine and sensor data, social media data.

IV. JOB SCHEDULING

Scheduling in Hadoop uses different kinds of scheduler

algorithms. The earliest versions of Hadoop used default

FIFO scheduler. Then Facebook and Yahoo after

considerable efforts in this area came up with Fair

Scheduler and Capacity Scheduler respectively. These were

then added to the later versions of Hadoop.

A. The Default FIFO Scheduler

The earlier versions of Hadoop used very

straightforward approach for dealing with user’s jobs. They

were scheduled to run in the order they were submitted i.e.,

FIFO (First in First Out) principle [12].

After some time, assignment of priority to the jobs was

provisioned as a new facility which is optional. Priority

makes the job scheduler to choose the next job that is of

highest priority. This option is not turned on by default but

can be availed if required. But with FIFO scheduler pre-

emption is not supported along with priority. So there is a

chance that a long running low priority job may end with

still blocking a later on scheduled high-priority job.

Manually modifying job priorities in the FIFO queue

certainly does work, but it requires active monitoring and

management of the job queue. The problem with FIFO

scheduler is that Hadoop dedicates the entire cluster to each

job being executed. Hadoop offers two additional job

schedulers that take a different approach and share the

cluster among multiple concurrently executing jobs. The

Capacity Scheduler and Fair Scheduler give a more

sophisticated way of managing cluster resources across

multiple concurrent job submissions. These schedulers are

discussed in following subsections.

B. Fair Scheduler

Fair scheduling [13] is a method of allocating resources

to jobs such that all jobs on an average get an equal share

of resources over time. The Fair scheduler is intended to

give a fair share of cluster capacity over time. If only one

job is running, it has the privilege to access all the capacity

of cluster. As users submit more jobs, free task slots are

shared among each user in a manner it gives fair share of

the cluster. The fair scheduler is fair enough with both

shorter and longer jobs in the way that it lets shorter jobs to

finish in a reasonable time while not starving longer jobs.

This also allows for multiple users to share cluster in an

easy manner. Fair sharing can also work with jobs assigned

priorities.
The Fair Scheduler arranges jobs into pools and allocates

resources fairly among these pools. Each user is assigned a

pool by default which allows for equal sharing of the

cluster. Inside each pool either FIFO or fair sharing

scheduling would have been employed. Within each pool,

the default model is to share the pool across all jobs

submitted to that pool. Therefore, if the cluster is split into

pools for two users say user A and user B, each of whom

submit three jobs, the cluster will execute all six jobs in

parallel. Suppose a pool has not received its fair share for

some time period, then the scheduler optionally

supports pre-emption of jobs in other pools. The Scheduler

will be allowed to kill tasks in pools running over capacity

so that slots can be given to the pools running under

capacity.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

85

In order to guarantee that not to starve ―production‖

jobs, the pre-emption can be used while still allowing the

Hadoop cluster to be used by research and experimental

jobs.

C. Capacity Scheduler

Capacity scheduler [14] [15] has been designed

specifically for those environments where there is need for

fair sharing of computation resources among large number

of users. It takes a slightly different approach to multiuser

scheduling. A cluster is made up of a number of queues,

which may be hierarchical and each queue has a capacity

allocated to it. Within each queue jobs are scheduled using

prioritized FIFO scheduling. In effect, the capacity

scheduler allows users or organization to simulate a

separate MapReduce cluster with FIFO scheduling for each

user or organization.

D. Improvements to Schedulers based on Speculative

Execution of Tasks

Sometimes it may happen that few tasks in a set of tasks

of a job continue to work slowly which will cost to the

overall job execution time. Because of these straggling

tasks in a job can make whole job to take much more time

to finish then it would have finished in less amount of time

only. There may be various reasons like high load on a

CPU of a node, slow running of a background processes,

software miss-configuration or hardware degradation.

Hadoop attempts to detect and consequently launches

another backup of a task that runs slower than expected

time. This is called as speculative execution of tasks. If the

original task finishes before the speculative task, then the

speculative task is killed, if the speculative task finishes

first, then the original is killed. Speculative execution [16]

does not ensure reliability of jobs. If there are bugs in

original task that sometimes hangs the task then the same

bugs appears in the speculative task. So in this type of

situation it’s unwise to go for a speculative task. So there is

a need to fix the bug so that the task does not slow down.

1) LATE Scheduler: Longest Approximate Time to End

(LATE) is a considerable improvement over the default

speculative execution. The LATE implementation of

speculative scheduling relies implicitly on certain

assumptions: a) uniform progress of tasks on node b)

uniform computation at all nodes. But these assumptions

break down easily in the heterogeneous clusters.

By considering a modified version of speculative

execution instead of the progress made by a task so far, the

computation of estimated remaining time is done which

gives a more clear assessment of straggling tasks impact on

the overall job response time.

2) Delay Scheduler: Fair Scheduler is designed that

aims to assign fair share of capacity among all the users. It

suffers from two locality problem. The first is head-of-line

scheduling that occurs in small jobs. The second locality

problem is sticky slot problem [17]. To solve head of line

problem, scheduler launches a task from a job on a node

without local data to maintain fairness. When it is not

possible to run a task on a node that does not contain data,

then it is better to run task on some other node on the same

rack. In delay scheduling, when a node requests a task, if

the head-of-line job cannot launch a local task, it is skipped

and looked at subsequent jobs. However, if a job has been

skipped long enough, non-local tasks are allowed to launch

to avoid starvation.

3) Other Scheduling Methods: Along with these

schedulers, there are other different types of schedulers [1]

like Dynamic Priority Schedulers. As the name itself

indicates, this scheduler supports capacity distribution

dynamically among concurrent users based on priorities of

the users. Deadline Constraint Scheduler has been designed

to address the issue of deadline but it focuses more on

enhancing system utilization. When a job is submitted, it

undergoes schedulability test that determines whether the

job can be finished within the specified deadline or not.

Availability of free slots is computed at the given time or in

the future irrespective of all the jobs running in the system.

Once it is determined that a given job can be completed

within the given deadline that job is enlisted for scheduling.

But the Deadline Constraint Scheduler discussed works in a

non-preemptive manner. But instead jobs can be run in

preemptive scheduling manner. This preemptive scheduling

approach under a deadline [18] has some advantages like it

avoids delay in production job while still allowing the

system to be shared by other non-production jobs. A

different type of schedulers discussed so far does not deal

with resources availability at fine-grained basis. The

Resource Aware Scheduler as the name itself indicates

attempts to use the resources efficiently. It is still a research

challenge.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

86

V. A LOOK IN TO TECHNICAL ASPECTS

Hadoop has some important configuration files [19] [20]

that need to be considered while configuring the Hadoop.

Few handful significant popular configuration files are

given below with small description for each:

 hadoop-env.sh: Environment variables used in scripts

to run Hadoop.

 core-site.xml: Contains Configuration settings for

Hadoop Core, such as I/O settings that are common to

MapReduce and HDFS.

 hdfs-site.xml: Configuration settings for HDFS

daemons: the namenode, the secondary namenode,

and the datanodes.

 mapred-site.xml: Configuration settings for

MapReduce daemons: the jobtracker, and the

tasktrackers.

 masters: A list of machines that each run a secondary

namenode.

 slaves: A list of machines that each run a datanode

and a tasktracker.

VI. YET ANOTHER RESOURCE NEGOTIATOR (YARN)

Hadoop is one of the widely-adopted cluster computing

frameworks for processing of the Big Data. Although

Hadoop arguably has become the standard solution for

managing Big Data, it is not free from limitations.

MapReduce has reached scalability limit of 4000 nodes

[21]. Another limitation is Hadoop's inability to perform

fine-grained resource sharing between multiple

computation frameworks. To solve these limitations, the

open source community proposed the next generation

MapReduce called YARN (Yet Another Resource

Negotiator) [21] [22].Computer scientists and engineers are

trying hard to eliminate these limitations and improve

Hadoop. YARN eliminates scalability limitation of the first

generation MapReduce paradigm.

The earlier version of Hadoop did not have YARN but it

was added in the Hadoop 2.0 version to increase the

capabilities [23]. A more general processing platform is

provided by YARN-based architecture of Hadoop 2.0 that

is not limited to MapReduce. YARN’s basic idea is to split

up the two major functionalities of the JobTracker, resource

management and job scheduling into separate daemons.

The idea is to have a global ResourceManager and per-

application ApplicationMaster. The ResourceManager

arbitrates resources among all the applications in the

system and it has two components: Scheduler and

Applications Manager.

The Scheduler is responsible for allocating the resources

among running applications. The ApplicationsManager

accepts job-submissions, negotiating the first container for

executing the application and provides the service for

restarting the ApplicationMaster container on failure. The

resource management abilities that were present in

MapReduce are also acquired by YARN which tones up

MapReduce in processing the data more efficiently. With

YARN multiple applications can run in Hadoop all sharing

a common resource management.

A. Comparison of YARN and MapReduce

By separating resource management functions from the

programming model, YARN delegates many scheduling-

related functions to per-job components. In this new

context, MapReduce is just one of the applications running

on top of YARN. This separation provides a great deal of

flexibility in the choice of programming framework.

Programming frameworks running on YARN coordinates

intra-application communication, execution flow, and

dynamic optimizations as they see fit, unlocking dramatic

performance improvements. The Classic Hadoop and

YARN architectures use a different scheduler. Classic

Hadoop uses a JobQueueTaskScheduler, while YARN uses

Capacity Scheduler by default.

It has some significant differences from old MapReduce.

 Introduction of Resource Manager responsible for

managing and assigning global cluster resources.

 Introduction of Application Master in each of the

application. The application master interacts with

resource manager to request compute resources.

 Introduction of Node Manager responsible for

managing user processes per node.

In earlier version of Hadoop the JobTracker was closely

tied with MapReduce framework. It was responsible for

both resource management and application management.

JobTracker would allow running Hadoop MapReduce jobs

only. The new resource manager allows running other

services like MPI within the same cluster via Application

Master. In old Hadoop map and reduce slots could not be

interchangeably used. This would mean that the cluster

would be largely underutilized during a pure map or reduce

phase. In the newer avatar of Hadoop slots can be reused as

there is much better resource utilization.

VII. CONCLUSION

The paper begins with a brief introduction about Big

Data. Big data can bring valuable benefits to the business.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 2014)

87

Then the paper discusses about one of the technologies

that handle the Big Data, the Hadoop. Then paper talks

about HDFS and MapReduce programming model. Then

we talk about some applications of Hadoop. Then the

various schedulers used in Hadoop are discussed in brief.

We look into technical aspects of Hadoop where some

important configuration files of Hadoop are discussed.

Since MapReduce undergoes some significant limitations if

the numbers of nodes are increased, the technology that

overcomes this limitation is YARN which is briefly

discussed.

REFERENCES

[1] B.Thirumala Rao, Dr.L.S.S.Reddy, ―Survey on Improved
Scheduling in Hadoop MapReduce in Cloud Environments‖,

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011.

[2] Kala Karun. A, Chitharanjan.K, ―A Review on Hadoop – HDFS

Infrastructure Extensions‖, Proceedings of 2013 IEEE Conference
on Information and Communication Technologies (ICT 2013).

[3] Lizhe Wang, Jie Tao, Rajiv Ranjan , Holger Marten, AchimStreit ,

Jingying Chen, DanChen, ―G-Hadoop: MapReduce across
distributed data centers for data-intensive computing‖, 2013.

[4] WeijiaXu, Wei Luo, Nicholas Woodward, ―Analysis and
Optimization of Data Import with Hadoop‖, 2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops & PhD Forum.

[5] HUANG Lan, WANG Xiao-wei, ZHAI Yan-dong, YANG Bin,

―Extraction of User Profile Based on the Hadoop Framework‖.

[6] Jeffy Dean,Sanjay Ghemawat. MapReduce, ―Simplified Data

Processing on Large Clusters‖, OSDI04: Sixth Symposium on

Operating System Design and Implemention, Ssn Francisco,
CA,December, 2004.

[7] What is Apache Hadoop? https://hadoop.apache.org

[8] Introduction to the Hadoop Software Ecosystem.

http://www.revelytix.com/?q=content/hadoop-ecosystem

[9] Other applications. https://en.wikipedia.org/wiki/Apache_Hadoop

[10] 10 ways companies are using Hadoop (for more than ads).

https://gigaom.com/2012/06/05/10-ways-companies-are-using-

hadoop-to-do-more-than-serve-ads/

[11] Business Applications of Hadoop.

http://www.edureka.in/blog/business-applications-of-hadoop/

[12] Job Scheduling. Hadoop: The Definitive Guide, Third Edition,

Textbook.

[13] Hadoop’s Fair Scheduler.

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.

[14] Jagmohan Chauhan, Dwight Makaroff and Winfried Grassmann,
―The Impact of Capacity Scheduler Configuration Settings on

MapReduce Jobs‖.

[15] Hadoop’s Capacity Scheduler.

http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html.

[16] M. Zaharia, A. Kowinski, A. Joseph, R. Katz and I. Stoica,

Improving mapreduce performance in heterogeneous environments.

USENIX OSDI, 2008

[17] DongjinYoo, Kwang Mong Sim, ―A comparative review of job

scheduling for mapreduce,‖ Multi-Agent and Cloud Computing

Systems Laboratory, Proceedings of IEEE CCIS2011.

[18] Premptive Hadoop Jobs Scheduling under a Deadline, ―Li Liu, Yuan

Zhou, Ming Liu, Guandong Xu, Xiwei Chen, Dangping Fan, Qianru
Wang‖, IEEE 2012 Eighth International Conference on Semantics,

Knowledge and Grids.

[19] Hadoop Administrative Guide.
http://caen.github.io/hadoop/administration-hadoop.html.

[20] Hadoop Cluster Configuration Files.
http://www.edureka.in/blog/hadoop-cluster-configuration-files.

[21] Arinto Murdopo, Jim Dowling, ―Next Generation Hadoop: High

Availability for YARN‖.

[22] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,

SharadAgarwal, MahadevKonar, Robert Evans, Thomas Graves,
Jason Lowe, Hitesh Shah, Siddharth Seth, BikasSaha, Carlo Curino,

Owen O’Malley, Sanjay Radia, Benjamin, Reed, Eric

Baldeschwieler, ―Apache Hadoop YARN: Yet Another Resource
Negotiator‖.

[23] Hortonworks Hadoop YARN. http://hortonworks.com/hadoop/yarn/.

