
ORIGINAL ARTICLE

Dragonfly algorithm: a new meta-heuristic optimization technique
for solving single-objective, discrete, and multi-objective problems

Seyedali Mirjalili1,2

Received: 1 October 2014 / Accepted: 30 April 2015 / Published online: 29 May 2015

� The Natural Computing Applications Forum 2015

Abstract A novel swarm intelligence optimization

technique is proposed called dragonfly algorithm (DA). The

main inspiration of the DA algorithm originates from the

static and dynamic swarming behaviours of dragonflies in

nature. Two essential phases of optimization, exploration

and exploitation, are designed by modelling the social in-

teraction of dragonflies in navigating, searching for foods,

and avoiding enemies when swarming dynamically or sta-

tistically. The paper also considers the proposal of binary

and multi-objective versions of DA called binary DA

(BDA) and multi-objective DA (MODA), respectively. The

proposed algorithms are benchmarked by several mathe-

matical test functions and one real case study qualitatively

and quantitatively. The results of DA and BDA prove that

the proposed algorithms are able to improve the initial

random population for a given problem, converge towards

the global optimum, and provide very competitive results

compared to other well-known algorithms in the literature.

The results of MODA also show that this algorithm tends to

find very accurate approximations of Pareto optimal solu-

tions with high uniform distribution for multi-objective

problems. The set of designs obtained for the submarine

propeller design problem demonstrate the merits of MODA

in solving challenging real problems with unknown true

Pareto optimal front as well. Note that the source codes of

the DA, BDA, and MODA algorithms are publicly available

at http://www.alimirjalili.com/DA.html.

Keywords Optimization � Multi-objective optimization �
Constrained optimization � Binary optimization �
Benchmark � Swarm intelligence � Evolutionary
algorithms � Particle swarm optimization � Genetic
algorithm

1 Introduction

Nature is full of social behaviours for performing different

tasks. Although the ultimate goal of all individuals and col-

lective behaviours is survival, creatures cooperate and inter-

act in groups, herds, schools, colonies, and flocks for several

reasons: hunting, defending, navigating, and foraging. For

instance, Wolf packs own one of the most well-organized

social interactions for hunting.Wolves tend to follow a social

leadership to hunt preys in different steps: chasing preys,

circling preys, harassing preys, and attacking preys [1, 2]. An

example of collective defence is schools of fishes in oceans.

Thousands of fishes create a school and avoid predators by

warning each other, making the predation very difficult for

predators [3]. The majority of predators have evolved to di-

vide such schools to sub-schools by attacking them and

eventually hunting the separated individuals.

Navigation is another reason for some of the creature to

swarm. Birds are the best examples of such behaviours, in

which they migrate between continents in flocks conve-

niently. It has been proven that the v-shaped configuration

of flight highly saves the energy and equally distribute drag

among the individuals in the flock [4]. Last but not least,

Electronic supplementary material The online version of this
article (doi:10.1007/s00521-015-1920-1) contains supplementary
material, which is available to authorized users.

& Seyedali Mirjalili

seyedali.mirjalili@griffithuni.edu.au

1 School of Information and Communication Technology,

Griffith University, Nathan Campus, Brisbane, QLD 4111,

Australia

2 Queensland Institute of Business and Technology,

Mt Gravatt, Brisbane, QLD 4122, Australia

123

Neural Comput & Applic (2016) 27:1053–1073

DOI 10.1007/s00521-015-1920-1

http://www.alimirjalili.com/DA.html
http://dx.doi.org/10.1007/s00521-015-1920-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1920-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1920-1&domain=pdf

foraging is another main reason of social interactions of

many species in nature. Ants and bees are the best exam-

ples of collective behaviours with the purpose of foraging.

It has been proven that ants and bees are able to find and

mark the shortest path from the nest/hive to the source of

food [5]. They intelligently search for foods and mark the

path utilizing pheromone to inform and guide others.

It is very interesting that creatures find the optimal si-

tuations and perform tasks efficiently in groups. It is obvi-

ous that they have been evolved over centuries to figure out

such optimal and efficient behaviours. Therefore, it is quite

reasonable that we inspire from them to solve our problems.

This is then main purpose of a field of study called swarm

intelligence (SI), which was first proposed by Beni and

Wang in 1989 [6]. SI refers to the artificial implementation/

simulation of the collective and social intelligence of a

group of living creatures in nature [7]. Researchers in this

field try to figure out the local rules for interactions between

the individuals that yield to the social intelligence. Since

there is no centralized control unit to guide the individuals,

finding the simple rules between some of them can simulate

the social behaviour of the whole population.

The ant colony optimization (ACO) algorithm is one of the

first SI techniques mimicking the social intelligence of ants

when foraging in an ant colony [8, 9]. This algorithm has

been inspired from the simple fact that each ant marks its own

path towards to food sources outside of the nest by pher-

omone. Once an ant finds a food source, it goes back to the

nest and marks the path by pheromone to show the path to

others. When other ants realize such pheromone marks, they

also try to follow the path and leave their own pheromones.

The key point here is that they might be different paths to the

food source. Since a longer path takes longer time to travel for

ants, however, the pheromone vaporizes with higher rate

before it is re-marked by other ants. Therefore, the shortest

path is achieved by simply following the path with stronger

level of pheromone and abandoning the paths with weaker

pheromone levels. Doringo first inspired from these simple

rules and proposed the well-known ACO algorithm [10].

The particle swarm optimization (PSO) algorithm is also

another well-regarded SI paradigm. This algorithm mimics

the foraging and navigation behaviour of bird flocks and

has been proposed by Eberhart and Kennedy [11]. The

main inspiration originates from the simple rules of inter-

actions between birds: birds tend to maintain their fly di-

rection towards their current directions, the best location of

food source obtained so far, and the best location of the

food that the swarm found so far [12]. The PSO algorithm

simply mimics these three rules and guides the particles

towards the best optimal solutions by each of the indi-

viduals and the swarm simultaneously.

The artificial bee colony (ABC) is another recent and

popular SI-based algorithm. This algorithm again simulates

the social behaviour of honey bees when foraging nectar and

has been proposed by Karaboga [13]. The difference of this

algorithm compared to ACO and PSO is the division of the

honey bees to scout, onlooker, and employed bees [14]. The

employed bees are responsible for finding food sources and

informing others by a special dance. In addition, onlookers

watch the dances, select one of them, and follow the path

towards the selected food sources. Scouters discover aban-

doned food sources and substitute them by new sources.

Since the proposal of these algorithms, a significant

number of researchers attempted to improve or apply them

in to different problems in diverse fields [15–20]. The

successful application of these algorithms in science and

industry evidences the merits of SI-based techniques in

practice. The reasons are due to the advantages of SI-based

algorithms. Firstly, SI-based techniques save information

about the search space over the course of iteration, whereas

such information is discarded by evolutionary algorithms

(EA) generation by generation. Secondly, there are fewer

controlling parameters in SI-based algorithm. Thirdly, SI-

based algorithm is equipped with less operators compared

to EA algorithms. Finally, SI-based techniques benefit from

flexibility, which make them readily applicable to prob-

lems in different fields.

Despite the significant number of recent publications in

this field [21–29], there are still other swarming behaviours

in nature that have not gained deserved attention. One of

the fancy insects that rarely swarm are dragonflies. Since

there is no study in the literature to simulate the individual

and social intelligence of dragonflies, this paper aims to

first find the main characteristics of dragonflies’ swarms.

An algorithm is then proposed based on the identified

characteristics. The no free lunch (NFL) [30] theorem also

supports the motivation of this work to propose this opti-

mizer since this algorithm may outperform other algo-

rithms on some problems that have not been solved so far.

The rest of the paper is organized as follows:

Section 2 presents the inspiration and biological foun-

dations of the paper. The mathematical models and the DA

algorithm are provided in Sect. 3. This section also pro-

poses binary and multi-objective versions of DA. A com-

prehensive comparative study on several benchmark

functions and one real case study is provided in Sect. 4 to

confirm and verify the performances of DA, BDA, and

MODA algorithms. Finally, Sect. 5 concludes the work

and suggests some directions for future studies.

2 Inspiration

Dragonflies (Odonata) are fancy insects. There are nearly

3000 different species of this insect around the world [31].

As shown in Fig. 1, a dragonfly’s lifecycle includes two

1054 Neural Comput & Applic (2016) 27:1053–1073

123

main milestones: nymph and adult. They spend the major

portion of their lifespan in nymph, and they undergo

metamorphism to become adult [31].

Dragonflies are considered as small predators that hunt

almost all other small insects in nature. Nymph dragonflies

also predate on other marine insects and even small fishes.

The interesting fact about dragonflies is their unique and

rare swarming behaviour. Dragonflies swarm for only two

purposes: hunting and migration. The former is called static

(feeding) swarm, and the latter is called dynamic (migra-

tory) swarm.

In static swarm, dragonflies make small groups and fly

back and forth over a small area to hunt other flying preys

such as butterflies and mosquitoes [32]. Local movements

and abrupt changes in the flying path are the main char-

acteristics of a static swarm. In dynamic swarms, however,

a massive number of dragonflies make the swarm for mi-

grating in one direction over long distances [33].

The main inspiration of the DA algorithm originates

from static and dynamic swarming behaviours. These two

swarming behaviours are very similar to the two main

phases of optimization using meta-heuristics: exploration

and exploitation. Dragonflies create sub-swarms and fly

over different areas in a static swarm, which is the main

objective of the exploration phase. In the static swarm,

however, dragonflies fly in bigger swarms and along one

direction, which is favourable in the exploitation phase.

These two phases are mathematically implemented in the

following section.

3 Dragonfly algorithm

3.1 Operators for exploration and exploitation

According to Reynolds, the behaviour of swarms follows

three primitive principles [34]:

• Separation, which refers to the static collision avoid-

ance of the individuals from other individuals in the

neighbourhood.

• Alignment, which indicates velocity matching of indi-

viduals to that of other individuals in neighbourhood.

• Cohesion, which refers to the tendency of individuals

towards the centre of the mass of the neighbourhood.

The main objective of any swarm is survival, so all of

the individuals should be attracted towards food sources

and distracted outward enemies. Considering these two

behaviours, there are five main factors in position updating

of individuals in swarms as shown in Fig. 2.

Each of these behaviours is mathematically modelled as

follows:

The separation is calculated as follows [34]:

Si ¼ �
XN

j¼1

X � Xj ð3:1Þ

where X is the position of the current individual, Xj shows

the position j-th neighbouring individual, and N is the

number of neighbouring individuals.

Alignment is calculated as follows:

Ai ¼
PN

j¼1 Vj

N
ð3:2Þ

where Xj shows the velocity of j-th neighbouring

individual.

The cohesion is calculated as follows:

Ci ¼
PN

j¼1 Xj

N
� X ð3:3Þ

where X is the position of the current individual, N is the

number of neighbourhoods, and Xj shows the position j-th

neighbouring individual.

Attraction towards a food source is calculated as

follows:

Adult

EggNymph

(a) (b)

Fig. 1 a Real dragonfly, b Life

cycle of dragonflies (left image

courtesy of Mehrdad Momeny

at www.mehrdadmomeny.com)

Neural Comput & Applic (2016) 27:1053–1073 1055

123

http://www.mehrdadmomeny.com

Fi ¼ Xþ � X ð3:4Þ

where X is the position of the current individual, and X?

shows the position of the food source.

Distraction outwards an enemy is calculated as follows:

Ei ¼ X� þ X ð3:5Þ

where X is the position of the current individual, and X-

shows the position of the enemy.

The behaviour of dragonflies is assumed to be the

combination of these five corrective patterns in this paper.

To update the position of artificial dragonflies in a search

space and simulate their movements, two vectors are

considered: step (DX) and position (X). The step vector is

analogous to the velocity vector in PSO, and the DA al-

gorithm is developed based on the framework of the PSO

algorithm. The step vector shows the direction of the

movement of the dragonflies and defined as follows (note

that the position updating model of artificial dragonflies is

defined in one dimension, but the introduced method can

be extended to higher dimensions):

DXtþ1 ¼ ðsSi þ aAi þ cCi þ fFi þ eEiÞ þ wDXt ð3:6Þ

where s shows the separation weight, Si indicates the

separation of the i-th individual, a is the alignment weight,

A is the alignment of i-th individual, c indicates the co-

hesion weight, Ci is the cohesion of the i-th individual, f is

the food factor, Fi is the food source of the i-th individual,

e is the enemy factor, Ei is the position of enemy of the i-th

individual, w is the inertia weight, and t is the iteration

counter.

After calculating the step vector, the position vectors are

calculated as follows:

Xtþ1 ¼ Xt þ DXtþ1 ð3:7Þ

where t is the current iteration.

With separation, alignment, cohesion, food, and enemy

factors (s, a, c, f, and e), different explorative and ex-

ploitative behaviours can achieved during optimization.

Neighbours of dragonflies are very important, so a neigh-

bourhood (circle in a 2D, sphere in a 3D space, or hyper-

sphere in an nD space) with a certain radius is assumed

around each artificial dragonfly. An example of swarming

behaviour of dragonflies with increasing neighbourhood

radius using the proposed mathematical model is illustrated

in Fig. 3.

As discussed in the previous subsection, dragonflies

only show two types of swarms: static and dynamic as

shown in Fig. 4. As may be seen in this figure, dragonflies

tend to align their flying while maintaining proper

separation and cohesion in a dynamic swarm. In a static

swarm, however, alignments are very low while cohesion is

high to attack preys. Therefore, we assign dragonflies with

high alignment and low cohesion weights when exploring

the search space and low alignment and high cohesion

when exploiting the search space. For transition between

exploration and exploitation, the radii of neighbourhoods

are increased proportional to the number of iterations.

Another way to balance exploration and exploitation is to

adaptively tune the swarming factors (s, a, c, f, e, and

w) during optimization.

Seperation Alignment Cohesion

Attraction to food Distraction from enemy

Fig. 2 Primitive corrective

patterns between individuals in

a swarm

1056 Neural Comput & Applic (2016) 27:1053–1073

123

A question may rise here as to how the convergence of

dragonflies is guaranteed during optimization. The drag-

onflies are required to change their weights adaptively for

transiting from exploration to exploitation of the search

space. It is also assumed that dragonflies tend to see more

dragonflies to adjust flying path as optimization process

progresses. In other word, the neighbourhood area is

increased as well whereby the swarm become one group at

the final stage of optimization to converge to the global

optimum. The food source and enemy are chosen from the

best and worst solutions that the whole swarm is found so

far. This causes convergence towards promising areas of

the search space and divergence outward non-promising

regions of the search space.

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

EnemyFig. 3 Swarming behaviour of

artificial dragon flies

(w = 0.9–0.2, s = 0.1, a = 0.1,

c = 0.7, f = 1, e = 1)

Fig. 4 Dynamic versus static dragonfly swarms

Neural Comput & Applic (2016) 27:1053–1073 1057

123

To improve the randomness, stochastic behaviour, and

exploration of the artificial dragonflies, they are required to

fly around the search space using a random walk (Lévy

flight) when there is no neighbouring solutions. In this

case, the position of dragonflies is updated using the fol-

lowing equation:

Xtþ1 ¼ Xt þ L�evy dð Þ � Xt ð3:8Þ

where t is the current iteration, and d is the dimension of

the position vectors.

The Lévy flight is calculated as follows [35]:

L�evy xð Þ ¼ 0:01� r1 � r

r2j j
1
b

ð3:9Þ

where r1, r2 are two random numbers in [0,1], b is a constant

(equal to 1.5 in this work), and r is calculated as follows:

r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �
� b� 2

b�1
2ð Þ

0
@

1
A

1=b

ð3:10Þ

where C xð Þ ¼ x� 1ð Þ!.

3.2 The DA algorithm for single-objective problems

The DA algorithm starts optimization process by creating a

set of random solutions for a given optimization problems.

In fact, the position and step vectors of dragonflies are

initialized by random values defined within the lower and

upper bounds of the variables. In each iteration, the posi-

tion and step of each dragonfly are updated using

Eqs. (3.7)/(3.8) and (3.6). For updating X and DX vectors,

neighbourhood of each dragonfly is chosen by calculating

the Euclidean distance between all the dragonflies and se-

lecting N of them. The position updating process is con-

tinued iteratively until the end criterion is satisfied. The

pseudo-codes of the DA algorithm are provided in Fig. 5.

It is worth discussing here that the main differences be-

tween the DA and PSO algorithm are the consideration of

separation, alignment, cohesion, attraction, distraction, and

random walk in this work. Although there are some works in

the literature that attempted to integrate separation, align-

ment, and cohesion to PSO [36–38], this paper models the

swarming behaviour of dragonflies by considering all the

possible factors applied to individuals in a swarm. The con-

cepts of static and dynamic swarms are quite novel as well.

The proposed model of this work is also completely different

from the current improved PSO in the literature cited above.

3.3 The DA algorithm for binary problems (BDA)

Optimization in a binary search space is very different than

a continuous space. In continuous search spaces, the search

agents of DA are able to update their positions by adding

the step vectors to the position vectors. In a binary search

space, however, the position of search agents cannot be

updated by adding step vectors to X since the position

vectors of search agents can only be assigned by 0 or 1.

Due to the similarity of DA and other SI techniques, the

current methods for solving binary problems in the lit-

erature are readily applicable to this algorithm.

According to Mirjalili and Lewis [39], the easiest and

most effective method to convert a continuous SI technique

to a binary algorithm without modifying the structure is to

employ a transfer function. Transfer functions receive ve-

locity (step) values as inputs and return a number in [0,1],

which defines the probability of changing positions. The

output of such functions is directly proportional to the

value of the velocity vector. Therefore, a large value for the

velocity of a search agent makes it very likely to update its

position. This method simulates abrupt changes in particles

with large velocity values similarly to continuous opti-

mization (Fig. 6). Two examples of transfer functions in

the literature are illustrated in Fig. 6 [39–41].

As may be seen in this figure, there are two types of

transfer functions: s-shaped versus v-shaped. According to

Saremi et al. [40], the v-shaped transfer functions are better

than the s-shaped transfer functions because they do not

force particles to take values of 0 or 1. In order to solve

binary problems with the BDA algorithm, the following

transfer function is utilized [39]:

T Dxð Þ ¼ Dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ 1

p
����

���� ð3:11Þ

This transfer function is first utilized to calculate the

probability of changing position for all artificial dragon-

flies. The following new updating position formula is then

employed to update the position of search agents in binary

search spaces:

Initialize the dragonflies population Xi (i = 1, 2, ..., n)
Initialize step vectors ΔXi (i = 1, 2, ..., n)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy

 Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Eqs. (3.1) to (3.5)
Update neighbouring radius
if a dragonfly has at least one neighbouring dragonfly
 Update velocity vector using Eq. (3.6)
 Update position vector using Eq. (3.7)
else
 Update position vector using Eq. (3.8)
end if
Check and correct the new positions based on the
boundaries of variables

end while

Fig. 5 Pseudo-codes of the DA algorithm

1058 Neural Comput & Applic (2016) 27:1053–1073

123

Xtþ1 ¼
:Xt r\T Dxtþ1ð Þ
Xt r� T Dxtþ1ð Þ

(
ð3:12Þ

where r is a number in the interval of [0,1].

With the transfer function and new position updating

equations, the BDA algorithm will be able to solve binary

problems easily subject to proper formulation of the

problem. It should be noted here that since the distance of

dragonflies cannot be determined in a binary space as

clearly as a continuous space, the BDA algorithm considers

all of the dragonflies as one swarm and simulate explo-

ration/exploitation by adaptively tuning the swarming

factors (s, a, c, f, and e) as well as the inertia weigh (w).

The pseudo-codes of the BDA algorithm are presented in

Fig. 7.

3.4 The DA algorithm for multi-objective problems

(MODA)

Multi-objective problems have multiple objectives, which

are mostly in conflict. The answer for such problems is a

set of solutions called Pareto optimal solutions set. This set

includes Pareto optimal solutions that represent the best

trade-offs between the objectives [42]. Without loss of

generality, multi-objective optimization can be formulated

as a minimization problem as follows:

Minimize : F x~ð Þ ¼ f1 x~ð Þ; f2 x~ð Þ; . . .; fo x~ð Þf g ð3:13Þ
Subject to : gi x~ð Þ� 0; i ¼ 1; 2; . . .;m ð3:14Þ
hi x~ð Þ ¼ 0; i ¼ 1; 2; . . .; p ð3:15Þ
Li � xi �Ui; i ¼ 1; 2; . . .; n ð3:16Þ

where o is the number of objectives, m is the number of

inequality constraints, p is the number of equality con-

straints, and [Li, Ui] are the boundaries of i-th variable.

Due to the nature of multi-objective problems, the

comparison between different solutions cannot be done by

arithmetic relational operators. In this case, the concepts of

Pareto optimal dominance allow us to compare two solu-

tions in a multi-objective search space. The definitions of

Pareto dominance and Pareto optimality are as follows

[43]:

Definition 1 Pareto dominance:

Suppose that there are two vectors such as: x~¼
x1; x2; . . .; xkð Þ and y~¼ y1; y2; . . .; ykð Þ.
Vector x dominates vector y (denote as x � y) iff:

8i 2 1; 2; . . .; kf g; f xið Þ� f yið Þ½ � ^ 9i 2 1; 2; . . .; k : f xið Þ½ �
ð3:17Þ

It can be seen in Eq. (3.17) that a solution dominates the

other if it shows better or equal values on all objectives

(dimensions) and has better value in at last one of the

objectives. The definition of Pareto optimality is as follows

[44]:

Definition 2 Pareto optimality:

A solution x~2 X is called Pareto optimal iff:

9= y~2 XjF y~ð Þ � F x~ð Þ ð3:18Þ

According to the definition 2, two solutions are non-

dominated with respect to each other if neither of them

dominates the other. A set including all the non-dominated

(a) (b)

Fig. 6 S-shaped and v-shaped

transfer functions

Initialize the dragonflies population Xi (i = 1, 2, ..., n)
Initialize step vectors ΔXi (i = 1, 2, ..., n)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Eqs. (3.1) to (3.5)
Update step vectors using Eq. (3.6)
Calculate the probabilities using Eq. (3.11)
Update position vectors using Eq. (3.12)

end while

Fig. 7 Pseudo-codes of the BDA algorithm

Neural Comput & Applic (2016) 27:1053–1073 1059

123

solutions of a problem is called Pareto optimal set and

defined as follows:

Definition 3 Pareto optimal set:

The set of all Pareto optimal solutions is called Pareto

set as follows:

Ps := fx; y 2 Xj9FðyÞ � FðxÞg ð3:19Þ

A set containing the corresponding objective values of

Pareto optimal solutions in Pareto optimal set is called

Pareto optimal front. The definition of the Pareto optimal

front is as follows:

Definition 4 Pareto optimal front:

A set containing the value of objective functions for

Pareto solutions set:

Pf := fFðxÞjx 2 Psg ð3:20Þ

In order to solve multi-objective problems using meta-

heuristics, an archive (repository) is widely used in the

literature to maintain the Pareto optimal solutions during

optimization. Two key points in finding a proper set of

Pareto optimal solutions for a given problem are conver-

gence and coverage. Convergence refers to the ability of a

multi-objective algorithm in determining accurate ap-

proximations of Pareto optimal solutions. Coverage is the

distribution of the obtained Pareto optimal solutions along

the objectives. Since most of the current multi-objective

algorithms in the literature are posteriori, the coverage and

number of solutions are very important for decision making

after the optimization process [45]. The ultimate goal for a

multi-objective optimizer is to find the most accurate ap-

proximation of true Pareto optimal solutions (convergence)

with uniform distributions (coverage) across all objectives.

For solving multi-objective problems using the DA al-

gorithm, it is first equipped with an archive to store and

retrieve the best approximations of the rue Pareto optimal

solutions during optimization. The updating position of

search agents is identical to that of DA, but the food

sources are selected from the archive. In order to find a

well-spread Pareto optimal front, a food source is chosen

from the least populated region of the obtained Pareto

optimal front, similarly to the multi-objective particle

swarm optimization (MOPSO) algorithm [46]. To find the

least populated area of the Pareto optimal front, the search

space should be segmented. This is done by finding the best

and worst objectives of Pareto optimal solutions obtained,

defining a hyper-sphere to cover all the solutions, and di-

viding the hyper-spheres to equal sub-hyper-spheres in

each iteration. After the creation of segments, the selection

is done by a roulette-wheel mechanism with the following

probability for each segment, which was proposed by

Coello Coello et al. [47]:

Pi ¼
c

Ni

ð3:21Þ

where c is a constant number greater than one, and Ni is the

number of obtained Pareto optimal solutions in the i-th

segment.

This equations allows the MODA algorithm to have

higher probability of choosing food sources from the less

populated segments. Therefore, the artificial dragonflies

will be encouraged to fly around such regions and improve

the distribution of the whole Pareto optimal front.

For selecting enemies from the archive, however, the

worst (most populated) hyper-sphere should be chosen in

order to discourage the artificial dragonflies from searching

around non-promising crowded areas. The selection is done

by a roulette-wheel mechanism with the following prob-

ability for each segment:

Pi ¼
Ni

c
ð3:22Þ

where c is a constant number greater than one, and Ni is the

number of obtained Pareto optimal solutions in the i-th

segment.

In may be seen in Eq. (3.22) that the roulette-wheel

mechanism assigns high probabilities to the most crowded

hyper-spheres for being selected as enemies. An example

of the two above-discussed selection processes is illustrated

in Fig. 8. Note that the main hyper-sphere that covers all

the sub-hyper-spheres is not illustrated in this figure.

The archive should be updated regularly in each it-

eration and may become full during optimization. There-

fore, there should be a mechanism to manage the archive. If

a solution is dominated by at least one of the archive

residences, it should be prevented from entering the

archive. If a solution dominates some of the Pareto optimal

solutions in the archive, they all should be removed from

Fig. 8 Conceptual model of the best hyper-spheres for selecting a

food source or removing a solution from the archive

1060 Neural Comput & Applic (2016) 27:1053–1073

123

the archive, and the solution should be allowed to enter the

archive. If a solution is non-dominated with respect to all

of the solutions in the archive, it should be added to the

archive. If the archive is full, one or more than one solu-

tions may be removed from the most populated segments to

accommodate new solution(s) in the archive. These rules

are taken from the work of Coello Coello et al. [47].

Figure 8 shows the best candidate hyper-sphere (segments)

to remove solutions (enemies) from in case the archive

become full.

All the parameters of the MODA algorithm are identical

to those of the DA algorithm except two new parameters

for defining the maximum number of hyper-spheres and

archive size. After all, the pseudo-codes of MODA are

presented in Fig. 9.

4 Results and discussion

In this section, a number of test problems and one real case

study are selected to benchmark the performance of the

proposed DA, BDA, and MODA algorithms.

4.1 Results of DA algorithm

Three groups of test functions with different characteristics

are selected to benchmark the performance of the DA al-

gorithm from different perspectives. As shown in Ap-

pendix 1, the test functions are divided the three groups:

unimodal, multi-modal, and composite functions [48–51].

As their names imply, unimodal test functions have single

optimum, so they can benchmark the exploitation and

convergence of an algorithm. In contrast, multi-modal test

functions have more than one optimum, which make them

more challenging than unimodal functions. One of the

optima is called global optimum, and the rest are called

local optima. An algorithm should avoid all the local op-

tima to approach and approximate the global optimum.

Therefore, exploration and local optima avoidance of al-

gorithms can be benchmarked by multi-modal test

functions.

The last group of test functions, composite functions, are

mostly the combined, rotated, shifted, and biased version of

other unimodal and multi-modal test functions [52, 53].

They mimic the difficulties of real search spaces by pro-

viding a massive number of local optima and different

shapes for different regions of the search space. An algo-

rithm should properly balance exploration and exploitation

to approximate the global optimum of such test functions.

Therefore, exploration and exploitation combined can be

benchmarked by this group of test functions.

For verification of the results of DA, two well-known

algorithms are chosen: PSO [54] as the best algorithm

among swarm-based technique and GA [55] as the best

evolutionary algorithm. In order to collect quantitative

results, each algorithm is run on the test functions 30

times and to calculate the average and standard deviation

of the best approximated solution in the last iteration.

These two metrics show which algorithm behaves more

stable when solving the test functions. Due to the

stochastic nature of the algorithms, a statistical test is also

conducted to decide about the significance of the results

[56]. The averages and standard deviation only compare

the overall performance of the algorithms, while a statis-

tical test considers each run’s results and proves that the

results are statistically significant. The Wilcoxon non-

parametric statistical test [39, 56] is conducted in this

work. After all, each of the test functions is solved using

Initialize the dragonflies population Xi (i = 1, 2, ..., n)
Initialize step vectors ΔXi (i = 1, 2, ..., n)
Define the maximum number of hyper spheres (segments)
Define the archive size
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Find the non-dominated solutions
Update the archive with respect to the obtained non-dominated solutions
If the archive is full

Run the archive maintenance mechanism to omit one of the current archive members
Add the new solution to the archive

end if
If any of the new added solutions to the archive is located outside the hyper spheres

Update and re-position all of the hyper spheres to cover the new solution(s)
end if
Select a food source from archive: =SelectFood(archive)
Select an enemy from archive: =SelectEnemy(archive)
Update step vectors using Eq. (3.11)
Update position vectors using Eq. (3.12)

 Check and correct the new positions based on the boundaries of variables
end while

Fig. 9 Pseudo-codes of the

MODA algorithm

Neural Comput & Applic (2016) 27:1053–1073 1061

123

30 search agents over 500 iterations, and the results are

presented in Tables 1 and 2. Note that the initial pa-

rameters of PSO and GA are identical to the values in the

original papers cited above.

As per the results of the algorithms on the unimodal test

functions (TF1–TF7), it is evident that the DA algorithm

outperforms PSO and GA on the majority of the cases. The

p values in Table 5 also show that this superiority is sta-

tistically significant since the p values are less than 0.05.

Considering the characteristic of unimodal test functions, it

can be stated that the DA algorithm benefits from high

exploitation. High exploitation assists the DA algorithm to

rapidly converge towards the global optimum and exploit it

accurately.

The results of the algorithms on multi-modal test func-

tions (TF8–TF13) show that again the DA algorithm pro-

vides very competitive results compared to PSO. The

p values reported in Table 2 also show that the DA and

PSO algorithms show significantly better results than GA.

Considering the characteristics of multi-modal test func-

tions and these results, it may be concluded that the DA

algorithm has high exploration which assist it to discover

the promising regions of the search space. In addition, the

local optima avoidance of this algorithm is satisfactory

since it is able to avoid all of the local optima and ap-

proximate the global optima on the majority of the multi-

modal test functions.

The results of composite test functions (TF14–TF19)

show that the DA algorithm provides very competitive

results and outperforms others occasionally. However,

Table 1 Statistical results of

the algorithms on the test

functions

Test function DA PSO GA

Ave Std Ave Std Ave Std

TF1 2.85E-18 7.16E-18 4.2E-18 1.31E-17 748.5972 324.9262

TF2 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102

TF3 1.29E-06 2.1E-06 0.001891 0.003311 1949.003 994.2733

TF4 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406

TF5 7.600558 6.786473 63.45331 80.12726 133307.1 85,007.62

TF6 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997

TF7 0.010293 0.004691 0.005973 0.003583 0.166872 0.072571

TF8 -2857.58 383.6466 -7.1E?11 1.2E?12 -3407.25 164.4776

TF9 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936

TF10 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393

TF11 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607

TF12 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215

TF13 0.002197 0.004633 0.002197 0.004633 68,047.23 87,736.76

TF14 103.742 91.24364 150 135.4006 130.0991 21.32037

TF15 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351

TF16 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532

TF17 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406

TF18 229.9515 184.6095 136.1759 160.0187 118.438 51.00183

TF19 679.588 199.4014 741.6341 206.7296 544.1018 13.30161

Table 2 p values of the Wilcoxon ranksum test over all runs

F DA PSO GA

TF1 N/A 0.045155 0.000183

TF2 N/A 0.121225 0.000183

TF3 N/A 0.003611 0.000183

TF4 N/A 0.307489 0.000183

TF5 N/A 0.10411 0.000183

TF6 0.344704 N/A 0.000183

TF7 0.021134 N/A 0.000183

TF8 0.000183 N/A 0.000183

TF9 0.364166 N/A 0.002202

TF10 N/A 0.472676 0.000183

TF11 0.001008 N/A 0.000183

TF12 0.140465 N/A 0.000183

TF13 N/A 0.79126 0.000183

TF14 N/A 0.909654 0.10411

TF15 0.025748 0.241322 N/A

TF16 0.01133 N/A 0.053903

TF17 0.088973 N/A 0.241322

TF18 0.273036 0.791337 N/A

TF19 N/A 0.472676 N/A

1062 Neural Comput & Applic (2016) 27:1053–1073

123

the p values show that the superiority is not as sig-

nificant as those of unimodal and multi-modal test

functions. This is due to the difficulty of the composite

test functions that make them challenging for algorithms

employed in this work. Composite test functions bench-

mark the exploration and exploitation combined. There-

fore, these results prove that the operators of the DA

algorithm appropriately balance exploration and ex-

ploitation to handle difficulty in a challenging search

space. Since the composite search spaces are highly

similar to the real search spaces, these results make the

DA algorithm potentially able to solve challenging op-

timization problems.

For further observing and analysing the performance of

the proposed DA algorithm, four new metrics are employed

in the following paragraphs. The main aims of this ex-

periment is to confirm the convergence and predict the

potential behaviour of the DA algorithm when solving real

problems. The employed quantitative metrics are the po-

sition of dragonflies from the first to the last iteration

(search history), the value of a parameter from the first to

the last iteration (trajectory), the average fitness of drag-

onflies from the first to the last iteration, and the fitness of

the best food source obtained from the first to the last

iteration (convergence).

Tracking the position of dragonflies during optimization

allows us to observe whether and how the DA algorithm

explores and exploits the search space. Monitoring the

value of a parameter during optimization assists us to ob-

serve the movement of candidate solutions. Preferably,

there should be abrupt changes in the parameters in the

exploration phase and gradual changes in the exploitation

phase. The average fitness of dragonflies during optimiza-

tion also shows the improvement in the fitness of the whole

swarm during optimization. Finally, the fitness of the food

source shows the improvement of the obtained global op-

timum during optimization.

Some of the functions (TF2, TF10, and TF17) are se-

lected and solved by 10 search agents over 150 iterations.

The results are illustrated in Figs. 10, 11, 12, and 13.

Figure 10 shows the history of dragonfly’s position during

optimization. It may be observed that the DA algorithm

tends to search the promising regions of the search space

extensively. The behaviour of DA when solving TF17,

which is a composite test function, is interesting because

the coverage of search space seems to be high. This shows

Fig. 10 Search history of the

DA algorithms on unimodal,

multi-modal, and composite test

functions

Fig. 11 Trajectory of DA’s

search agents on unimodal,

multi-modal, and composite test

functions

Fig. 12 Average fitness of

DA’s search agents on

unimodal, multi-modal, and

composite test functions

Neural Comput & Applic (2016) 27:1053–1073 1063

123

that the DA’s artificial dragonflies are able to search the

search space effectively.

Figure 11 illustrates the trajectory of the first variable of

the first artificial dragonfly over 150 iterations. It can be

observed that there are abrupt changes in the initial it-

erations. These changes are decreased gradually over the

course of iterations. According to Berg et al. [57], this

behaviour can guarantee that an algorithm eventually

convergences to a point and search locally in a search

space.

Figures 12 and 13 show the average fitness of all

dragonflies and the food source, respectively. The average

fitness of dragonflies shows a decreasing behaviour on all

of the test functions. This proves that the DA algorithm

improves the overall fitness of the initial random popula-

tion. A similar behaviour can be observed in the conver-

gence curves. This also evidences that the approximation of

the global optimum becomes more accurate as the iteration

counter increases. Another fact that can be seen is the ac-

celerated trend in the convergence curves. This is due to

the emphasis on local search and exploitation as iteration

increases which highly accelerate the convergence towards

the optimum in the final steps of iterations.

As summary, the results of this section proved that the

proposed DA algorithm shows high exploration and

exploitation. For one, the proposed static swarm promotes

exploration, assists the DA algorithm to avoid local optima,

and resolves local optima stagnation when solving chal-

lenging problems. For another, the dynamic swarm of

dragonflies emphasizes exploitation as iteration increases,

which causes a very accurate approximation of the global

optimum.

4.2 Results of BDA algorithm

To benchmark the performance of the BDA algorithm, test

functions TF1 to TF13 are taken from Sect. 4.1 and Ap-

pendix 1. For simulating a binary search space, we consider

15 bits to define the variables of the test functions. The

dimension of test functions is reduced from 30 to 5, so the

total number of binary variables to be optimized by the

BDA algorithm is 75 (5 9 15). For verification of the re-

sults, the binary PSO (BPSO) [58] and binary gravitational

search algorithm (BGSA) [59] are chosen from the lit-

erature. Each of the algorithms is run 30 times, and the

results are presented in Tables 3 and 4. Note that the initial

parameters of BPSO and BGSA are identical to the values

in the original papers cited above.

Table 3 shows that the proposed algorithm outperforms

both BPSO and BGSA on the majority of binary test cases.

Fig. 13 Convergence curve of

the DA algorithms on unimodal,

multi-modal, and composite test

functions

Table 3 Statistical results of

the binary algorithms on the test

functions

Test function BDA BPSO BGSA

Ave Std Ave Std Ave Std

TF1 0.281519 0.417723 5.589032 1.97734 82.95707 49.78105

TF2 0.058887 0.069279 0.196191 0.052809 1.192117 0.228392

TF3 14.23555 22.68806 15.51722 13.68939 455.9297 271.9785

TF4 0.247656 0.330822 1.895313 0.483579 7.366406 2.213344

TF5 23.55335 34.6822 86.44629 65.82514 3100.999 2927.557

TF6 0.095306 0.129678 6.980524 3.849114 106.8896 77.54615

TF7 0.012209 0.014622 0.011745 0.006925 0.03551 0.056549

TF8 -924.481 65.68827 -988.565 16.66224 -860.914 80.56628

TF9 1.805453 1.053829 4.834208 1.549026 10.27209 3.725984

TF10 0.388227 0.5709 2.154889 0.540556 2.786707 1.188036

TF11 0.193437 0.113621 0.47729 0.129354 0.788799 0.251103

TF12 0.149307 0.451741 0.407433 0.231344 9.526426 6.513454

TF13 0.035156 0.056508 0.306925 0.241643 2216.776 5663.491

1064 Neural Comput & Applic (2016) 27:1053–1073

123

The discrepancy of the results is very evident as per the

p values reported in Table 4. These results prove that the

BDA algorithm inherits high exploration and exploitation

from the DA algorithm due to the use of the

v-shaped transfer function.

4.3 Results of MODA algorithm

As multi-objective case studies, five challenging test

functions from the well-known ZDT set proposed by Deb

et al. [60] are chosen in this subsection. Note that the first

three test functions are identical to ZDT1, ZDT2, and

ZDT3. However, this paper modifies ZDT1 and ZDT2 to

have test problems with linear and tri-objective fronts as

the last two case studies. The details of these test functions

are available in Appendix 2. The results are collected and

discussed quantitatively and qualitatively. Quantitative re-

sults are calculated by the inverse generational distance

(IGD) proposed by Sierra and Coello Coello [61] over ten

runs. This performance metric is similar to generational

distance (GD) [62] and formulated as follows:

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

p

n
ð4:1Þ

where n is the number of true Pareto optimal solutions, and

di indicates the Euclidean distance between the i-th true

Pareto optimal solution and the closest obtained Pareto

optimal solutions in the reference set.

For collecting and discussing the qualitative results, the

best Pareto optimal front in ten independent runs are pre-

sented. The MODA algorithm is compared to MOPSO [47]

and non-dominated sorting genetic algorithm (NSGA-II)

[63]. After all, the quantitative results are presented in

Tables 5, 6, 7, 8, and 9, and the qualitative results are

provided in Figs. 14, 15, 16, 17, and 18.

As per the results presented in Tables 5, 6, 7, 8, and 9,

the MODA algorithm tends to outperform NSGA-II and

provides very competitive results compared to MOPSO on

the majority of the test functions. Figures 14, 15, 16, 17,

and 18 also show that the convergence and coverage of the

Pareto optimal solutions obtained by MODA algorithm are

Table 4 p values of the Wilcoxon ranksum test over all runs

F BDA BPSO BGSA

TF1 N/A 0.000183 0.000183

TF2 N/A 0.001706 0.000183

TF3 N/A 0.121225 0.000246

TF4 N/A 0.000211 0.000183

TF5 N/A 0.009108 0.000183

TF6 N/A 0.000183 0.000183

TF7 0.472676 N/A 0.344704

TF8 0.064022 N/A 0.000583

TF9 N/A 0.000583 0.000183

TF10 N/A 0.00033 0.00044

TF11 N/A 0.000583 0.00033

TF12 N/A 0.002827 0.000183

TF13 N/A 0.000583 0.000183

Table 5 Results of the multi-objective algorithms on ZDT1

Algorithm IGD

Ave Std Median Best Worst

MODA 0.00612 0.002863 0.0072 0.0024 0.0096

MOPSO 0.00422 0.003103 0.0037 0.0015 0.0101

NSGA-II 0.05988 0.005436 0.0574 0.0546 0.0702

Table 6 Results of the multi-objective algorithms on ZDT2

Algorithm IGD

Ave Std Median Best Worst

MODA 0.00398 0.001604244 0.0033 0.0023 0.006

MOPSO 0.00156 0.000174356 0.0017 0.0013 0.0017

NSGA-II 0.13972 0.026263465 0.1258 0.1148 0.1834

Table 7 Results of the multi-objective algorithms on ZDT3

Algorithm IGD

Ave Std Median Best Worst

MODA 0.02794 0.004021 0.0302 0.02 0.0304

MOPSO 0.03782 0.006297 0.0362 0.0308 0.0497

NSGA-II 0.04166 0.008073 0.0403 0.0315 0.0557

Table 8 Results of the multi-objective algorithms on ZDT1 with

linear front

Algorithm IGD

Ave Std Median Best Worst

MODA 0.00616 0.005186 0.0038 0.0022 0.0163

MOPSO 0.00922 0.005531 0.0098 0.0012 0.0165

NSGA-II 0.08274 0.005422 0.0804 0.0773 0.0924

Table 9 Results of the multi-objective algorithms on ZDT2 with

three objectives

Algorithm IGD

Ave Std Median Best Worst

MODA 0.00916 0.005372 0.0063 0.0048 0.0191

MOPSO 0.02032 0.001278 0.0203 0.0189 0.0225

NSGA-II 0.0626 0.017888 0.0584 0.0371 0.0847

Neural Comput & Applic (2016) 27:1053–1073 1065

123

mostly better than NSGA-II. High convergence of the

MODA originates from the accelerated convergence of

search agents around the food sources selected from the

archive over the course of iterations. Adaptive values for s,

a, c, f, e, and w in MODA allow its search agents to con-

verge towards the food sources proportional to the number

of iterations. High coverage of the MODA algorithm is due

to the employed food/enemy selection mechanisms. Since

the foods and enemies are selected from the less populated

and most populated hyper-spheres, respectively, the search

agents of the MODA algorithm tend to search the regions

of the search space that have Pareto optimal solutions with

Fig. 14 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT1

Fig. 15 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT2

Fig. 16 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT3

1066 Neural Comput & Applic (2016) 27:1053–1073

123

low distribution and avoid highly distributed regions in

Pareto front. Therefore, the distribution of the Pareto op-

timal solutions is adjusted and increased along the obtained

Pareto optimal front. The maintenance mechanism for a

full archive also assists the MODA algorithm to discard

excess Pareto optimal solutions (enemies) in populated

segments and allows adding new food sources in less

populated regions. These results evidence the merits of the

proposed MODA in solving multi-objective problems as a

posteriori algorithm.

To demonstrate the applicability of the proposed MODA

algorithm in practice, a submarine’s propeller is optimized

by this algorithm as well. This problem has two objectives:

cavitation versus efficiency. These two objectives are in

Fig. 17 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT1 with linear front

Fig. 18 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT2 with three objectives

Fig. 19 A 7-blade propeller with 2 m diameter for submarines

Neural Comput & Applic (2016) 27:1053–1073 1067

123

conflict and restricted by a large number of constraints as

other computational fluid dynamics (CFD) problems. This

problem is formulated as follows:

Maximize : g Xð Þ ð4:2Þ
Miniimize : V Xð Þ ð4:3Þ

Subject to : T [40; 000; RPM ¼ 200; Z ¼ 7;

D ¼ 2; d ¼ 0:4; and S ¼ 5;
ð4:4Þ

where g is efficiency, V is cavitation, T is thrust, RPM is

rotation per second of the propeller, Z is the number of

blades, D is the diameter of the propeller (m), d is the

diameter of hub (m), and S is the ship speed (m/s).

The shape of the propeller employed is illustrated in

Fig. 19. Note that the full list of constraints and other

physical details of the propeller design problem are not

provided in this paper, so interested readers are referred to

Carlton’s book [64].

As shown in Fig. 20, the main structural parameters are

the shapes of airfoils along the blades, which define the

final shape of the propeller. The structure of each airfoil is

determined by two parameters: maximum thickness and

chord length. Ten airfoils are considered along the blade in

this study, so there is a total of 20 structural parameters to

be optimized by the MODA algorithm.

This real case study is solved by the MODA algorithm

equipped with 200 artificial dragonflies over 300 it-

erations. Since the problem of submarine propeller design

has many constraints, MODA should be equipped with a

constraint-handling method. For simplicity, a death

penalty is utilized, which assign very low efficiency and

large cavitation to the artificial dragonflies that violate

any of the constraints. Therefore, they are dominated

automatically when finding non-dominated solutions in

the next iteration.

As can be seen in Fig. 21, the MODA algorithm found

61 Pareto optimal solutions for this problem. The low

density of searched points (grey dots) is due to the highly

constrained nature of this problem. However, it seems that

Chord length

Maximum
thickness

Fig. 20 A blade is divided to ten airfoils each of which has two

structural parameters: maximum thickness and chord length

Fig. 21 Search history,

obtained Pareto optimal front,

and shape of some of the

obtained Pareto optimal

solutions by MODA

1068 Neural Comput & Applic (2016) 27:1053–1073

123

the MODA algorithm successfully improved the initial

random designs and determined a very accurate ap-

proximation of the true Pareto optimal front. The solutions

are highly distributed along both objectives, which confirm

the coverage of this algorithm in practice as well. There-

fore, these results prove the convergence and coverage of

the MODA algorithm in solving real problems with un-

known true Pareto optimal front. Since the propeller design

problem is highly constrained, these results also evidence

the merits of the proposed MODA algorithm in solving

challenging constrained problems as well.

5 Conclusion

This paper proposed another SI algorithm inspired by the

behaviour of dragonflies’ swarms in nature. Static and

dynamic swarming behaviours of dragonflies were imple-

mented to explore and exploit the search space, respec-

tively. The algorithm was equipped with five parameters to

control cohesion, alignment, separation, attraction (towards

food sources), and distraction (outwards enemies) of indi-

viduals in the swarm. Suitable operators were integrated to

the proposed DA algorithm for solving binary and multi-

objective problems as well. A series of continuous, binary,

and multi-objective test problems were employed to

benchmark the performance of the DA, BDA, and MODA

algorithms from different perspectives. The results proved

that all of the proposed algorithms benefits from high ex-

ploration, which is due to the proposed static swarming

behaviour of dragonflies. The convergence of the artificial

dragonflies towards optimal solutions in continuous, bina-

ry, and multi-objective search spaces was also observed

and confirmed, which are due to the dynamic swarming

pattern modelled in this paper.

The paper also considered designing a real propeller for

submarines using the proposed MODA algorithm, which is

a challenging and highly constrained CFD problem. The

results proved the effectiveness of the multi-objective

version of DA in solving real problems with unknown

search spaces. As per the finding of this comprehensive

study, it can be concluded that the proposed algorithms are

able to outperform the current well-known and powerful

algorithms in the literature. Therefore, they are recom-

mended to researchers from different fields as open-source

optimization tools. The source codes of DA, BDA, and

MODA are publicly available at http://www.alimirjalili.

com/DA.html.

For future works, several research directions can be rec-

ommended. Hybridizing other algorithms with DA and inte-

grating evolutionary operators to this algorithm are two

possible research avenues. For the BDA algorithm, the effects

of transfer functions on the performance of this algo-

rithm worth to be investigated.Applyingothermulti-objective

optimization approaches (non-dominated sorting for instance)

to MODA will also be valuable contributions. The DA, BDA,

andMODA algorithm can all be tuned and employed to solve

optimization problems in different fields as well.

Acknowledgments The author would like to thank Mehrdad

Momeny for providing his outstanding dragonfly photo.

Appendix 1: Single-objective test problems utilized
in this work

See Tables 10, 11, 12.

Table 10 Unimodal

benchmark functions
Function Dim Range Shift position fmin

TF1 xð Þ ¼
Pn

i¼1

x2i
10 [-100,100] [-30,-30,…,-30] 0

TF2 xð Þ ¼
Pn

i¼1

xij j þ
Qn

i¼1

xij j 10 [-10,10] [-3,-3,…,-3] 0

TF3 xð Þ ¼
Pn

i¼1

Pi

j�1

xj

 !2 10 [-100,100] [-30,-30,…,-30] 0

TF4 xð Þ ¼ max
i

xij j; 1� i� nf g 10 [-100,100] [-30,-30,…,-30] 0

TF5 xð Þ ¼
Pn�1

i¼1

100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i 10 [-30,30] [-15,-15,…,-15] 0

TF6 xð Þ ¼
Pn

i¼1

xi þ 0:5½ �ð Þ2 10 [-100,100] [-750,…,-750] 0

TF7 xð Þ ¼
Pn

i¼1

ix4i þ random 0; 1½ Þ 10 [-1.28,1.28] [-0.25,…,-0.25] 0

Neural Comput & Applic (2016) 27:1053–1073 1069

123

http://www.alimirjalili.com/DA.html
http://www.alimirjalili.com/DA.html

Appendix 2: Multi-objective test problems utilized
in this work

ZDT1:

Minimise : f1 xð Þ ¼ x1 ð7:1Þ
Minimise : f2 xð Þ ¼ g xð Þ � h f1 xð Þ; g xð Þð Þ ð7:2Þ

Where : G xð Þ ¼ 1þ 9

N � 1

XN

i¼2

xi ð7:3Þ

h f1 xð Þ; g xð Þð Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffi
f1 xð Þ
g xð Þ

s

0� xi � 1; 1� i� 30 ð7:4Þ

ZDT2:

Minimise : f1 xð Þ ¼ x1 ð7:5Þ
Minimise : f2 xð Þ ¼ g xð Þ � h f1 xð Þ; g xð Þð Þ ð7:6Þ

Where : G xð Þ ¼ 1þ 9

N � 1

XN

i¼2

xi ð7:7Þ

h f1 xð Þ; g xð Þð Þ ¼ 1� f1 xð Þ
g xð Þ

� 	2

0� xi � 1; 1� i� 30

ð7:8Þ

ZDT3:

Minimise : f1 xð Þ ¼ x1 ð7:9Þ
Minimise : f2 xð Þ ¼ g xð Þ � h f1 xð Þ; g xð Þð Þ ð7:10Þ

Where : G xð Þ ¼ 1þ 9

29

XN

i¼2

xi ð7:11Þ

h f1 xð Þ; g xð Þð Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffi
f1 xð Þ
g xð Þ

s

� f1 xð Þ
g xð Þ

� 	
sin 10pf1 xð Þð Þ

0� xi � 1; 1� i� 30

ð7:12Þ

ZDT1 with linear PF:

Minimise : f1 xð Þ ¼ x1 ð7:13Þ
Minimise : f2 xð Þ ¼ g xð Þ � h f1 xð Þ; g xð Þð Þ ð7:14Þ

Where : G xð Þ ¼ 1þ 9

N � 1

XN

i¼2

xi ð7:15Þ

h f1 xð Þ; g xð Þð Þ ¼ 1� f1 xð Þ
g xð Þ 0� xi � 1; 1� i� 30 ð7:16Þ

ZDT2 with three objectives:

Minimise : f1 xð Þ ¼ x1 ð7:17Þ
Minimise : f2 xð Þ ¼ x2 ð7:18Þ
Minimise : f3 xð Þ ¼ g xð Þ � h f1 xð Þ; g xð Þð Þ � h f2 xð Þ; g xð Þð Þ

ð7:19ÞT
a
b
le

1
1

M
u
lt
im

o
d
al

b
en
ch
m
ar
k
fu
n
ct
io
n
s

F
u
n
ct
io
n

D
im

R
an
g
e

S
h
if
t
p
o
si
ti
o
n

f m
in

T
F
8
xð
Þ¼

Pn i¼
1

�
x i
si
n

ffiffiffiffi
ffiffi

x ij
j

p �
�

1
0

[-
5
0
0
,
5
0
0
]

[-
3
0
0
,…

,-
3
0
0
]

-
4
1
8
.9
8
2
9
9

5

T
F
9
xð
Þ¼

Pn i¼
1

x2 i
�
1
0
co
s
2
p
x i

ð
Þþ

1
0

�

1
0

[-
5
.1
2
,
5
.1
2
]

[-
2
,-

2
,…

,-
2
]

0

T
F
1
0
xð
Þ¼

�
2
0
ex
p

�
0
:2

ffiffiffiffi
ffiffiffiffi
ffiffiffiffi
ffi

1 n

Pn i¼
1

x2 i

s

!
�
ex
p

1 n

Pn i¼
1

co
s
2
p
x i

ð
Þ

�
	
þ
2
0
þ
e

1
0

[-
3
2
,
3
2
]

0

T
F
1
1
xð
Þ¼

1
4
0
0
0

Pn i¼
1

x2 i
�
Qn i¼
1

co
s

x i
ffi i

p�
�
þ
1

1
0

[-
6
0
0
,
6
0
0
]

[-
4
0
0
,…

,-
4
0
0
]

0

T
F
1
2
xð
Þ¼

p n
1
0
si
n
p
y 1

ð
Þþ

Pn�
1

i¼
1

y i
�
1

ð
Þ2

1
þ
1
0
si
n
2
py

iþ
1

ð
Þ

� þ

y n
�
1

ð
Þ2

�

þ
Pn i¼

1

u
x i
;1
0
;1
0
0
;4

ð
Þ

y i
¼

1
þ

x i
þ
1

4

u
ðx

i;
a
;k
;m

Þ¼
k
x i
�
a

ð
Þm

x i
[

a

0
�
a
\
x i
\

a

k
�
x i
�
a

ð
Þm

x i
\

�
a

8 < :

1
0

[-
5
0
,
5
0
]

[-
3
0
,-

3
0
,…

,-
3
0
]

0

T
F
1
3
xð
Þ¼

0
:1

si
n
2
3
p
x 1

ð
Þþ

Pn i¼
1

x i
�
1

ð
Þ2

1
þ
si
n
2
3
p
x i
þ
1

ð
Þ

� þ

x n
�
1

ð
Þ2

1
þ
si
n
2
2
px

n
ð

Þ

�
�

þ
Pn i¼

1

u
x i
;5
;1
0
0
;4

ð
Þ

1
0

[-
5
0
,
5
0
]

[-
1
0
0
,…

,-
1
0
0
]

0

1070 Neural Comput & Applic (2016) 27:1053–1073

123

Where : G xð Þ ¼ 1þ 9

N � 1

XN

i¼3

xi ð7:20Þ

h f1 xð Þ; g xð Þð Þ ¼ 1� f1 xð Þ
g xð Þ

� 	2

0� xi � 1; 1� i� 30 ð7:21Þ

References

1. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61

2. Muro C, Escobedo R, Spector L, Coppinger R (2011) Wolf-pack

(Canis lupus) hunting strategies emerge from simple rules in

computational simulations. Behav Process 88:192–197

3. Jakobsen PJ, Birkeland K, Johnsen GH (1994) Swarm location in

zooplankton as an anti-predator defence mechanism. Anim Behav

47:175–178

4. Higdon J, Corrsin S (1978) Induced drag of a bird flock. Am Nat

112(986):727–744

5. Goss S, Aron S, Deneubourg J-L, Pasteels JM (1989) Self-or-

ganized shortcuts in the Argentine ant. Naturwissenschaften

76:579–581

6. Beni G, Wang J (1993) Swarm intelligence in cellular robotic

systems. In: Dario P, Sandini G, Aebischer P (eds) Robots and

biological systems: towards a new bionics? NATO ASI series, vol

102. Springer, Berlin, Heidelberg, pp 703–712

Table 12 Composite

benchmark functions
Function Dim Range fmin

TF14 (CF1)

f1, f2, f3, …, f10 = Sphere function

[,1, ,2, ,3,…,,10] = [1,1,1,…1]

[k1, k2, k3,…,k10] = [5/100, 5/100, 5/100,…, 5/100]

10 [-5, 5] 0

TF15 (CF2)

f1, f2, f3, …, f10 = Griewank’s function

[,1, ,2, ,3,…,,10] = [1,1,1,…1]

[k1, k2, k3,…,k10] = [5/100, 5/100, 5/100,…, 5/100]

10 [-5, 5] 0

TF16 (CF3):

f1, f2, f3,…, f10 = Griewank’s function

[,1, ,2, ,3,…,,10] = [1,1,1,…1]

[k1, k2, k3,…,k10] = [1,1,1,…1]

10 [-5, 5] 0

TF17 (CF4)

f1; f2 ¼ Ackley’s function

f3; f4 ¼ Rastrigin’s function

f5; f6 ¼ Weierstrass function

f7; f8 ¼ Griewank’s function

f9; f10 ¼ Sphere function

[,1, ,2, ,3,…,,10] = [1,1,1,…1]

½k1; k2; k3; . . .; k10� ¼ ½5=32; 5=32; 1; 1; 5=0:5; 5=0:5; 5=100; 5=100; 5=100; 5=100�

10 [-5, 5] 0

TF18 (CF5)

f1; f2 ¼ Rastrigin’s function

f3; f4 ¼ Weierstrass function

f5; f6 ¼ Griewank’s function

f7; f8 ¼ Ackley’s function

f9; f10 ¼ Sphere Function

[,1, ,2, ,3,…,,10] = [1,1,1,…1]

½k1; k2; k3; . . .; k10� ¼ ½1=5; 1=5; 5=0:5; 5=0:5; 5=100; 5=100; 5=32; 5=32; 5=100; 5=100�

10 [-5, 5] 0

TF19 (CF6)

f1; f2 ¼ Rastrigin’s function

f3; f4 ¼ Weierstrass function

f5; f6 ¼ Griewank’s function

f7; f8 ¼ Ackley’s function

f9; f10 ¼ Sphere Function

[,1, ,2, ,3,…,,10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1]

½k1; k2; k3; . . .; k10� ¼ ½0:1� 1=5; 0:2� 1=5; 0:3� 5=0:5; 0:4� 5=0:5; 0:5� 5=100;

0:6� 5=100; 0:7� 5=32; 0:8� 5=32; 0:9� 5=100; 1� 5=100�

10 [-5, 5] 0

Neural Comput & Applic (2016) 27:1053–1073 1071

123

7. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:

from natural to artificial systems. Oxford University Press, Oxford

8. Dorigo M, Stützle T (2003) The ant colony optimization meta-

heuristic: algorithms, applications, and advances. In: Glover F,

Kochenberger GA (eds) Handbook of metaheuristics. Interna-

tional series in operations research & management science, vol

57. Springer, USA, pp 250–285

9. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: opti-

mization by a colony of cooperating agents. Syst Man Cybern

Part B Cybern IEEE Trans 26:29–41

10. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimiza-

tion by ant colonies. In: Proceedings of the first European con-

ference on artificial life, pp 134–142

11. Eberhart RC, Kennedy J (1995) A new optimizer using particle

swarm theory. In: Proceedings of the sixth international sympo-

sium on micro machine and human science, pp 39–43

12. Eberhart RC, Shi Y (2001) Particle swarm optimization: devel-

opments, applications and resources. In: Proceedings of the 2001

congress on evolutionary computation, pp 81–86

13. Karaboga D (2005) An idea based on honey bee swarm for nu-

merical optimization. In: Technical report-tr06, Erciyes univer-

sity, engineering faculty, computer engineering department

14. Karaboga D, Basturk B (2007) A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm. J Global Optim 39:459–471

15. AlRashidi MR, El-Hawary ME (2009) A survey of particle

swarm optimization applications in electric power systems.

Evolut Comput IEEE Trans 13:913–918

16. Wei Y, Qiqiang L (2004) Survey on particle swarm optimization

algorithm. Eng Sci 5:87–94

17. Chandra Mohan B, Baskaran R (2012) A survey: ant colony

optimization based recent research and implementation on sev-

eral engineering domain. Expert Syst Appl 39:4618–4627

18. Dorigo M, Stützle T (2010) Ant colony optimization: overview

and recent advances. In: Gendreau M, Potvin J-Y (eds) Handbook

of metaheuristics. International series in operations research &

management science, vol 146. Springer, USA, pp 227–263

19. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A

comprehensive survey: artificial bee colony (ABC) algorithm and

applications. Artif Intell Rev 42:21–57

20. Sonmez M (2011) Artificial Bee Colony algorithm for opti-

mization of truss structures. Appl Soft Comput 11:2406–2418

21. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incor-

porating mutation scheme into krill herd algorithm for global

numerical optimization. Neural Comput Appl 24:853–871

22. Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd al-

gorithm. Neurocomputing 128:363–370

23. Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill

herd algorithm with migration operator in biogeography-based

optimization. Appl Math Model 38:2454–2462

24. Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2014) Hybrid

krill herd algorithm with differential evolution for global nu-

merical optimization. Neural Comput Appl 25:297–308

25. Wang G-G, Gandomi AH, Zhao X, Chu HCE (2014) Hybridizing

harmony search algorithmwith cuckoo search for global numerical

optimization. Soft Comput. doi:10.1007/s00500-014-1502-7

26. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014)

Chaotic krill herd algorithm. Inf Sci 274:17–34

27. Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2015) Self-adaptive

extreme learning machine. Neural Comput Appl. doi:10.1007/

s00521-015-1874-3

28. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw

83:80–98

29. Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-Verse Opti-

mizer: a nature-inspired algorithm for global optimization. Neural

Comput Appl. doi:10.1007/s00521-015-1870-7

30. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. Evolut Comput IEEE Trans 1(1):67–82

31. Thorp JH, Rogers DC (2014) Thorp and Covich’s freshwater

invertebrates: ecology and general biology. Elsevier, Amsterdam

32. Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS,

May ML (2006) Simple rules guide dragonfly migration. Biol

Lett 2:325–329

33. Russell RW, May ML, Soltesz KL, Fitzpatrick JW (1998) Mas-

sive swarm migrations of dragonflies (Odonata) in eastern North

America. Am Midl Nat 140:325–342

34. Reynolds CW (1987) Flocks, herds and schools: a distributed

behavioral model. ACM SIGGRAPH Comput Gr 21:25–34

35. Yang X-S (2010) Nature-inspired metaheuristic algorithms, 2nd

edn. Luniver Press

36. Cui Z, Shi Z (2009) Boid particle swarm optimisation. Int J Innov

Comput Appl 2:77–85

37. Kadrovach BA, Lamont GB (2002) A particle swarm model for

swarm-based networked sensor systems. In: Proceedings of the

2002 ACM symposium on applied computing, pp 918–924

38. Cui Z (2009) Alignment particle swarm optimization. In: Cog-

nitive informatics, 2009. ICCI’09. 8th IEEE international con-

ference on, pp 497–501

39. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer

functions for binary particle swarm optimization. Swarm Evolut

Comput 9:1–14

40. Saremi S, Mirjalili S, Lewis A (2014) How important is a transfer

function in discrete heuristic algorithms. Neural Comput

Appl:1–16

41. Mirjalili S, Wang G-G, Coelho LDS (2014) Binary optimization

using hybrid particle swarm optimization and gravitational search

algorithm. Neural Comput Appl 25:1423–1435

42. Mirjalili S, Lewis A (2015) Novel performance metrics for robust

multi-objective optimization algorithms. Swarm Evolut Comput

21:1–23

43. Coello CAC (2009) Evolutionary multi-objective optimization:

some current research trends and topics that remain to be ex-

plored. Front Comput Sci China 3:18–30

44. Ngatchou P, Zarei A, El-Sharkawi M (2005) Pareto multi ob-

jective optimization. In: Intelligent systems application to power

systems, 2005. Proceedings of the 13th international conference

on, pp 84–91

45. Branke J, Kaußler T, Schmeck H (2001) Guidance in evolu-

tionary multi-objective optimization. Adv Eng Softw 32:499–507

46. Coello Coello CA, Lechuga MS (2002) MOPSO: A proposal for

multiple objective particle swarm optimization. In: Evolutionary

computation, 2002. CEC’02. Proceedings of the 2002 congress

on, pp 1051–1056

47. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple

objectives with particle swarm optimization. Evolut Comput

IEEE Trans 8:256–279

48. Yao X, Liu Y, Lin G (1999) Evolutionary programming made

faster. Evolut Comput IEEE Trans 3:82–102

49. Digalakis J, Margaritis K (2001) On benchmarking functions for

genetic algorithms. Int J Comput Mathematics 77:481–506

50. Molga M, Smutnicki C (2005) Test functions for optimization

needs. Test functions for optimization needs. http://www.robert

marks.org/Classes/ENGR5358/Papers/functions.pdf

51. Yang X-S (2010) Test problems in optimization. arXiv preprint

arXiv:1008.0549

52. Liang J, Suganthan P, Deb K (2005) Novel composition test func-

tions for numerical global optimization. In: Swarm intelligence

symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pp 68–75

53. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A

et al (2005) Problem definitions and evaluation criteria for the

CEC 2005 special session on real-parameter optimization. In:

KanGAL Report, vol 2005005

1072 Neural Comput & Applic (2016) 27:1053–1073

123

http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s00521-015-1874-3
http://dx.doi.org/10.1007/s00521-015-1874-3
http://dx.doi.org/10.1007/s00521-015-1870-7
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
http://arxiv.org/abs/1008.0549

54. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Neural networks, 1995. Proceedings, IEEE International confer-

ence on, pp 1942–1948

55. John H (1992) Holland, adaptation in natural and artificial sys-

tems. MIT Press, Cambridge

56. Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tu-

torial on the use of nonparametric statistical tests as a method-

ology for comparing evolutionary and swarm intelligence

algorithms. Swarm Evolut Comput 1:3–18

57. van den Bergh F, Engelbrecht A (2006) A study of particle swarm

optimization particle trajectories. Inf Sci 176:937–971

58. J. Kennedy J, Eberhart RC (1997) A discrete binary version of the

particle swarm algorithm. In: Systems, man, and cybernetics,

1997. computational cybernetics and simulation, 1997 IEEE in-

ternational conference on, pp 4104–4108

59. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: bi-

nary gravitational search algorithm. Nat Comput 9:727–745

60. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective

evolutionary algorithms: empirical results. Evol Comput

8:173–195

61. Sierra MR, Coello Coello CA (2005) Improving PSO-based

multi-objective optimization using crowding, mutation and [-
dominance. In: Coello Coello CA, Hernández Aguirre A, Zitzler

E (eds) Evolutionary multi-criterion optimization. Lecture notes

in computer science, vol 3410. Springer, Berlin, Heidelberg,

pp 505–519

62. Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolu-

tionary algorithm research: a history and analysis (Final Draft)

TR-98-03

63. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: NSGA-II. Evolut Com-

put IEEE Trans 6:182–197

64. Carlton J (2012) Marine propellers and propulsion. Butterworth-

Heinemann, Oxford

Neural Comput & Applic (2016) 27:1053–1073 1073

123

	Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
	Abstract
	Introduction
	Inspiration
	Dragonfly algorithm
	Operators for exploration and exploitation
	The DA algorithm for single-objective problems
	The DA algorithm for binary problems (BDA)
	The DA algorithm for multi-objective problems (MODA)

	Results and discussion
	Results of DA algorithm
	Results of BDA algorithm
	Results of MODA algorithm

	Conclusion
	Acknowledgments
	Appendix 1: Single-objective test problems utilized in this work
	Appendix 2: Multi-objective test problems utilized in this work
	References

