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Abstract—Typical Wireless Sensor Networks (WSN) deploy-
ments use more nodes than needed to accurately sense the
phenomena of interest. This redundancy can be leveraged by
switching-on only a subset of nodes at any time instant (node-
scheduling) and putting the remaining nodes sleep. This ef-
fectively extends the network lifetime. In addition to sensing
coverage, node-scheduling schemes must also ensure that (i) the
network stays connected, and (ii) the time needed to wake-up the
complete protocol stack after sleeping is minimized. We present
Sleeping Beauty, a highly-efficient data collection protocol that
aids node-scheduling schemes in both aspects.

Sleeping Beauty uses a slotted and tightly synchronized
communication primitive, where a node keeps its radio off
for most of the time, except in the slots when it needs to
participate for successful communication. Further, an efficient
neighbor-discovery mechanism is included that provides partial,
but sufficient topology information (potential parents) to avoid
network partitions. Furthermore, Sleeping Beauty employs a
novel, yet simple clock-offset estimation technique that maintains
highly-accurate time synchronization over long radio-off periods
(i.e., less than 500µs deviation even after 45 min of sleeping). This
minimizes time wasted in resynchronizing the network in between
data collection rounds. Through experiments on two different
testbeds, we verified that Sleeping Beauty decreases the duty
cycle up to a factor of 3 compared to state-of-the-art techniques,
while achieving similar delivery ratios.

I. INTRODUCTION

Even after more than a decade of research, energy-efficient
communication –and data collection in particular– is still a
holy grail within the community. Part of the challenge is that
typical WSN deployments include more nodes than needed to
accurately sense the phenomena of interest. This redundancy
safe guards, on the one hand, against failing nodes and links,
but on the other hand leads to inefficient use of energy. Node-
scheduling schemes address the latter aspect by keeping only
a (minimal) subset of nodes active at any instant. They do
so by selecting a representative from each so-called common
sensing group. A common sensing group can be formed when
(i) a common target or area is covered by a set of nodes [1],
[2], or (ii) the data generated by the nodes show high degree
of correlation such that sensed data for multiple nodes can
be reconstructed using data from a single node [3], [4]. In
either case, representative node(s) from each group needs
to be active during the data collection round. Based on the
application scenario, only one or multiple representative (such
as k-coverage) nodes are selected active. By alternating duties
across rounds, nodes save energy and extend the network
lifetime.

As an example, Fig. 1a shows a network of six nodes,
where only a subset of active nodes is sufficient under the
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Fig. 1: (a) A deployment with multiple correlated sensor
groups (denoted by colors), and (b) coverage of the entire
monitoring region by a subset of connected active nodes.

common sensing group regime (indicated by color). Fig. 1b
shows one such combination. However, if nodes {3, 4, 5} are
selected instead of {1, 4, 5}, all groups are still represented,
but the network would be disconnected from the sink making
it impossible for the application to receive the sensed data.

Given such common sensing groups and network topology
of a WSN, the selection of a minimal set of active nodes
that guarantees both (a) the connectivity of active nodes to
the sink, and (b) the representation of each group by active
node(s), is shown to be NP-hard [5], [6]. Thus a number of
heuristic algorithms have been proposed in the literature [7],
[8] to select close to optimal sets of active nodes satisfying
the above constraints. After selecting the active nodes for a
round, usually by the centralized sink node, the sensed data
from these nodes still need to be collected efficiently. That is
the main challenge we address in this paper.

A. Motivation

Based on the application scenario, a different node schedul-
ing strategy has to be devised, e.g., k-coverage [7], point-
coverage [5], spatial correlation [3], etc. Node-scheduling
algorithms, which select a subset of active nodes, follow two
general strategies. Either they select the set of active nodes at
the application layer and leave the routing to the underlying
protocols [7], [5], or they jointly perform node selection and
routing [1]. In the first case, an advanced routing protocol is
required that should use a minimal number of relay nodes
besides the chosen active nodes in order not to diminish the
overall efficiency. In the second case, the cross-layer solution
is tightly coupled to the particular scheduling scheme making
it non-reusable for other scheduling strategies. Thus there is
a need for a generic data-collection algorithm that ensures
highly-efficient network operation irrespective of the node-
scheduling policy.

B. Solution approach and challenges

In this work we present Sleeping Beauty, an energy-efficient
communication protocol for node-scheduling scenarios. It uses



a slotted and tightly synchronous operation among the nodes,
and deploys a pull-based mechanism to collect data from every
active node when the sink requires it (based on application
requirements). This ensures a highly compact radio-on time
of the nodes and increases radio-off time in-between two
sensing rounds. The efficient operation of Sleeping Beauty is
rooted in the fast-flooding mechanism provided by Glossy [9].
Like LWB [10], which is also based on Glossy, Sleeping
Beauty contains a central part controlling what happens in
every slot. In order to be flexible and efficient, the control
mechanism runs at the sink and has been designed to address
the following challenges. First, as the inefficiency of multi-
hop communication in WSN caused by retransmissions and
per-hop delays, repercussion of these factors need to be
restrained. Moreover, in every communication slot, only those
nodes that provide routing progress need to be involved while
maintaining minimal retransmission and delay. Second, as the
network topology varies over time (e.g., due to link quality
fluctuations), the sink should account for this and ensure that a
valid path exists from any active node to the sink at all times.
The challenge is to provide neighbor discovery at minimal
cost. Third, since the efficiency of Sleeping Beauty stems from
time-triggered operations, a tight synchronization among the
nodes needs to be maintained, even when nodes go to sleep for
long duration. If not, what was gained in node-scheduling will
be lost in trying to synchronize again. In particular, standard
node-scheduling schemes assume that once nodes wake-up
they can instantly join the network. In reality, however, waking
up the complete protocol stack can be time consuming. Thus,
zero/minimal overhead should be ensured when a node rejoins
the network after long periods of radio inactivity.

C. Contributions

Sleeping Beauty efficiently tackles the challenges mentioned
above. Specifically, we improve state-of-the-art with these
contributions:

1) Efficient data collection for node scheduling: We pro-
vide the design and evaluation of a communication protocol
that combines fast flooding and on-off scheduling to support
scenarios where only a small, representative set of nodes need
to report their data to the sink. We do so by separating the
concerns of node selection and data collection. In that respect
Sleeping Beauty is an efficient, slot-based communication
substrate supporting different node selection schemes.

2) Efficient neighbor discovery: Neighborhood discovery
is a required service for many WSN applications. We propose
a synchronized strobing mechanism that helps every node to
learn about its neighborhood efficiently, that is, with minimal
radio activity. This is achieved by having nodes focus only
on potential parents and update information instead of discov-
ering it every time from scratch. This aids node-scheduling
algorithms in coping with network connectivity and dynamics.

3) Accurate and long-lasting time synchronization: Much
of Sleeping Beauty’s efficiency stems from the fact that
operations are tightly synchronized. To counter the drifts of the
hardware clocks in nodes, Glossy (who pioneered this style of

communication) utilizes frequent network-wide floods, taking
up a significant amount of energy. To avoid this overhead we
propose a simple clock estimation algorithm with which nodes
– even after 45 min – are still synchronized within an error
bound of 500µs.

We substantiate our claims by evaluating the performance
of Sleeping Beauty on two public testbeds –Indriya [11] and
FlockLab [12]– and on a local setup. We compare against
two Glossy-based communication protocols LWB [10] and
Forwarder Selection [13], showing overall reductions in energy
consumption.

II. BACKGROUND

In this section, we review state-of-the-art data collection
protocols with respect to their limitations for node scheduling.
The Collection Tree Protocol (CTP) [14] is a robust data
collection protocol that builds and maintains a spanning tree.
It provides a good packet delivery ratio for many deployments,
but breaks down under increased traffic and network dynamics.
To address the latter limitation, Landsiedel et al. [15] proposed
an opportunistic data collection protocol, called ORW, which
routes packets to the first available node from a set of possible
forwarders. Although ORW outperforms CTP in many aspects,
it shares the overhead of maintaining routing metrics, which
compromises efficiency, especially when sets of nodes are
switched on and off.

Recently, a number of synchronous all-to-all communication
protocols have emerged as highly efficient as that of the
traditional tree-based protocols [9], [10], [16]. Most of these
protocols utilize Glossy’s fast flooding mechanism, which
we will describe in quite some detail as Sleeping Beauty is
also based on it. In Glossy [9], a special node, called the
initiator (sink node), starts the flooding in a time-triggered
fashion. The overall flooding time is very small compared to
traditional flooding [17], as Glossy embraces a phenomenon
called constructive interference (CI). When more than one
node transmits the same content exactly at the same time
(within a tolerable time difference, usually half of a symbol
period), the signals constructively interfere at the receiver. As
a result, the receiver can successfully decode the symbols. In
Glossy, each node turns on its radio just before the start of a
new flood, and after the initiator sends the packet, all its first-
hop neighbors receive the packet. Then they forward the packet
immediately (with the same processing and switching delay),
which causes constructive interference at the second-hop nodes
from the initiator. The second-hop nodes then forward the
packet immediately too. The process continues as a ripple
effect and the whole network is flooded within a couple of
milliseconds. Nodes turn off their radio immediately after the
flooding. Note that as a result of participating in the flood, the
nodes implicitly become synchronized with the initiator the
moment they receive the packet.

The Low-power Wireless Bus (LWB) protocol [10] has
turned the Glossy floods into a generic all-to-all communica-
tion primitive by adding a centralized component that creates
a global schedule specifying who may initiate a flood (i.e.,



send data) in a particular slot. By having all nodes participate
in every flood, LWB is completely topology agnostic and
voids the need for obtaining/maintaining routing information,
allowing it to function as a robust and efficient communication
substrate. For data collection, however, it is not necessary to
relay the messages at all nodes, providing room for optimiza-
tion. For example, Carlson et al. [13] describe a forwarder
selection mechanism for LWB that is quite effective in only
involving a small set of nodes between source and sink. For
node scheduling, however, this solution is inadequate as (i)
nodes cannot go to sleep for extended periods of time without
losing synchronization, and (ii) the schedule reserves slots for
the inactive nodes, causing all nodes to waste energy by idling.
These considerations prompted us to design a new protocol.

III. A FIRST LOOK AT SLEEPING BEAUTY

We begin our description of Sleeping Beauty with a con-
ceptual overview depicted in Fig. 2. The sink coordinates
all actions by periodically flooding the network with sync
packets. Once a node has received such a sync packet it
may join the network by requesting its own slot in the global
schedule. It can then start reporting its sensed data to the sink
every inter-packet interval (I). However, it may only do so
if it is one of the active nodes determined by the sink every
scheduling interval (S). The sink disseminates this set and
an accompanying schedule along with the sync packets. The
selection of the connected set of active nodes is based on basic
one-hop neighbor information (possible parents) collected by
the nodes through localized strobing. Unlike the sync slot,
where all nodes participate in the flooding, only the set of
active nodes participate in the flooding during the data slots.
This minimal flooding ensures higher energy efficiency as
compared to other Glossy-based protocols.

A. Design goals

The overarching objective is to enable inactive nodes to
sleep for prolonged periods of time, while utilizing Glossy’s
fast and efficient flooding primitive. This amounts to the fol-
lowing two design goals. First, we want an efficient neighbor
discovery mechanism to muster partial, but sufficient topolog-
ical information. In particular, we are interested in providing
lists of potential parents to the active node selection algorithm
running at the sink so that any node-scheduling scheme
can be applied on the network. Second, we desire a node
synchronization scheme that allows nodes to be offline for
extensive periods of time while maintaining the desired level
of tight synchronization. That is to say that the requirement of
frequently sending synchronization packets by a Glossy-based
protocol is to be replaced by a method that runs at much larger
(and even irregular) intervals.

B. Architecture

The operation of Sleeping Beauty is divided into two major
phases. In the first phase, called bootstrapping, nodes join the
network by synchronizing with the sink and requesting for
data slots. During this phase nodes also estimate their own
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Fig. 2: Conceptual overview of Sleeping Beauty.

clock drift parameters, and survey the local neighborhood to
identify high-quality links with nodes that can provide routing
progress to the sink. This topological information is relayed
to the sink by piggybacking with the data packet. In the
second phase, called steady-state, the sink selects a new set of
active nodes in every scheduling period. Once the selection is
made and communicated to all nodes in the network, only the
selected will stay active until the next scheduling round. Once
the round finishes, all nodes wake-up again and topological
information is refreshed to accommodate for any changes in
network conditions, before the sink selects the next set of
active nodes.

To achieve efficient data communication, Sleeping Beauty
requires nodes to perform various secondary communication
activities, e.g., neighbor discovery, offset estimation, etc., as
outlined in Section V. These secondary activities can lead
to significantly-higher energy consumption by the nodes if
they are not done efficiently. Therefore, the sink defines a
superframe that reduces the average duty cycle by carefully
managing the radio on time of all nodes.

C. Superframe as a building block

To cater to various types of activities, a superframe in
Sleeping Beauty may consists of four different types of
communication slots, as shown in Fig. 3. A slot is of sufficient
length to flood a packet from an initiator node (who starts the
flooding within this slot) to all other nodes, including time for
processing the contents at the receiver(s). The total duration of
a superframe is equal to 1 s and I s during the bootstrapping
and steady state, respectively.

1) Synchronization slot: This is the most important slot in
a superframe, and it functions as the header of the superframe.
This slot is used for (re)synchronizing the nodes with the
sink. Thus only the sink can initiate transmission of a sync
packet, and there is only one sync slot in a superframe. Though
synchronization is performed based on the reception time of
the sync packet, the content of this packet specifies the lengths
of the other slots (avoiding unnecessarily fixing a large slot
time). Additionally, a sync packet also disseminates the list
of active nodes that are selected based on a node scheduling
policy. How a sync packet is processed to decide the active
set of nodes is discussed in Section V-A.

2) Request/Reply (RR) slots: Every node needs to acquire
a data slot to send its data to the sink. RR slots are used to
request a data slot (odd numbered RR slot) and subsequent
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present (cf. Fig. 4).

granting (even numbered RR slot) If two nodes send requests
in the same slot, most of the times the sink is able to receive a
single request message successfully either due to the capture
effect [18] or one of the contending nodes is at least one hop
closer to the sink compared to the others.

3) Strobe slots: These slots are used to notify the pres-
ence of a node to its neighboring nodes as described in
Section IV-B. The number of strobe slots is equal to the total
number of nodes in the network to rule out collisions.

4) Data slots: Every node is assigned a unique data slot
to deliver its data, which it obtained using the RR slot. Addi-
tionally, a list of potential parent nodes that were discovered
using the strobe packets is also piggybacked in the data packet.
This provides a partial, but sufficient topological view of the
network to the sink.

IV. BOOTSTRAPPING

During bootstrapping nodes perform various learning activ-
ities, which are utilized for operational optimization and duty
cycle reduction in the long run. Even during bootstrapping,
nodes start reducing radio-on time as soon as they complete
the required level of learning. Moreover, the duration of
bootstrapping is very insignificant (only a couple of minutes)
compared to that of the steady state, which can last for months
if not years. The following three major tasks are performed
during bootstrapping.

A. Node joining
As every communication is time triggered and synchronous,

every node needs to synchronize itself with respect to the
sink before starting any transmission. Thus, after a node is
powered on, it keeps listening for sync packets. As soon
as the node receives such a packet, it synchronizes with
the network and learns about the superframe structure. As
mentioned earlier, a node requests for a data slot and gets a
reply from the sink in the odd and even RR slots, respectively.
Once a node has obtained a slot, it stops sending any further
requests, and completes its joining procedure. However, it
keeps participating in all other RR slots to help with delivering
the request/reply messages to the intended recipients.

It is clear that if the number of RR slots is low and the
number of requesting nodes is large, then it will take a long
time before every node gets a dedicated data slot. On the other
hand, if there are more RR slots, more nodes can get their
request granted within a short period of time. However, this
implies that nodes will be wasting a significant amount of
energy during the RR slots. Sleeping Beauty uses a dynamic
approach to decide the number of RR slots.

Deciding the number of Request/Reply slots: At the begin-
ning, Sleeping Beauty starts with 48 RR slots (the maximum
that fits within one second). Thus, within a second a maximum
of 24 nodes can be allotted a data slot. When most of the nodes
are allotted a slot, many unused RR slots cause unnecessary
energy consumption by the nodes. Sleeping Beauty notes the
number of used RR slots within the current superframe, and
uses this information to adjust the number of RR slots in the
next superframe. After some time, the number of RR slots is
reduced to 2. By that time, most of the nodes, if not all, would
have successfully acquired a data slot. The sink then decides
to move to the steady state (see Section V).

B. Building a partial view of the network

To gather a partial, but sufficient topological view of the
network at the sink, nodes piggyback a list of potential parents
with the sensed data. The ETX metric is used to identify
these potential parents from the beacons transmitted in the
strobe slots. To avoid any collisions among nodes, a separate
strobe slot is allocated to each node as follows. When a node
is assigned to transmit in the tth data slot, it shall use the
(t+ 1)th strobe slot to send its strobes (the first strobe slot is
reserved for the sink). In its slot, a node sends a fixed number
of consecutive strobe packets, which contain the current ETX
value of the transmitter. A neighboring node estimates the link
quality between the sender and itself based on the number
of received strobe packets and updates its own ETX value.
Based on the ETX values of all neighbors, a receiver node
compiles a list of potential parent nodes. Unlike CTP, where
a node chooses only one parent exclusively based on the best
(minimum) ETX value, Sleeping Beauty maintains a list of
parents. If a long list of parents would be reported with the
data packets, a significant amount of energy would be spent
by the nodes for delivering larger payloads. Therefore, only a
small list of parent nodes with better ETX values is reported
to the sink. This way the sink can gather partial, but sufficient
topological information about the network. From our empirical
evaluation, see Section VII, we inferred that a list of 5 nodes
is sufficient for 97% cases.

C. Clock-offset estimation

Due to unstable clocks of the small embedded devices
involved, a node can experience a significantly higher clock
offset with respect to the reference node (i.e. the sink) within
a small period. To rectify such clock offsets, the common
method is to send synchronization packets more often and in-
dividual nodes should put in extra efforts, such as keeping the
radio on for a longer duration to receive the synchronization
packets. This induces significantly higher energy consumption
by the nodes. In Sleeping Beauty, during bootstrapping, fre-
quent sync packets are sent so that sufficient data points can
be collected to estimate the clock offset. Once in steady state
the clock offset is rectified by the node itself without receiving
sync packets as will be described in Section VI.

During bootstrapping, every node in the network remains
active and senses data every inter-packet-interval (I s) as de-
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termined by the application. Therefore the superframe contains
as many data slots as the number of nodes in the network. The
bootstrapping process ends T s after the last node joins the
network. The timeout T should be set such that the sink has
sufficient time to acquire the topological view of the network
and that the regular nodes can gather enough data points to
estimate their clock offset.

V. STEADY-STATE OPERATION

The beginning of the steady state is marked by selecting
a set of active nodes. The sink disseminates the list of active
nodes using the sync packet. It selects a new set of active nodes
every scheduling period, which amounts to S∗I s (Fig. 4). Note
that the protocol is flexible enough to cope with any value of
S and I as sought by the application.

A. Periodic active node selection

Since active node selection is outside the scope of this
article, we used an existing node scheduling algorithm on top
of Sleeping Beauty to demonstrate how it can be integrated
with such methods. The common sensing groups are assumed
to be known or can be formed at runtime based on the
sensed data. Then the active nodes are selected by means
of the algorithm described in [6]. The list of active nodes
is disseminated using a bitmap in the sync packet. If, upon
receiving a sync packet, a node finds a zero at the bit position
of its data slot, it goes to sleep (dormant node). The active
nodes continue to wake-up every I s to send their data without
requiring any sync packet (Fig. 4). Note that active nodes keep
their radio on in their assigned data slot, to transmit their own
data, as well as in the data slots associated with the other
active nodes, to forward the data from them.

After S superframes, the sink reconsiders the selection of
the active nodes. Since the quality of the links may have
changed during this long time period (S ∗ I s), the last
superframe of the series includes strobing slots to reassess
the links (see Fig. 4). To obtain a complete picture of the
(changed) network topology all nodes participate in the link
quality assessment procedure. Hence, non-active nodes can
sleep for only S-1 superframes.

B. Updating the list of parents

During bootstrapping, every node listens to every strobe slot
to find its neighbors, and compute its ETX to the sink. The
same procedure could be followed in the steady state as well,
but would waste a lot of energy in the case of large multi-
hop networks that comprise many more nodes than neighbors.

Therefore, a node records any neighbor seen during bootstrap-
ping in a bitmap. This bitmap is then used to selectively listen
to the strobing slots of potential parents during steady state.
This ‘smart strobing’ optimization significantly reduces the
energy consumed for link quality assessment, see Fig. 10a for
details. To ensure a high Packet Reception Rate (PRR), nodes
sort the list of parents based on ETX and picks the top 5
(lowest ETX) as the potential parents (cf. Fig. 10b).

C. Clock-offset correction

Active nodes wake up in every superframe, allowing them
to stay synchronized easily. Dormant nodes, in contrast, run
the risk of waking up out of phase due to drifts in their clocks
when rejoining the network for the link quality assessment
after (S − 1)I s. The drift could be countered by waking up
early, but that would waste energy, so Sleeping Beauty adopts
a correction procedure based on estimating the clock-offset
parameters, as discussed in next.
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VI. LOW-COST CLOCK-OFFSET ESTIMATION

We consider the scenario shown in Fig. 5, where the sink
(solid line) transmits packets to the sensor nodes. For the
sake of simplicity, we illustrate a single-hop communication
link. However, in the case of multi-hop scenarios, given the
known additive transmission delay between the hops, a similar
illustration holds. Note that time deviation may either be
positive or negative with respect to the sink.

At the kth transmission, the sink node transmits the refer-
ence time T0,k, which is received by node i at its local time
Ti,k. The sink node transmits a packet to the local node i at
every δT s for a total time duration of ∆T , during which K
transmissions occur. It is worth noting that the communication
between the nodes is not necessarily at a fixed interval, which
allows us to dynamically vary the duty cycle of communication
δ between the nodes as per our requirement.



A. Least squares estimator

All the clocks are inherently non-linear, however given
sufficiently low Allan deviation for a short period of time,
the clock model could be linearized to fit a first-order model
[20]. Under the assumption that the sink node is our reference
node, the corresponding local time at node i is,

Ti,k = (1 + φ̇i)T0,k + φi, (1)

where {φ̇i, φi} are the frequency offset and phase offset of
node i [21]. Under ideal conditions, {φ̇i, φi} = {0, 0} and
subsequently Ti,k = T0,k, however in practice these clock
errors are prevalent and the challenge is to estimate and correct
the local clock at node i appropriately. Furthermore, the time
deviation at node i with respect to the reference clock is,

εi,k , Ti,k − T0,k = φ̇iT0,k + φi. (2)

Now, collecting all the K transmissions and using (2), the
unknown clock coefficients θi , [φ̇i, φi] can be estimated by
solving for,

θ̂i = arg min
θi

‖AKθi − εi‖22 (3)

=
(
AT

KAK

)−1
AT

Kεi = G−1
K bi,K , (4)

where AK = [t, 1K ], bi,K = AT
Kεi, GK = AT

KAK , 1K

denotes a column vector of K ones and the measurement
vectors are of the form,

t =
[
T0,1 T0,2, . . . , T0,K

]
, (5)

εi =
[
εi,1 εi,2, . . . , εi,K

]
. (6)

Here θ̂i is an estimate of the true clock parameters and (3)
has a feasible solution provided K ≥ 2 [19]. Observe that the
matrix GK is dependent only on the time stamps from the
reference sink node t. Hence, in case the (possibly varying)
polling-interval δt is known advance, then the inversion G−1

K

can be estimated offline and stored locally, at the cost of more
memory.

B. Iterative Least Square update

For a set of K time measurements, the number of multipliers
to solve the least squares (LS) solution of (3) is O(2K),
where the inversion of the Grammian matrix GK is the
most expensive operation. However, since the measurements
arrive sequentially, the proposed least squares estimator can be
solved row-iteratively [22]. Let aTk and εTi,k denote kth row
input (during the kth transmission) of A and εi, respectively.
Then, solving (3) for 2 < k ≤ K is equivalent to iteratively
solving G−1

k bi,k, where the kth update is given by,

G−1
k , (Gk−1 + aka

T
k )−1

= Gk−1 −
G−1

k−1(aka
T
k )G−1

k−1

1 + (aTkG
−1
k−1ak)

, (7)

bi,k = bi,k−1 + aTk εi,k. (8)

The initial estimate at k = 2 is obtained by solving the 2 ×
2 linear system G−1

2 bi,2, where

G2 = AT
2 A2 =

[
G1,1, G1,1

G2,1, G2,2

]
, (9)

G−1
2 =

1

det(G2)

[
G2,2, G1,2

−G1,2, G1,1

]
, (10)

bi,2 = A2εi,2. (11)

As the iterative-LS update is very inexpensive in terms of
memory and CPU cycles, it can be implemented on any em-
bedded device. We integrated the above clock-offset estimation
technique in our Sleeping Beauty implementation.

VII. PERFORMANCE EVALUATION OF SLEEPING BEAUTY

We evaluate the performance of Sleeping Beauty based on
the overall energy consumption by the nodes in a WSN. In this
regard, we study the reduction in duty cycle of the nodes over
a longer period. Additionally, we monitor the performance in
terms of packet reception ratio (PRR).

A. Implementation details

Sleeping Beauty is implemented on the Tmote Sky platform
using the Contiki operating system. We use the core function-
alities of Glossy to obtain the precise clock synchronization
using fast flooding. We further adopted from our previous
implementation of LWB and FS-LWB [23]. As Sleeping
Beauty does not have any platform-specific component, it
becomes directly usable on any other platform where Glossy
will be ported to.

There are a few configuration parameters in Sleeping Beauty
that can be tuned based on the application’s requirements.
Without loss of generality, we use the following values during
our evaluation – the inter-packet interval I is set to 10 s, the
scheduling interval S to 10I s (i.e., 100 s), and the time-out
period T to end bootstrapping is set to 120 s.

B. Evaluation platforms

We present the results of our study carried out on the
Indriya [11] and FlockLab [12] testbeds along with experi-
ments using some local nodes in our lab. Our experiments
were conducted on 80 and 32 TelosB nodes on Indriya and
FlockLab, respectively. All communications are done using
channel 26 and majority of our experiments are consucted at
nights to avoid interference from WiFi. We performed two
separate sets of experiments: one to evaluate the clock-offset
estimation and another to evaluate the overall performance of
Sleeping Beauty.

C. Accuracy of clock-offset estimation

First, we discuss the results related to the clock-offset
estimation and correction. As the clocks on different nodes
behave differently, we present the clock behavior of two nodes
that showed the minimum (best) and maximum (worst) offset
over time with respect to the reference node (sink) in Fig. 6.
The clock of the first node is running slower than the reference
node as the observed deviation is on the negative side. The
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Fig. 6: Behavior of two clocks (best and worst) with respect to the reference clock.

clock of the second node instead is running faster than the
reference node (Fig. 6a).

Using 120 training samples, the clock-offset parameters are
estimated, where sync packets are sent every second. In the
evaluation phase, sync packets are sent at various (longer)
intervals. Before receiving the next sync packet, the node
estimates the clock offset and adjusts its clock. Later, in steady
state, when a sync packet is received the offset is calculated, if
any. This offset denotes the estimation error. Note that during
the evaluation, clocks are always readjusted with respect to
the reference clock after receiving a sync packet.

Fig. 6b shows the estimation error for various synchro-
nization periods. For each synchronization period, multiple
measurements were performed and an average value is plotted
in the figure. From this data, it is clear that the estimation
error increases when the synchronization period increases.
This behavior is due to the non-linear nature of the clock and
the small set of the training data. The estimation error can
be contained if the offset parameters are also updated during
the evaluation phase after receiving each sync packet. Fig. 6c
shows an improved clock correction and the estimation error
is smaller compared to Fig. 6b. However, even in this case, the
estimation error increases with respect to the synchronization
period, though at a much lower rate.

Glossy maintains high synchronization accuracy among the
nodes by transmitting sync packets frequently enough such
that the clock offset of the nodes remain within a bound.
Glossy defined this bound as the guard time and set it to
500µs. Based on the experiments on Indriya, we discovered
that some of the nodes become asynchronous (offset is higher
than the guard time) even if a sync packet is sent as often as
every 10 s. Thus, we assumed that to maintain synchronization
for all the nodes sync packets need to be sent in 5 s intervals.
However, if the application sends data at larger intervals, a lot
of sync packets will be exchanged just to keep the network
synchronized. Using our clock-offset estimation technique, a
sync packet can be sent once in every 45 min, while the
clock offset will be within the predefined threshold of 500µs
(Fig.6c).

D. Sleeping Beauty’s performance

Next we study the performance of Sleeping Beauty. As
the number of common sensing groups in a WSN can vary
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Fig. 7: Experiments on Indriya: average duty cycle per node
over a long period and average packet reception ratio.
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Fig. 8: Experiments on FlockLab: average duty cycle per node
over a long period and average packet reception ratio.

significantly, we experimented with different sets of groups.
We assumed that only one representative node from each group
is sufficient to meet the sensing requirement where groups are
formed based on correlation as described in [24]. Specifically,
we experimented with four different group settings such that
there are the following percentages of active nodes: 6.25%,
12.5%, 25%, and 50% while keeping the total number of nodes
constant. That means, there are respectively 4, 8, 16, and 40
groups on Indriya. In case of FlockLab, there are 2, 4, 8, and
16 groups.

We compare Sleeping Beauty (SB) with two state-of-the-
art protocols – LWB [10] and FS-LWB [13]. As the radio
is the most significant energy consuming activity of a node,
we compare the radio-on time (duty cycle) with both of these
protocols. Figures 7 and 8 show the duty cycle and packet
reception rate averaged across all nodes of the Indriya and
FlockLab testbeds using: (i) LWB; (ii) FS-LWB, and (iii)
Sleeping Beauty for the four different numbers of source
nodes. For each experiment, we used 100 superframes, and
the total number of data packets varied from 200 to 4000
(based on the number of source nodes). In all but one case
Sleeping Beauty outperforms (FS-)LWB in terms of duty
cycle, up to a factor of three, while achieving comparable
packet reception rates. The savings in energy consumption are
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Fig. 9: Experiments on Indriya with 80 nodes: average radio-on time for nodes for various operations of Sleeping Beauty (SB).

most pronounced when the least number of source nodes are
active. This matches intuition as only then Sleeping Beauty can
put nodes to sleep for prolonged periods. The observed PRRs
show that most of the data is delivered at the sink; only on the
Indriya testbed some packets are lost. There is, however, no
clear winner amongst the three protocols. Depending on the
number of source nodes, Sleeping Beauty looses more or fewer
packets than (FS-)LWB. We conjecture that the underlying
cause for the drop in PRR is the constructive interference (CI)
mechanism, whose effectiveness depends on the number of
simultaneous transmitters. With too few transmitters nothing
is gained; with too many, a slight misalignment at the symbol
granularity leads to packet loss. Depending on the number of
active sources, a different protocol may select the ideal set of
simultaneous transmitter for CI.

To gain a deeper understanding of how Sleeping Beauty can
provide the same service (PRR) while consuming less energy,
Fig. 9a shows the average radio-on time broken down into
the main activities of the protocols (handling data, sync, and
strobe packets). In LWB, even if there are a few data sources
and few data slots associated with them, all nodes participate
in all data slots. FS-LWB reduces the overall duty cycle of
the nodes, by using only a subset of the nodes in a data slot
associated with a particular data source. Because of the more
refined topology information collected by Sleeping Beauty, it
is capable of putting even more nodes to sleep, reducing the
average time spent on handling (forwarding) data even further.
For example, when 8 source nodes are active, LWB spends
0.78 percentage points on handling data packets, while FS-
LWB reduces that to 0.44 and Sleeping Beauty only requires
0.30 percentage point.

Besides gaining efficiency by flooding less data, Sleeping
Beauty also benefits greatly from the improved synchroniza-
tion method. LWB and FS-LWB spend about 0.23 percentage
point of their duty cycle on handling synchronization packets
to maintain Glossy’s ≤ 500µs timing requirements. Sleeping
Beauty on the other hand, spends only 0.02 percentage points
on handling sync packets. This coarsely matches the ratio of
injection rates, with (FS-)LWB sending out sync packets once
every 5 s, and Sleeping Beauty synchronizing once every 100 s.

Sleeping Beauty has some extra overhead (0.06 percentage
points) in the form of strobe packets, which are are used to
collect topology information. This amounts to a total synchro-
nization cost of 0.08 percentage points, which still compares
favorably to that of (FS-)LWB (0.23). The importance of
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the ‘smart strobing’ policy, which only updates ETX values
for potential parent nodes (cf. Section V-B), becomes clear
when comparing the overhead of Sleeping Beauty during
bootstrapping and steady state. Fig. 10a shows that listening
to all nodes in the network (bootstrapping) is 7 to 10 times
more expensive than just monitoring the potential parent nodes
(steady state) on FlockLab and Indriya, respectively. This
factor matches with the ratio of the total number of nodes in
the testbed over the average number of parent nodes: 32

4.5 = 7
for FlockLab and 80

8 = 10 for Indriya.
The collected neighborhood information is reported back

to the sink, but only partially to limit the overhead. Sleeping
Beauty orders the neighbors based on their ETX values and
sends out the top-X entries with the shortest routes to the sink.
It is important to report the right number of potential parents
as, on the one hand, the overhead is directly proportional to it,
and on the other hand, the sink can make better decisions on
which nodes to activate if it has more complete knowledge
of the topology. To study this trade-off we conducted an
experiment in which we configured nodes to report the top-10
list with potential parents. We then monitored which parents
were then selected by the sink for the next scheduling round.
Fig. 10b shows the cumulative distribution of the selected,
ranked parents for different numbers of active sources on the
Indriya testbed. In 97% of the cases the sink selected 5 or
fewer parents to become active, prompting us to conclude that
lists of 5 parents provide sufficient topology information for
the sink to build an efficient data-collection overlay.

Knowing that the overall efficiency of Sleeping Beauty is
mainly dictated by the number of active nodes, it is tempting
to construct overlays where each (source) node has only 1
active parent. However, such sparse overlays are likely to be
susceptible to packet loss induced by errors on the wireless
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Fig. 11: Comparison of average radio-on time and PRR when
one and two parent nodes are selected active.

channel. As the underlying fast-flooding mechanism relies on
exercising all available links, it could be advantageous to
activate a few redundant (parent) nodes. To study the PRR-
redundancy trade-off, we experimented with selecting one or
two parent nodes. Fig. 11 shows the difference in PRR and
duty cycle for both cases on Indriya with different numbers of
active source nodes. To our surprise the PRR is hardly affected.
Studying the single-parent overlays in detail, we noted that in
many cases selecting the best parent of one node, as a side
effect, also implied activating the 2nd or 3rd best parent of
other nodes. The effect of selecting 1 or 2 parents is a bit
more pronounced for the duty cycle, but still limited, showing
that either option is fine.

VIII. CONCLUSIONS

To provision against adverse network conditions and node
failures, WSN deployments typically contain redundant nodes.
Node-scheduling exploits this feature by limiting the number
of active nodes to achieve energy-efficient network operation
without violating the coverage requirements of the applica-
tions. However, it is not sufficient to just limit the num-
ber of active nodes; active nodes should form a connected
(sub)network. There exists a large body of work on selecting a
connected subset of nodes covering the complete deployment.
These optimized node-scheduling techniques, however, are
generally not applicable to real-world deployments as they
require complete topological information, which is difficult
and expensive to obtain accurately.

We presented Sleeping Beauty, an energy-efficient com-
munication protocol that operates with partial topological
information, yet outperforms state-of-the-art flooding-based
protocols (LWB and FS-LWB) in node-scheduling scenarios.
Sleeping Beauty accomplishes this by including (i) an efficient
neighbor-discovery mechanism that enables the selection of a
minimal, but connected set of active nodes, and (ii) a simple,
but elegant clock-offset estimation technique that allows nodes
to sleep for a longer duration without the need for explicit
resynchronization. The latter is important for allowing the
use of efficient time-triggered flooding a la Glossy. Our time
synchronization technique can be used in any application. We
compared the performance of Sleeping Beauty with state-of-
the-art protocols on two public testbeds (Indriya and Flock-
Lab), and showed that the same performance (PRR) can be
achieved at a fraction of the energy consumption. We recorded
a factor of three reduction for the best case scenario with 5 %
active nodes.
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