
1

Video Coding On Multi-Core Graphics Processors
Ngai-Man Cheung, Xiaopeng Fan, Oscar C. Au, Man-Cheung Kung

Abstract— In this article, we investigate using multi-core
graphics processing units (GPUs) for video encoding and decod-
ing. After an overview of video coding and GPUs, we review some
previous work on structuring video coding modules so that the
massive parallel processing capability of GPUs can be harnessed.
We also review previous work on partitioning the video decoding
flow between the central processing unit (CPU) and GPU. After
that, we discuss in detail a GPU based fast motion estimation
to illustrate some design considerations in using GPUs for video
coding, and the tradeoff between speedup and rate-distortion
performance. Our results highlight the importance to expose as
much data parallelism as possible in designing algorithms for
GPUs.

I. INTRODUCTION

Today, video coding [1]–[5] has become the central tech-
nology in a wide range of applications. Some of these include
digital TV, DVD, Internet streaming video, video confer-
encing, distance learning, and surveillance and security [6].
A variety of video coding standards and algorithms have
been developed (e.g., H.264/AVC [5], VC-1 [7], MPEG-
2 [8], AVS [9]) to address the requirements and operating
characteristics of different applications. With the prevalent
applications of video coding technologies, it is important to
investigate efficient implementation of video coding systems
on different computing platforms and processors [10], [11].

Recently, Graphics Processing Units (GPUs) have emerged
as co-processing units for Central Processing Units (CPUs)
to accelerate various numerical and signal processing applica-
tions [10], [12]–[14]. Modern GPUs may consist of hundreds
of highly decoupled processing cores capable of achieving
immense parallel computing performance. For example, the
NVIDIA GeForce 8800 GTS processor has 96 individual
stream processors each running at 1.2 GHz [15]. The stream
processors can be grouped together to perform Single Instruc-
tion Multiple Data (SIMD) operations suitable for arithmetic
intensive applications. With the advances in GPU programing
tools such as thread computing and C programming inter-
face [16], [17], GPUs can be efficiently utilized to perform a
variety of processing tasks in addition to conventional vertex
and pixel operations.

With many personal computers (PCs) or game consoles
equipped with multi-core GPUs capable of performing general
purpose computing, it is important to study how GPU can
be utilized to assist the main CPU in computation-intensive
tasks such as video compression/decompression [18]. In fact,
as high-definition (HD) contents are getting popular, video

Ngai-Man Cheung is with the Information Systems Laboratory, Stanford
University, Stanford, CA, USA. Xiaopeng Fan and Oscar C. Au are with the
Department of Electronic and Computer Engineering, Hong Kong University
of Science and Technology. Man-Cheung Kung is with the VP Dynamics Labs
(Mobile) Ltd. E-mail: ncheung@stanford.edu, eexp@ust.hk, eeau@ust.hk,
mckung@ust.hk. Tel: +852 2358-7053. Fax: +852 2358-1485.

coding would require more and more computing power. There-
fore, leveraging the computing power of GPU could be a
cost-effective approach to meet the requirements of these
applications. Note that with dozens of available video coding
standards (H.264, MPEG-2, AVS, VC-1, WMV, DivX) it is
advantage to pursue a flexible solution based on software.

Focusing on software-based video coding applications run-
ning on PCs or game consoles equipped with both CPUs
and GPUs, this article investigates how GPUs can be utilized
to accelerate video encoding/decoding. Recent work has pro-
posed to apply multi-core GPU/CPU for various video/image
processing applications. Table I summarizes some of them.
In this article, we survey prior work on video encoding and
decoding to illustrate the challenges and advantages of GPU
implementation. Specifically, we discuss previous work on
GPU-based motion estimation, motion compensation and intra
prediction. Our focus is on how the algorithms can be designed
to harness the massive parallel processing capability of GPU.
In addition, we discuss previous work on partitioning the
decoding flow between CPU and GPU (For completeness, we
also report the speedup results in previous work. However,
since the GPU/multi-core software/hardware technologies have
evolved dramatically over the last few years, some of the
results could be outdated). After that, we investigate a GPU
based fast motion estimation. We discuss some strategy to
break dependency between different data units, and examine
the tradeoff between speedup and coding efficiency.

The rest of this article is organized as follows. We first
provide an overview of the state of the art in video coding
and GPUs. We also discuss the challenges to use GPUs to
assist video coding. Then, we review previous work on GPU-
accelerated video coding. After that, we study GPU based fast
motion estimation. Finally, this article ends with concluding
remarks.

II. BACKGROUND

A. Video coding

The latest video coding standards have achieved state-of-
the-art coding performance. For example, H.264/AVC, which
is the latest international video coding standard approved by
ITU-T and ISO/IEC, typically requires 60% or less of the bit
rate compared to previous standards in order to achieve the
same reconstruction quality [5]. Other advanced video coding
algorithms, such as AVS-Video developed by the Audio and
Video Coding Standard Working Group of China [9], or VC-
1 initially developed by Microsoft [7], have also achieved
competitive compression performance. In the following we
provide an overview on H.264 video coding standard.

H.264 video coding standard is designed based on the
block-based hybrid video coding approach [2], [5], which has



2

TABLE I
VIDEO AND IMAGE PROCESSING APPLICATIONS ON MULTI-CORE PROCESSORS.

Applications Examples
Video encoding Motion estimation [19]–[23], intra prediction [24]–[27], transform [28]
Video decoding Motion compensation [10], [29], decoder design [10], [30]–[32]
High dynamic range (HDR) images Texture compression [33]
Video watermarking Real-time video watermarking system [14]
Signal processing kernels Matrix and vector computations [12], fast Fourier transform and convolution [13]
Image analysis Hough transform [34], Radon transform [35], [36], chirplet transform [35], feature extraction [37]

been used since earlier video coding standards. The coding
algorithm exploits spatial correlation between neighboring
pixels of the same picture. In addition, it also exploits temporal
correlation between neighboring pictures in the input video
sequence to achieve compression. Figure 1 depicts the encoder
block diagram. The input picture is partitioned into different
blocks, and each block may undergo intra prediction using
neighboring reconstructed pixels in the same frame as predic-
tor. H.264 supports intra prediction block sizes of 16 × 16,
8 × 8 and 4 × 4, and allows different ways to construct
the prediction samples from the adjacent reconstructed pixels.
Alternatively, the input block may undergo inter prediction
using the reconstructed blocks in the reference frames as
predictor. Inter prediction can be based on partition size of
16×16, 16×8, 8×16, 8×8, 8×4, 4×8, or 4×4. Displacement
between the current block and the reference block can be up
to quarter-pel accuracy and is signaled by the motion vector
and the reference picture index [2].

The prediction residue signal from intra prediction or inter
prediction would then undergo transformation to de-correlate
the data. In H.264, a 4×4 separable integer transform is used,
which is similar to 4×4 DCT but avoids the mismatch between
forward and inverse transform. Then, the transform coefficients
would be scalar quantized and zig-zag scanned. The Context-
Adaptive Variable Length Coding (CAVLC) may then be
employed to entropy code the scanned transform coefficients.
CAVLC is an adaptive coding scheme, and it may switch
between different codeword tables during encoding depending
on the values of the already-coded elements. Alternatively,
the transform coefficients may be coded by Context-Adaptive
Binary Arithmetic Coding (CABAC). To mitigate blocking
artifacts, an adaptive in-loop deblocking filter would be applied
to the reconstruction from the feedback loop.

B. Graphics processing units (GPUs)

Originally designed as specialized hardware for 3D graph-
ics, GPUs have recently emerged as co-processing units to
accelerate arithmetic intensive applications in PCs or game
consoles. A key feature of modern GPUs is that they offer
massive parallel computation capability through hundreds of
highly decoupled processing cores [38]. For example, NVIDIA
GeForce 8800 GTS processor consists of 96 stream processors
each running at 1.2 GHz [15].

The design philosophy of GPUs is quite different from that
of general-purpose CPUs. Throughout the years, GPUs have
been designed with an objective to support the massive number
of calculations and huge amount of data transfer required
in advanced video games [38], [39]. In addition, they need

 

Transform/
Quantization

+ Entropy
Coding

Inverse
Quantization/

Inverse 
Transform

+

Deblocking
Filter

Frame
Buffer

Intra
Prediction

Motion
Compensation

Input 
Video

Motion
Estimation

Motion Data

Output
Bitstream

-

Fig. 1. H.264/AVC encoding algorithm [5].

to meet the stringent cost requirement of consumer applica-
tions. Therefore, GPUs have become very cost-effective for
arithmetic computation. Furthermore, the peak computation
capability of GPUs is increasing at a faster pace than general-
purpose CPUs (Figure 2).

Besides arithmetic computation capability, there are other
fundamental differences between CPUs and GPUs. First, in
order to address a wide range of applications, general purpose
CPUs would use many transistors to implement sophisticated
control hardware that can support some advanced control func-
tions such as branch prediction [40]. On the contrary, GPUs
would instead devote chip area to arithmetic computation. As
a consequence, GPUs may not perform well for programs
with many conditional statements. Second, CPUs use a lot
of chip area to implement cache memory in order to reduce
instruction and data access latencies. GPUs, on the other hand,
use much simpler memory models, but rely on the high degree
of parallelism in an application to hide the memory access
latency. Thus, it is central to expose a large amount of data
parallelism in GPU programs.

C. GPU-assisted video coding: Challenges

Following from the previous discussion, it is clear that only
certain types of computation are suitable for GPU execution.
In particular, to fully harness the computational power in GPU,
one would need to design the algorithm to utilize the massive
number of processing cores in parallel. As an example, a good
application may run up to thousands of threads simultaneously
on a high-end GPU so as to keep all the processing cores



3

working continuously [38]. Therefore, one of the main chal-
lenges to utilize GPU for video coding is how to structure a
certain module to expose as much data parallelism as possible.
Note that this may not be trivial for some video coding
modules since dependency may exist between different data
units in the computation, as pointed out by previous work [22],
[24], [25], [27]. Moreover, flow control instructions (if,
switch, do, for, while) can significantly degrade the
performance of GPU execution, since such instructions may
cause different threads to follow different execution paths and
the execution would need to be serialized [39]. Therefore,
using GPUs for entropy coding such as CAVLC could be
challenging. Furthermore, an implementation should try to
avoid as much as possible off-chip data access, which may
incur considerable latency (recall that GPU is not optimized
for memory access latency). For example, some GPUs may
require up to 400 to 600 cycles latency for off-chip memory
access (while they can perform single-precision floating-point
multiply-add in a single cycle in each core) [39]. Note that
it is possible to hide such memory access latency if there
are enough independent arithmetic computations. Therefore,
if possible, a video coding module should be implemented
with high arithmetic intensity (which is defined as the number
of mathematical operations per memory access operation). In
some situation, it could be more efficient to re-calculate some
variables rather than loading them from the off-chip memory.

Peak Computation Capability Comparison

0

250

500

750

1000

2005 2006 2007 2008 2009

Year

P
ea

k 
G

F
L
O

P
S

Intel CPU 

NVIDIA GPU

 

Fig. 2. Peak computation capability of GPUs and CPUs [39], [41].

III. PREVIOUS WORK

In this section we review previous work on applying GPUs
for video coding. Previous work has proposed to utilize
GPUs to undertake motion estimation [19]–[22], intra pre-
diction [24]–[27] and motion compensation [10], [29]. Note
that motion estimation, intra prediction and motion compen-
sation are some of the most computation-intensive modules
in inter-frame encoding, intra-frame encoding and decoding
respectively. Therefore, it is important to understand how these
modules can be efficiently implemented on GPUs. In addition
to these modules, GPU based discrete cosine transform (DCT)
has been discussed in [28]. There seems to be no previous
work on GPU based deblocking filter. Since deblocking filter
involves some conditional statements to determine the strength
of the filter at each block boundary, some study may be
necessary to determine its performance on GPUs.

A. Motion estimation on GPUs

Motion estimation (ME) is one of the most computation-
intensive modules in video encoding, and there has been a
lot of interest to offload it to GPUs to improve the overall
encoding performance. Earlier work in this area focuses on
ME algorithms where sum of absolute differences (SAD)
is used in block matching to determine the best candidate.
SAD computation can be easily parallelized as each individual
pixel in the current block is compared independently with the
corresponding pixel in the candidate reference block. Note that
SAD-based ME is commonly used in MPEG-1/2 and H.263.

More recent video encoding algorithms, on the other hand,
may employ rate-distortion (RD) optimized ME that considers
both the rate and distortion in selecting the best candidate.
For example, one common metric is the weighted sum of
the SAD (between the current block and the candidate block)
and the encoding rate of the motion vectors (MVs). In H.264
standard, predictive coding is used to encode the MV of the
current block, and the predictor is the median of the MVs
in the adjacent left, top and top-right blocks. Therefore, in
RD-optimized ME, the MVs of the neighboring blocks would
need to be first determined. Then, based on the median of the
neighboring MVs, encoding rate of the current MV can be
determined and the cost of the current block can be computed
in the block matching. Such dependency makes it difficult to
utilize GPUs for RD-optimized ME. We will discuss example
designs to address this issue.

1) GPU-based motion estimation based on loop unrolling:
In order to increase the degree of parallelism, [20] proposed to
unroll the computation loop in SAD-based full search ME. The
ME computation loop is shown in Figure 3, and loop unrolling
is possible since there is no dependency between individual
macroblocks (MBs) when SAD is used as metric for matching.
Due to resource constraint in earlier GPUs, the algorithm
in [20] needs to be partitioned into two separate passes so
that the GPU memory can accommodate the instructions. The
experiments in [20] compared full search ME on an INTEL
Pentium 4 3.0GHz CPU and on a NVIDIA GeForce 6800 GT
GPU, and the results suggest the GPU-based ME can achieve
up to two times and 14 times of speed-up for integer-pel and
half-pel ME respectively. The considerable improvement in
the half-pel ME is due to the fact that [20] utilizes the built-in
hardware support in GPU for interpolation.

Note that with loop unrolling it is possible to schedule
a massive number of parallel threads (subject to device’s
constraint). Consider an example to assign one thread to
compute one SAD between a MB and a candidate block in the
search window. Then, in the case of full search, the number of
independent threads could be as large as the number of MBs
times the number of candidate blocks per MB (search window
size). For HD 720P videos (1280 × 720, 3600 macroblocks
per frame), and a search range of 64 (129 × 129 search
window size), the number of threads could be as many as
3600× 129× 129 = 59907600.

Although full search is highly parallel, it may have only
little practical interest because of the prohibitive computational
requirement, especially for HD video contents. Moreover,



4

when MBs are processed independently and MVs are com-
puted concurrently in different threads, it becomes difficult
to use motion vector prediction, where MVs of neighboring
blocks are used to initialize the search of current MB, and this
may affect ME performance when the search window is small.
In Section IV we will discuss GPU implementation of fast ME,
which can in general achieve comparable coding performance
as full search with a much smaller number of computations
[42].

 
Loop (rows of macroblocks) {

Loop (columns of macroblocks) {
Loop (rows of search range) {

Loop (columns of search range) {
SAD computation;
SAD comparison;

}
}

}
}

Fig. 3. Pseudo code of conventional integer-pel ME based on SAD.

2) GPU-based motion estimation based on rearranging the
encoding order: Due to the dependency between adjacent
blocks as discussed, RD-optimized ME commonly employed
in recent video coding standards cannot be parallelized simply
by loop unrolling. In [21], [22], rearrangement of the encoding
order is proposed to increase the degree of parallelism. In
these algorithms, instead of processing the blocks in the
conventional raster-scan order, the blocks are processed along
the diagonal direction to address the dependency issue. This is
shown in Figure 4 for the case of 4×4 ME. In their proposed
encoding order, at each iteration, the ME will process all the
blocks of which the neighboring blocks (left, top and top-
right) have been processed. That is, the ME processes at each
iteration all the blocks of which neighboring MVs have been
computed and median predictors are available. By processing
blocks along the diagonal direction the proposed rearrange-
ment can substantially increase the degree of parallelism. For
example, [22] reported that the maximum degree of parallelism
can be up to 44, 160 and 240 for CIF, 720p and 1080p video
respectively. Note that for each 4× 4 block, individual search
points in the search window can be examined in parallel (in the
cases of full search or some fast search with regular sampling
of search window). Therefore, with block-level parallelism of
240 (i.e., 240 4×4 blocks in the current frame can be processed
in parallel) and a search range of 64 (129×129 search window
size), 240×129×129 = 3993840 independent threads can be
launched simultaneously in principle. Pixel level parallelism
can also be implemented, e.g., by decomposing the SAD
calculation into several threads. The results in [22] suggest that
over 40 times of speed-up can be achieved in a system with
an INTEL Pentium 4 3.2GHz CPU and a NVIDIA GeForce
8800 GTS graphics processor. Note that Pentium 4 CPUs are
relatively slow compared with more recent CPUs. Also the
program code on Pentium might not have been well optimized.
Thus the reported speed-ups in [22] could be higher than those
w.r.t. more efficient CPU implementation. Nonetheless, the
results still suggest RD-optimized ME can be implemented
efficiently on GPU.

 

Image 
Frame

1 2 3b 4b 5c 6c

3a 4a 5b 6b

5a 6a

7a

7c

7b

Fig. 4. Block encoding order proposed in [22] for H.264 4×4 RD-optimized
ME. Each square represents a 4×4 block. Blocks with the same number (e.g.,
5a, 5b, 5c) are to be processed in parallel.

B. Rate-distortion optimized intra mode decision on GPUs

Recent video encoding algorithms use RD optimized intra
mode selections to determine the optimal intra prediction
direction. In these methods, the encoder would compute the
Lagrangian costs of all the candidate prediction modes and
select the prediction mode which minimizes the cost. The
Lagrangian cost can be the weighted sum of the sum of square
differences (SSD) between the original and reconstructed
block and the encoding rate for header and quantized residue
block. To calculate the cost for a candidate mode, it may
involve computing the intra prediction residue, transformation
and quantization on the prediction residue, inverse quantiza-
tion and inverse transformation, and entropy coding of the
quantized transform coefficients. Therefore, the computational
complexity of RD optimized intra mode selection could be
very significant [43]–[45].

Achieving massive parallelization of RD optimized intra
decision can be challenging. It is because, in intra predic-
tion, the reconstructed pixels of the neighboring blocks are
used to compute the reference samples. Therefore, the intra
prediction modes of the neighboring blocks would need to
be first determined, and these blocks would be encoded and
reconstructed accordingly. Then, different candidate modes of
the current block can be evaluated based on the reconstructed
pixels in the neighboring blocks. Such dependency hinders
the parallelization of RD optimized intra decision for GPU
implementation.

To address the dependency issue, previous work has pro-
posed different strategies to modify the block processing order
[26], [27], [46]. In particular, [27] analyzes the dependency
constraint and proposes to process the blocks following a
greedy strategy: in each iteration, the encoder would process
all the blocks of which parent blocks have been encoded (In
the dependency graph, Block A is the parent block of block
B if block B requires the reconstructed pixels from block
A under various candidate prediction modes). Also, in the
greedy strategy, a video block will be scheduled for processing
immediately after all its parent blocks have been processed.
Figure 5 depicts the dependency constraint in H.264 4 × 4
intra prediction and the scheduling under the greedy strategy.
[27] argues that the greedy strategy is optimal for H.264
and AVS encoding: under the specific constraints imposed
by H.264/AVS, and among all encoding orders obeying the
constraints, the greedy-based encoding order requires the mini-
mum number of iterations to process all the blocks. Simulation
results suggest that, using the greedy strategy, GPU-based intra



5

mode decision can achieve about up to two times speedup in a
system with an INTEL Pentium 4 3.2GHz CPU and a NVIDIA
GeForce 8800 GTS graphics processor (Table II). According
to [27], the average parallelism is about 127 for 1080P videos,
and a two times speedup seems to agree with our results in
Section IV for fast motion estimation.

 

Image 
Frame

A1

A3

A2

A4

B1

B3

B2

B4

D1

D3

D2

D4

E1

E3

E2

E4

C1

C3

C2

C4

8

7

B46

B35

B2A44

B1A33

A22

A11

8

7

B46

B35

B2A44

B1A33

A22

A11

Iteration

…

(a)

(b)

Fig. 5. (a) Notations for dependency graph: each block corresponds to a 4×4
block. (b) Dependency graph when processing an image frame in H.264 RD-
optimized intra mode selection. Each node represents a 4 × 4 block (See
Figure 5(a) for notations). A directed edge going from block A (parent node)
to block B (child node) indicates that block B requires the reconstructed
pixels from block A to determine the RD costs of various candidate prediction
modes. The graph is processed following the greedy strategy proposed in [27],
and the figure shows the iteration at which each block is processed.

C. Motion compensation on GPUs

GPU-based motion compensation (MC) has been proposed
by [10] and [29] for Windows Media Video (WMV) and H.264
video decoding respectively. Motion compensation requires a
lot of computations, since video coding standards allow motion
vectors to point to sub-pixel locations (e.g., half-pel or quarter-
pel) and intensive pixel interpolation would be necessary to
generate the prediction samples for motion displacements with
fractional values. For example, in H.264, a half-pel sample is
generated from six other samples using a six-tap interpolation
filter. And to generate a quarter-pel sample it may require an
additional linear interpolation.

The work in [10] discusses techniques to address the over-
flow and rounding problem in interpolation arised in MC.
Note that MC can be parallelized since each block can be
processed independently using its motion vector information,
and this is implemented by a pipeline of vertex/pixel shader
procedures in [10]. In their GPU implementation, they use a
multipass technique which handles the residuals and round-
ing control parameter in a separate pass to avoid overflow
while preserving the precision. In addition, [10] discusses
how different modules in video decoding can be partitioned
between CPU and GPU, and how CPU computation can be
maximally overlapped with GPU computation (this will be

TABLE II
COMPARISON BETWEEN THE PARALLEL H.264 INTRA PREDICTION ON

GPU PROPOSED IN [27] AND CONVENTIONAL H.264 INTRA PREDICTION

ON CPU. THE NUMBERS ARE THE RATIOS OF CPU RUNNING TIME TO

GPU RUNNING TIME. NOTE THAT GPU RUNNING TIME INCLUDES ALL

THE DATA TRANSFER OVERHEAD.

QP= 28 QP= 36 QP= 44
CIF:
flower cif 1.14 1.12 1.14
paris cif 1.12 1.14 1.12
mobile cif 1.14 1.12 1.12
Average (CIF) 1.13 1.13 1.13
1280× 720:
crew 1.38 1.40 1.37
night 1.49 1.42 1.39
city 1.48 1.47 1.43
Average (1280× 720) 1.45 1.43 1.39
1920× 1080:
blue sky 1.90 1.82 1.73
riverbed 1.93 1.82 1.76
station 1.89 1.81 1.80
Average (1920× 1080) 1.91 1.82 1.76

further discussed). Simulation results suggest that, in a system
with an INTEL Pentium III 667MHz GPU and a NVIDIA
GeForce3 Ti200 GPU, by leveraging the GPU the system
can achieve more than three times of speed-up, and it is
possible to achieve real-time WMV (version 8) decoding of
high-definition video of resolution up to 1280× 720 [10].

D. Task partition between CPU and GPU

To obtain competitive system performance, CPU and GPU
need to be considered together for encoding/decoding. Investi-
gating the optimal partition of computation tasks between CPU
and GPU, however, could be very involved, and it requires
serious evaluation on many issues. For example:

• It is necessary to investigate how to allocate the tasks such
that GPU computation can overlap with CPU computation
as much as possible, thereby achieving maximal parallel
processing.

• Since the bandwidth between GPU memory and main
memory could be slow, it is important to investigate how
to minimize the data transfer between main memory and
GPU memory.

• It is also important to study and evaluate which modules
in the encoding/decoding flow can be efficiently offloaded
to GPU, while other would be executed on CPU.

Focusing on WMV decoding, [10] proposes a partition
strategy where the whole feedback loop, including motion
compensation and color space conversion (CSC), is offloaded
to GPU. By doing so, they can avoid transferring the data back
from GPU to CPU. Since read-backs from GPU memory to
main memory could be slow due to common asymmetric im-
plementation of the memory bus [10], such read-backs should
be minimized. Figure 6 depicts the partition strategy. Note
that while GPU is performing MC and CSC of frame n, CPU
would be preforming variable-length decoding (VLD), inverse
quantization (IQ) and inverse DCT (IDCT) of the frame n+1.
Note also that intermediate memory buffer is used between



6

CPU and GPU to absorb the jitters in CPU/GPU processing
time. Simulation results in [10] suggest intermediate buffer
size of four frames can considerably improve the overall
decoding speed.

While [11] has discussed some issues (e.g., bandwidth
requirement) on offloading motion estimation to GPU, there
seems to be no prior work on rigorous investigation on how
video encoding may be partitioned between CPU and GPU.
We remark that GPU implementation of several important
encoding modules (including motion estimation, intra-mode
decision, motion compensation and transform) have been
investigated in the past, while that of deblocking filter and
entropy coding need further research.

 

Read
Bitstream
(Frame n)

VLD, IQ, IDCT
(Frame n)

MC, CSC
(Frame n)

Read
Bitstream

(Frame n+1)

VLD, IQ, IDCT
(Frame n+1)

Intermediate Buffers on Host CPU

Display Display

CPU

GPU

MC, CSC
(Frame n+1)

…

Fig. 6. Task partitioning in WMV decoding proposed by [10].

IV. CASE STUDY: GPU BASED FAST MOTION ESTIMATION

To illustrate some design considerations in using GPUs for
video coding, we discuss in detail in this section a GPU based
fast ME (The GPU ME code was developed by the authors
based on the H.264 JM 14.2 reference software). The focuses
are on how to address the data dependency in the algorithm to
harness the parallel processing capability of GPUs, and on how
to trade-off the speedup with rate-distortion (RD) performance.

A. Fast motion estimation

Our GPU implementation of fast ME is based on simplified
unsymmetrical multi-hexagon search (smpUMHexagonS) [42],
which is one of the fast ME algorithms adopted by the H.264
JM reference software. We select smpUMHexagonS because
it can achieve very good tradeoff between computational
complexity and coding efficiency. For example, on a Pentium
4 CPU it was reported smpUMHexagonS can achieve up to
94% reduction in ME execution time with comparable RD
efficiency, when compared with the fast full search in the JM
software [42]. In addition, smpUMHexagonS is quite compact,
so it could meet the memory constraint of GPU. In our
implematation, all the GPU kernels that deal with integer-pel
estimation have about 600 lines of code.

Figure 7 depicts the flow chart of smpUMHexagonS. For
each macroblock, smpUMHexagonS computes the MVs for all
the macroblock partitions (16×16, 16×8, ... 4×4). MVs are
selected by minimizing the Lagrangian cost D+λR, where D
is the SAD between the current block and the candidate, and
R is the bit-rate to encode the MV. In smpUMHexagonS, com-
putation reduction is achieved mainly by sampling the search
space judiciously, using several techniques including motion
vector prediction, different search patterns (cross, hexagon,

diamond) and early termination. In particular, motion vectors
from spatially adjacent blocks and from other macroblock par-
titions are used to initialize the search for the current partition.
Notice that as depicted in Figure 7 smpUMHexagonS uses
several tests to determine if the search (of the current partition)
can be terminated based on the minimum cost computed so far.
As a result, different macroblocks with different contents may
undergo different processing paths (which is typical in many
fast ME algorithms [47]), and this may affect the performance
of the GPU implementation.

 

Cross/hexagon search

Satisfy intensive
search condition?

Yes

No

Satisfy
converge
condition?

Yes

No

Small local search

Start: check motion vector predictors

Up layer predictor search

Small local search

Yes

No

Extended hexagon/diamond search

Convergence search

Satisfy
converge
condition?

StopStop

Fig. 7. Fast motion estimation using smpUMHexagonS [42]. The figure
depicts the steps for integer-pel search for a macroblock partition.

B. GPU implementation using tiling

To utilize the parallelism in GPU, we partition the current
frame into multiple tiles, and each tile contains K (height) ×L
(width) MBs. For example, Figure 8 depicts the case with K =
1, L = 4. Each tile is processed by a single GPU thread, i.e.,
each thread processes K × L MBs in a tile sequentially, and
different tiles are processed by different independent threads
concurrently on the GPU.

Followed from the discussion in Section IV-A, individual
MBs are not independent under smpUMHexagonS. In partic-
ular, macroblocks depend on their neighbors in the following
ways:

• First, to compute the rate term R in the Lagrangian
cost the motion vectors of the neighboring MBs are
required. If a neighboring MB belongs to another tile,
we assume its motion vector equal to zero in computing
R. Therefore, with tiling, the computed Lagrangian cost
may not be very accurate, and suboptimal motion vectors
may be chosen by smpUMHexagonS as a result. The
impact of tiling in this case depends on the value of λ
and hence the target bit-rate. For low bit-rate applications
(rate constrained), encoders would focus more on rate
efficiency, and large λ would be chosen and the rate



7

term would dominate the Lagrangian cost [48]. Tiling
therefore shall have a more pronounced negative impact
on the performance of smpUMHexagonS for low bit-rate
applications (since tiling affects the rate term).

• Second, smpUMHexagonS (and many other fast ME
[47]) uses motion vector prediction, i.e., motion vec-
tors of the neighboring MBs are used to initialize the
search. Under tiling, some information about neighboring
motion vectors is not available, and this may result in
poor-quality initial search points, and suboptimal motion
vectors may get selected at the end of the search (hence
the RD performance is compromised). Moreover, since
smpUMHexagonS employs early termination, poor initial
points may also result in longer processing time, as more
search points would need to be examined until the cost
is small enough to terminate the search (e.g., we observe
about 4% increase in the ME processing time when
encoding the HD 720P sequence Harbour using tiling
K = 1, L = 1 in the sequential smpUMHexagonS).

The above discussions are also applicable to many other
fast ME algorithms. Note that in our simulation tiling is
used only in ME to facilitate GPU computation, and the
rest of the encoding proceeds in the same manner as in
the reference software. Therefore, our tiling is different from
other partitioning ideas such as slice [47], where individual
partitions are treated independently in most of the encoding.

 L=4

Individual thread

Tile boundary

K=1

Fig. 8. GPU-based fast motion estimation: the current frame is divided
into multiple tiles to facilitate parallel processing in ME. Here each square
represents a macroblock.

C. Experiments

To examine the performance of the GPU based fast ME
using tiling, we conduct experiments on PCs equipped with
one GeForce 8800 GTS PCIe graphics card with 96 stream
processors [15], and an Intel Core 2 Quad Q9400 2.66 GHz
CPU with 3.23 GB of RAM. We use NVIDIA CUDA [39] to
implement the GPU code. We choose CUDA solely because of
the availability of the NVIDIA device in our laboratory, and we
remark that there are other well-designed GPU programming
models such as ATI CTM [49], Stream Computing SDK and
Brook+ [50].

We first evaluate how tiling may affect the RD performance.
We use JM 14.2 to encode HD 720P sequences (1280×720, 60
frame per second) Crew, City, Harbour and Night (We focus

on encoding HD videos because of its high computational
requirement, and because of the growing interest on HD
contents). We use H.264 high profile with search range of
64. All the pictures are encoded as P-frames except the
initial I-frame. Figure 9 depicts the RD performance with
different tile sizes for the Harbour sequence. As shown in
the figure the impact of tiling is small in this case until
tile size is down to K = 1, L = 1, when the degradation
is about 0.2 dB compared to the original reference software
(with smpUMHexagonS). Table III shows the average PSNR
degradation and the average increase in bit-rate using different
tile sizes, measured by BDPSNR and BDBR respectively. Note
that BDPSNR and BDBR are used frequently in the video
standardization community [51]. The results suggest tiling may
lead to average degradation between 0.08 dB to 0.4 dB for
these sequences with tile size K = 1, L = 1.

We then discuss how tiling may affect the speedup. Table IV
shows the GPU execution time (in integer-pel ME) with dif-
ferent tile sizes, and Figure 10 shows the speedup between the
GPU implementation (with tiling and using parallel processing
on multi-core) and the sequential CPU implementation (with-
out tiling and using sequential processing on a single core).
Comparison with parallel program code on multiple CPU cores
will be discussed next. The GPU execution time includes the
overhead to transfer the video frames from system memory
to GPU memory. Compiler optimization is applied to both
the GPU program and the CPU program. However, both the
GPU/CPU code have rooms for further speed improvement. In
particular, the GPU code stores pixel data in global memory
(off-chip memory), which has considerable access latency
[39]. As motion estimation is fairly memory access intensive
(SAD calculation performs only three mathematical operations
per two memory loads, giving an arithmetic intensity of 1.5,
which is rather small for GPU computation [37]), such latency
may impact the GPU code performance. Therefore, the code
can be improved by judicious use of shared memory (on-chip
memory) [37]. As shown in Figure 10 speedup increases with
smaller tile size, as more independent threads can be sched-
uled. This is particularly important in the current GPU code
to hide the memory access latency. Note also that different
sequences have different GPU execution time and speedups, as
different video contents may lead to different execution paths
in smpUMHexagonS and different amount of penalty incurred
by execution serialization. Figure 10 suggests speedups of 1.5
to 3.5 can be achieved in integer-pel smpUMHexagonS in
these sequences using tile size K = 1, L = 1.

Figure 11 shows the speedup between the GPU implemen-
tation and a parallel CPU implementation using the four CPU
cores on the Intel Core 2 Quad. To achieve parallel CPU
processing, the current frame is partitioned into four tiles
of equal number of MB rows (i.e., L=width of the video
frame in MB, K=height of the video frame in MB / 4),
and each tile is processed by an independent thread running
on a CPU core. We use OpenMP to implement the parallel
CPU program [52]. We observe the parallelization reduces
the CPU running time by a factor of three approximately.
Note that the theoretical maximum speedup of four cannot be
achieved by this parallelization strategy, as smpUMHexagonS



8

 Harbour

28

30

32

34

36

38

40

42

44

0 20000 40000 60000 80000

Bitrate (kbps)

P
S

N
R

 (
d

B
)

K=1, L=1

K=1, L=4

K=1, L=16

K=1, L=40

K=1, L=80

Original

Harbour

28

30

32

34

36

38

40

42

44

0 20000 40000 60000 80000

Bitrate (kbps)

P
S

N
R

 (
d

B
)

K=1, L=80

K=4, L=80

K=16, L=80

Original

Fig. 9. RD performance of Harbour with different tile sizes in fast motion estimation. Here “Original” refers to the reference software (that is, without
tiling).

TABLE III
TRADEOFF BETWEEN TILE SIZE AND RD PERFORMANCE. AVERAGE INCREASE IN BIT-RATE AND AVERAGE PSNR DEGRADATION ARE COMPUTED WITH

RESPECT TO THE REFERENCE SOFTWARE (THAT IS, WITHOUT TILING).

Crew City Harbour Night
Tile Number of BDBR BDPSNR BDBR BDPSNR BDBR BDPSNR BDBR BDPSNR
size tiles (%) (dB) (%) (dB) (%) (dB) (%) (dB)

K = 1, L = 1 3600 3.135 -0.082 12.933 -0.407 5.578 -0.221 4.636 -0.17
K = 1, L = 4 900 3.081 -0.079 11.115 -0.352 2.385 -0.094 3.546 -0.13
K = 1, L = 16 225 3.116 -0.08 11.171 -0.35 2.246 -0.089 3.415 -0.125
K = 1, L = 40 90 3.224 -0.083 10.821 -0.339 2.205 -0.087 3.4 -0.124
K = 4, L = 80 12 0.63 -0.016 1.412 -0.044 0.57 -0.022 1.19 -0.043
K = 16, L = 80 3 0.094 -0.003 0.261 -0.008 0.07 -0.003 0.161 -0.006

may spend different execution time on each MB and optimal
load balancing cannot be achieved by simple tiling. Figure 11
suggests the running time of the GPU implementation and the
parallel CPU implementation can be comparable in some cases
(while the GPU implementation incurs some RD performance
degradation as depicted in Table III).

In the experiment, we observe the overhead to transfer a
frame from CPU to GPU is about 1.6 ms, and this is about
0.1% to 0.2% of the running time of integer pel ME (see
Table IV). In general, data transfer overhead could be a less
serious issue in inter frame encoding compared with decoding
and intra frame encoding, since inter frame encoding requires
a significantly larger amount of execution time in general.

Finally, we would like to remark that both the CPU and GPU
implementations can be further optimized. Our discussion has
suggested that it is non-trivial to achieve the peak performance
offered by these multi-core devices in video coding, and more
algorithm research and instruction level optimization would be
needed.

V. CONCLUSIONS AND DISCUSSION

We have reviewed previous work on using GPUs for video
encoding and decoding. In particular, we have discussed how
some video coding modules can be implemented in certain
ways to expose as much data parallelism as possible, so that
the massive parallel processing capability of GPUs can be fully

utilized. Simulation results in previous work suggest GPU-
based implementations can achieve considerable speedups for
some of the most computation-intensive modules in video
coding. Therefore, it could be a cost-effective approach to
leverage the computing power of GPUs to meet the data pro-
cessing requirement in video coding. We have also discussed
an example to partition the video decoding flow between CPU
and GPU to achieve maximum overlapping of computation.
In addition, we have discussed a GPU based fast motion
estimation and examined the tradeoff between speedup and
rate-distortion performance.

There are several related research issues. First, there seems
to be no study on partitioning the encoding flow between
CPU and GPU. Second, with the availability of many different
video formats (e.g., SD, HD) and coding standards there is
a growing need to transcode one encoded video format to
another [53]–[55]. However, while there are a few commercial
transcoding applications available [56], [57], there seems to be
no prior work on investigating the optimal usage of GPUs
for transcoding. Note that unlike video encoding/decoding,
there is no standard algorithm for video transcoding, and there
are many previously proposed approaches which achieve a
wide range of transcoding quality with different complexity
requirements [53]. This complicates the study of GPU-based
transcoding.



9

TABLE IV
GPU EXECUTION TIME FOR FAST INTEGER-PEL MOTION ESTIMATION

WITH DIFFERENT TILE WIDTH (TILE HEIGHT K IS EQUAL TO ONE). DATA

TRANSFER OVERHEADS ARE INCLUDED.

Tile Number of GPU execution time
width threads (ms)

Crew City Harbour Night
L = 1 3600 835.05 927.32 1248.95 1688.50
L = 4 900 959.16 1005.55 1341.45 1975.95
L = 16 225 2169.25 2108.71 2763.79 4175.44
L = 40 90 4373.63 4165.28 5318.38 6920.73

Speedup of GPU Based Fast Motion Estimation 
(w.r.t. one CPU core)

0

1

2

3

4

1 4 16 40

Tile width L

S
p
ee

d
u
p

Crew

City

Harbour

Night

 

Fig. 10. Tradeoff between tile width and speedup (tile height K is equal to
one). Speedup is the ratio of CPU running time (sequential program code on
one CPU core) to GPU running time (including data transfer overhead).

ACKNOWLEDGMENT

This work has been supported in part by the Innovation
and Technology Commission (project no GHP/048/08) and
the Research Grants Council (project no. RPC07/08.EG22 and
project no. 610109) of the Hong Kong Special Administrative
Region, China. The authors would also like to thank the editor
and the anonymous reviewers for their comments which helped
improve the paper significantly.

REFERENCES

[1] Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Com-
munications. Prentice Hall, 2002.

[2] T. Wiegand, “Joint final committee draft for joint video specification
H.264,” Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
Tech. Rep. JVT-D157, 2002.

[3] G. Wen, W. Qiang, and M. Siwei, “Digital audio video coding standard
of AVS,” ZTE Communications, 2006.

[4] L. Yu, F. Yi, J. Dong, and C. Zhang, “Overview of AVS-Video: tools,
performance and complexity,” in Proc. Visual Communications and
Image Processing (VCIP), 2005.

[5] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560 – 576, July
2003.

[6] G. Sullivan, J.-R. Ohm, A. Ortega, E. Delp, A. Vetro, and M. Barni,
“dsp Forum - Future of video coding and transmission,” IEEE Signal
Processing Magazine, vol. 23, no. 6, Nov. 2006.

[7] J. Loomis and M. Wasson, “VC-1 technical overview,”
http://www.microsoft.com/windows/windowsmedia/, 2007.

[8] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An introduc-
tion to MPEG-2. Springer, 1996.

[9] L. Fan, S. Ma, and F. Wu, “An overview of AVS video standard,” in
Proc. IEEE International Conference on Multimedia and Expo, 2004.

[10] G. Shen, G. Gao, S. Li, H. Shum, and Y. Zhang, “Accelerate video de-
coding with generic GPU,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 15, pp. 685 – 693, 2005.

Speedup of GPU Based Fast Motion Estimation 
(w.r.t. four CPU cores)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 40

Tile width L

S
p
ee

d
u
p

Crew

City

Harbour

Night

 

Fig. 11. Tradeoff between tile width and speedup (tile height K is equal
to one). Speedup is the ratio of CPU running time (parallel program code on
four CPU cores) to GPU running time (including data transfer overhead).

[11] A. Mather, “GPU-accelerated video encoding,” SIGGRAPH Tech Talks,
2008.

[12] J. Kruger and R. Westermann, “Linear algebra operators for GPU imple-
mentation of numerical algorithms,” in Proc. International Conference
on Computer Graphics and Interactive Techniques, 2005.

[13] O. Fialka and M. Cadik, “FFT and convolution performance in image
filtering on GPU,” Information Visualization, pp. 609 – 614, 2006.

[14] A. Brunton and J. Zhao, “Real-time video watermarking on pro-
grammable graphics hardware,” in Proc. Canadian Conference on Elec-
trical and Computer Engineering, 2005.

[15] NVIDIA, “NVIDIA GeForce 8800 architecture technical brief,”
NVIDIA, Tech. Rep., 2006.

[16] ——, “CUDA - compute unified device architecture,”
http://www.nvidia.com/object/cuda home.html, 2009.

[17] Khronos Group, “OpenCL - The open standard for parallel programming
of heterogeneous systems,” http://www.khronos.org/opencl/, 2009.

[18] M. Macedonia, “The GPU enters computing’s mainstream,” IEEE Com-
puter, pp. 106 – 108, 2003.

[19] F. Kelly and A. Kokaram, “General purpose graphics hardware for
accelerating motion estimation,” in Proc. Irish Machine Vision and
Image Processing Conference, 2003.

[20] Y. Lin, P. Li, C. Chang, C. Wu, Y. Tsao, and S. Chien, “Multi-pass
algorithm of motion estimation in video encoding for generic GPU,” in
Proc. IEEE International Symposium of Circuits and Systems, 2006.

[21] C.-W. Ho, O. Au, G. Chan, S.-K. Yip, and H.-M. Wong, “Motion
estimation for H.264/AVC using programmable graphics hardware,” in
Proc. IEEE International Conference on Multimedia and Expo, 2006.

[22] M. Kung, O. Au, P. Wong, and C. Liu, “Block based parallel motion es-
timation using programmable graphics hardware,” in Proc. International
Conference on Audio, Language and Image Processing, 2008.

[23] M. L. Schmit, R. Meeyakhan Rawther, and R. Giduthuri, “Soft-
ware video encoder with GPU acceleration,” U.S. Patent Application
20090016430, 2009.

[24] G. Jin and H.-J. Lee, “A parallel and pipelined execution of H.264/AVC
intra prediction,” in Proc. IEEE International Conference on Computer
and Information Technology, 2006.

[25] W. Lee, S. Lee, and J. Kim, “Pipelined intra prediction using shuffled
encoding order for H.264/AVC,” in Proc. IEEE Region 10 Conference
(TENCON), 2006.

[26] M. Kung, O. Au, P. Wong, and C. Liu, “Intra frame encoding using
programmable graphics hardware,” in Proc. Pacific Rim Conference on
Multimedia (PCM), 2007.

[27] N.-M. Cheung, O. Au, M. Kung, H. Wong, and C. Liu, “Highly parallel
rate-distortion optimized intra mode decision on multi-core graphics
processors,” in IEEE Transactions on Circuits and Systems for Video
Technology - Special Issue on Algorithm/Architecture Co-Exploration of
Visual Computing, vol. 19, no. 11, pp. 1692-1703, Nov. 2009.

[28] A. Obukhov and A. Kharlamov, “Discrete cosine transform for 8x8
blocks with CUDA,” NVIDIA, Tech. Rep., Oct. 2008.

[29] B. Pieters, D. Van Rijsselbergen, W. De Neve, and R. Van de Walle,
“Motion compensation and reconstruction of H.264/AVC video bit-
streams using the GPU,” in WIAMIS ’07: Proceedings of the Eight
International Workshop on Image Analysis for Multimedia Interactive
Services. Washington, DC, USA: IEEE Computer Society, 2007, p. 69.

[30] A. Hirvonen and T. Leppanen, “H.263 video decoding on programmable
graphics hardware,” in Signal Processing and Information Technology,



10

2005. Proceedings of the Fifth IEEE International Symposium on, Dec.
2005, pp. 902–907.

[31] B. Han and B. Zhou, “Efficient video decoding on GPUs by point
based rendering,” in GH ’06: Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware. New
York, NY, USA: ACM, 2006, pp. 79–86.

[32] NVIDIA, “PureVideo overview,” http://www.nvidia.com/object/purevideo overview.html,
2009.

[33] J. Munkberg, P. Clarberg, J. Hasselgren, and T. Akenine-Moller, “High
dynamic range texture compression for graphics hardware,” ACM Trans-
actions on Graphics, vol. 25, no. 3, 2006.

[34] Y.-K. Chen, W. Li, J. Li, and T. Wang, “Novel parallel Hough transform
on multi-core processors,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2008.

[35] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA: Parallel GPU computer
vision,” in Proc. ACM Multimedia, 2005.

[36] P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont,
T. E. Zickler, and R. D. Howe, “GPU based real-time instrument
tracking with three-dimensional ultrasound,” Medical Image Analysis,
vol. 11, no. 5, pp. 458 – 464, 2007, special Issue on the Ninth
International Conference on Medical Image Computing and Computer-
Assisted Interventions - MICCAI 2006.

[37] D. Lin, V. Huang, Q. Nguyen, J. Blackburn, C. Rodrigues, T. Huang,
M. N. Do, S. J. Patel, and W.-M. W. Hwu, “The parallelization of video
processing,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 103–
112, Nov. 2009.

[38] D. Kirk and W. Hwu, Textbook for UIUC ECE 498 AL : Programming
Massively Parallel Processors. Draft, 2009.

[39] NVIDIA, “CUDA programming guide,” NVIDIA, Tech. Rep., 2009.
[40] J. P. Shen and M. H. Lipasti, Modern processor design : fundamentals

of superscalar processors. Boston: McGraw-Hill, 2005.
[41] M. Houston, “SIGGRAPH 2007 GPGPU course,”

http://gpgpu.org/s2007, 2007.
[42] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified fast

motion estimation for JM,” JVT meeting, Poznan, Poland, Tech. Rep.
JVT-P021, July 2005.

[43] C.-L. Yang, L.-M. Po, and W.-H. Lam, “A fast H.264 intra prediction
algorithm using macroblock properties,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2004.

[44] R. Su, G. Liu, and T. Zhang, “Fast mode decision algorithm for intra
prediction in H.264/AVC,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2006.

[45] M. Liu and Z.-Q. Wei, “A fast mode decision algorithm for intra
prediction in AVS-M video coding,” in Proc. International Conference
on Wavelet Analysis and Pattern Recognition, Nov. 2007.

[46] K.-W. Yoo and H.-H. Kim, “Intra prediction method and apparatus,”
U.S. Patent Pub. No. US 2005/0089094, 2005.

[47] I. E. Richardson, H.264 and MPEG-4 Video Compression, Video Coding
for Next-generation Multimedia. John Wiley & Sons, England, Nov.
2003.

[48] T. Wiegand and B. Girod, “Lagrange multiplier selection in hybrid
video coder control,” in Proc. IEEE International Conference on Image
Processing (ICIP), 2001.

[49] Advanced Micro Devices Inc., “ATI CTM guide,”
http://ati.amd.com/companyinfo/researcher/documents/ATI CTM Guide.pdf,
2006.

[50] ——, “ATI stream software development kit (SDK),”
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx,
2009.

[51] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” JVT meeting, Tech. Rep. VCEG-M33, Apr. 2001.

[52] OpenMP, “The OpenMP API specification for parallel programming,”
http://openmp.org/, 2009.

[53] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architec-
tures and techniques: an overview,” IEEE Signal Processing Magazine,
vol. 20, no. 2, pp. 18 – 29, Mar. 2003.

[54] H. Sun, X. Chen, and T. Chiang, Digital Video Transcoding for Trans-
mission and Storage. New York: CRC Press, 2005.

[55] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang;, “Video transcoding: an
overview of various techniques and research issues,” IEEE Transactions
on Multimedia, vol. 7, no. 5, pp. 793 – 804, Oct. 2005.

[56] Techreport, “Badaboom 1.0 uses Nvidia GPUs to transcode video,”
http://techreport.com/discussions.x/15763, 2009.

[57] AnandTech, “AVIVO Video Converter Redux and ATI Stream Quick
Look,” http://www.anandtech.com/video/showdoc.aspx?i=3578, 2009.


