
Front. Comput. Sci.

DOI 10.1007/s11704-016-5081-x

Tenant-based access control model for multi-tenancy and
sub-tenancy architecture in Software-as-a-Service

Qiong ZUO1,2, Meiyi XIE 1, Guanqiu QI2, Hong ZHU1

1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe AZ 85287, USA

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Software-as-a-Service (SaaS) introduces multi-

tenancy architecture (MTA). Sub-tenancy architecture (STA),

is an extension of MTA, allows tenants to offer services for

subtenant developers to customize their applications in the

SaaS infrastructure. In a STA system, tenants can create sub-

tenants, and grant their resources (including private services

and data) to their subtenants. The isolation and sharing re-

lations between parent-child tenants, sibling tenants or two

non-related tenants are more complicated than those between

tenants in MTA. It is important to keep service components

or data private, and at the same time, allow them to be shared,

and support application customizations for tenants. To ad-

dress this problem, this paper provides a formal definition of a

new tenant-based access control model based on administra-

tive role-based access control (ARBAC) for MTA and STA in

service-oriented SaaS (called TMS-ARBAC). Autonomous

areas (AA) and AA-tree are proposed to describe the auton-

omy of tenants, including their isolation and sharing relation-

ships. Authorization operations on AA and different resource

sharing strategies are defined to create and deploy the access

control scheme in STA models. TMS-ARBAC model is ap-

plied to design a geographic e-Science platform.

Keywords Software-as-a-Service (SaaS), multi-tenancy

architecture (MTA), sub-tenancy architecture (STA), role-

based access control (RBAC) model, tenant-based access

Received February 27, 2015; accepted December 1, 2015

E-mail: qiong_zuo@hust.edu.cn; xiemeiyi@hust.edu.cn;

guanqiuq@asu.edu; zhuhong@hust.edu.cn

control model

1 Introduction

Cloud computing often has three principal components:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), and Software-as-a-Service (SaaS). Multi-tenancy ar-

chitecture (MTA) is often used in SaaS where multiple ten-

ants can use the same code base stored in the SaaS to develop

applications. One tenant application may be under develop-

ment, while the SaaS is executing other tenant applications at

the same time.

A tenant can be a single user or an organizational entity. A

tenant application can be used by many end users of the orga-

nization. Many organizations today have sub-organizations,

e.g., a corporation can have multiple subsidiary companies,

and these subsidiaries while different may share the signif-

icant requirements. For example, Wells Fargo Bank is an

enterprise-level tenant of Salesforce.com. It has over 9 000

bank branches, about 270 000 employees, and serves 3 600

customers per branch1). One branch may operate in the USA,

while the other may operate in Asia, and these two are set

up to meet local regulations, but both share the significant

business operations. In this case, the company may be a ten-

ant, while these two subsidiaries are subtenants. This is the

sub-tenancy architecture (STA) [1] and this is an extension

of MTA, and in STA, a tenant application can be further

customized to form subtenant applications, and subtenants

may share data and software with fellow subtenants or their

1) Wells Fargo’s success story. http://www.salesforce.com/customers/stories/wells-fargo.jsp, 2013

2 Front. Comput. Sci.

parent tenants. Technically, a subtenant can also have its

own sub-subtenants, however, the management of these sub-

subtenants may be involved. Furthermore, a MTA may be

considered as a sub-case for STA where no tenant has sub-

tenants.

Before formally modeled as STA [1], some cloud service

providers, such as Salesforce, NetSuite and OpenStack, use

user groups and application subsets on MTA to practice hier-

archical multi-tenants and their different application require-

ments. In MTA, each subsidiary of a tenant is built either as

an independent tenant that is difficult for customized resource

sharing or re-customization among relative tenants, or as a

user of such tenant where the real world hierarchical rela-

tions, resource isolation and sharing relations are implied by

complicated role assignment and constraints.

STA is a more flexible and extensible architecture for hier-

archical multi-tenancy applications. In STA, multiple tenants

co-exist. Each tenant should be autonomous and can autho-

rize its subtenants to access its own resources, including pri-

vate service components and data. Each subtenant may not

only inherit its tenant’s resources, but also customize its own

applications and allow or forbid others to access its resources.

Sibling-tenants may also share their service components or

data with each other.

Currently, most existing access control models for MTA

are based on role-based access control (RBAC) [2] or admin-

istrative role-based access control (ARBAC) [3]. These mod-

els can be divided into three categories: 1) using database

schema and security strategies in data-centric clouds [4] with-

out considering of service component sharing; 2) adding vari-

ous kinds of hierarchy, constraints or management scope sep-

aration for multiple tenants isolation [5–10]; and 3) adding

issuer-tenant federals for cross-tenant sharing of outsourcing

components [11–13].

Besides the security strategies provided by MTA, STA ac-

cess control needs to address the following issues:

1) Privacy sharing Tenants and their subtenants may share

private service components and data. A tenant can grant its

own resources including data and customized components to

its subtenants, and meanwhile, may not allow its ancestor-

tenants or system administrators to access to them, e.g.,

Fig. 1 shows that tenant T1’s private resource PR1 is partially

shared by its subtenant T11. A tenant may also share its pri-

vate components with its sibling, e.g., PR1 is partially shared

by its sibling tenant T2, and T11’s private resource PR11 is

partially shared by its sibling subtenant T12.

2) Autonomous tenants With respect to granting privi-

leges to subtenants, tenants act like autonomous agents even

though their operations are still confined by the SaaS infras-

tructure. A tenant manages its own resources, and can create

its subtenants and grant its resource access privileges to them.

A system administrator can create tenants and rent resources

to them, but cannot interfere with tenants’ internal affairs.

Furthermore, due to privacy isolation, role privilege inheri-

tance no longer exists in the system scope. What access priv-

ilege can/cannot be inherited and what resources can/cannot

be cross-level controlled are different from traditional MTA

systems. These need to be redefined.

3) Sharing relationships among tenants The sharing may

be between two sibling tenants (e.g., T1-to-T2, or T11-to-T12

in Fig. 1) or parent-child tenants (e.g., T1-to-T11 in Fig. 1).

Sharing resources include all kinds of resources, such as ap-

plication components and data in service-oriented SaaS. Pri-

vate resource components can be granted for other tenants to

access with their owner’s permissions. “Sharing directions”

may be from a parent-tenant to its subtenants, or from a sub-

tenant to its parent-tenant, or from a tenant to its sibling.

4) Shared components Components such as GUIs, work-

flows, services, and data components can be shared [14]. But

different components with different access properties need

to be differentiated. And a component may be a composite

one, with sub-components coming from different providers

or transmitted from different tenants. System administrator

may not be the only resource owner. A tenant can be both

a component producer and an application renter. The access

control of “shared composite components” is complicated.

Fig. 1 System administrator, tenants and subtenants relationships

To address these problems, meanwhile concerning about

the essential features for effective cloud authorization mech-

anism [15], a flexible, decentralized and scalable authenti-

cation and authorization model for different-level tenants to

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 3

share existing resources, customize their own application and

keep their secrets should be supported.

The contributions of this paper are as follows.

1) A new tenant-based access control model (called TMS-

ARBAC) based on ARBAC for STA is presented. As STA

includes MTA, this also applies to MTA.

2) Different resource sharing access control strategies ac-

cording to two-level STA models (TSTA) [1] are defined and

these can be used to develop authority and authorization for

every tenant.

3) The access control design for a geographic e-Science

data and tools sharing platform based on the EasySaaS infras-

tructure [14] is described to demonstrate the TMS-ARBAC

model.

This paper is organized as follows. Section 2 reviews the

existing MTA infrastructures and the related access con-

trol models; Section 3 provides a formal definition of the

TMS-ARBAC model, and then describes the resource shar-

ing strategies for STA; Section 4 presents thorough security

analysis of TMS-ARBAC; Section 5 applies TMS-ARBAC to

the access control design for a geographic e-Science sharing

application; and finally Section 6 concludes this paper.

2 Related work

This section reviews the MTA and STA in SaaS and their re-

lated security mechanisms.

2.1 MTA and STA in SaaS

Currently there are five ways to implement MTA [1]: integra-

tion with database; middleware approach; service-oriented

SaaS; PaaS-based approach and object-oriented approach.

Most of them focus on tenants’ customizing and running their

applications on a cloud platform.

However, Krebs et al. [16] pointed out that “multi-tenancy”

lacked a clear definition. It sees the most existing MTA tech-

nologies, such as data center, virtualization and middleware

sharing approaches, or PaaS-based MTA, are not real MTA,

but multi-instance or multiple application deployment solu-

tions are lacking in resources sharing and efficiency.

In MTA, most existing systems treat tenants as individ-

ual entities, fully isolated from other tenants. But SaaS pro-

motes sharing. In real world, many cooperative, same-level,

or same-type organizations may have similar application re-

quirements or business processes. The relationship between

two tenants needs to be discussed, but there are only a few

works related published.

From the load balancing view, four kinds of “affinity”

(non-affine, server-affine, cluster-affine and inter-cluster

affine) are given to group different users of a tenant to process

nodes for resource sharing and efficient-performance [16].

Maenhaut et al. [17] introduced a hierarchical model for

the logical representation of the tenant tree and a mapping to

the physical storage. But they focused on the efficiency and

scalability of authentication data storage and access.

Keystone2) provided identity application programming in-

terface (API) of hierarchical multi-tenancy for OpenStack,

using domains and projects to build hierarchy of user groups

and resources subsets .

Considering the hierarchical relationships among tenants

in real life, a hierarchical multi-tenant pattern is introduced

[6]. But none of them further discusses the customized re-

source sharing or isolation among tenants.

One successful MTA SaaS platform is Salesforce [18], run-

ning one application instance and one database schema to

support multi-tenants (including enterprise-level tenants), us-

ing a metadata-driven software architecture, standard-based

APIs and runtime application generator to enable multi-

tenant customer relationship management (CRM) applica-

tions.

From the reusing of shared resources and easy customiza-

tion view, STA [1] is proposed to model all kinds of hierar-

chical multi-tenancy with resources sharing among different-

level tenants. It allows tenants to offer services for sub-

tenant developers to customize their applications. Various

STA models are defined with different customization models.

2.2 Access control in MTA

Security is an important topic in SaaS as all tenants share the

same computing resources. MTA requires resource sharing,

performance sharing, data privacy and application isolation

at the same time. System security has been widely studied at

different layers, e.g., network transition, system management

and data storage. This paper focuses on authentication and

authorization of MTA and STA.

To apply RBAC, to identify subjects, objects and permis-

sions is necessary. In a SaaS system, a subject can be 1) a

tenant; 2) a subtenant; 3) a user of either tenant applications

or subtenant applications; an object can be any application or

data components within the SaaS; and the permission is be-

tween subjects and objects within the SaaS system. The fol-

lowing approaches have been used to apply RBAC to SaaS

2) Hierarchical multitenancy in Keystone. http://raildo.me/hierarchical-multitenancy-in-openstack/, 2015

4 Front. Comput. Sci.

systems.

• Database schema and RBAC model

Traditional inforncation technology (IT) manufacturers

develop data-centric PaaS-based SaaS, such as IBM3) or

Microsoft4) . Multiple tenants are isolated by traditional

database schema definition and RBAC model, sharing a data

center.

Yaish et al. [4] proposed a multi-tenant access control

model based on elastic extension tables (EET). “Parent-child

user” and “group table” are used to describe user group and

tenant group respectively. Roles are assigned to them for data

isolation or sharing.

In these models, security strategies focus on data, but not

on service sharing.

• RBAC-alike model for multi-tenant isolation

Li et al. [7] applied RBAC to SaaS systems and identi-

fied three problems: role name conflicts, cross-level manage-

ment, and the isomerism of tenant’s access control including

the heterogeneous relations of roles and the heterogeneous

constraints of permission assign. They proposed a S-RBAC

model, in which access control is divided into two parts:

tenant-level and system-level. Considering the role hierarchy

and related constraints, they extended S-RBAC to H-RBAC

model [8] with role delegation and time-constraints.

A tenant-based access control model T-Arbac [9] is pro-

posed by adding “Tenant” into ARBAC model, and sepa-

rating the functions of system administrators and tenant ad-

ministrators. System resources are divided into sub-resource

pools. Each tenant is assigned one certain pool, strictly iso-

lating different tenants.

In Ref. [6], based on RBAC, “users” are extended to “unit”,

“single unit”, “composite unit” and “user” to present the hi-

erarchy of users.

Aiming at the shortcomings of ARBAC97 used in large

organizations with many autonomous subsidiaries, N-RBAC

[10] uses hierarchical namespace structure to arrange users

and roles, more suitable for autonomous distributed role ad-

ministration.

To meet the requirement of multi-hierarchies decentralized

administration in large applications, a role-based hierarchi-

cal administrative model MHARBAC [5] is put forward, us-

ing role-tree to support top-down authorization. The inheri-

tance relation in role hierarchies is removed, and new restric-

tions are added. Administrative scope is subdivided into user

scope, role scope and permission scope.

• RBAC-alike model for multi-tenant sharing

Extensions of RBAC model have been proposed for collab-

orative authorization in clouds. Except those with centralized

authority that are not suitable for the cloud, there are three

ways to build collaborative authorization [11]: 1) delegation

in RBAC on basis of individual user decisions; 2) federated

identity and authorization services; 3) trust management into

access control mechanisms.

For cross-tenant collaboration on outsourcing resources,

a multi-tenant role-based access control (MT-RBAC) model

family [12] is proposed to provide fine-grained authorization

in a collaborative cloud environment by building trust rela-

tions among tenants. But it requires each tenant as “trustee”

belongs to a single issuer as “truster”, responsible for estab-

lishing the trust relation and adding trustee’s users to truster’s

roles. But in SaaS, a shared resource may be composed of

several components from different providers, which thus will

not satisfy the assumption. And the truster’s access control

over trustee’s users violates the autonomy of the trustee.

In SaaS ecosystem, service federation is established to al-

low a customer to use the services he subscribed in the fed-

eration across multiple organizations. Three major functions

(single sing-on across services, account provisioning and se-

cure delegation mechanism) are required for access control in

the federation. IBM proposed an “open identity management

framework” for SaaS ecosystem [13].

Salesforce5) uses a unique organization identifier for each

tenant. Server authentication and data encryption are used to

make sure that data are safe to be accessed to by its owner.

Three layered sharing designs are defined to expose differ-

ent data sets to different sets of users. They are: object-level,

field-level and record-level security. The NameDenorm table

is used to represent parent-child relationships. Organization-

wide, role-hierarchy and territory-hierarchy sharing can be

used to define the sharing access to data records. Profiles

are defined by a user’s job function. Single sign-on-delegated

authentication and federated authentication are provided for

helping customers to login Salesforce within a corporation to

use composed services.

Work has been done on service composition security so-

lutions, and on the information flow problem in composite

services from a service-oriented view [19]. But most of them

focus on orchestration or execution of composite services. No

3) Chong R. Designing a database for multi-tenancy on the cloud. http://www.ibm.com/developerworks/data/library/techarticle/dm-1201dbdesigncloud/
index.htm

4) Chong F, Carraro G, Wolter R. Multi-tenant data architecture. http:// msdn.microsoft.com/en-us/library/aa479086.aspx
5) Salesforce: security implementation guide. Version 31.0, 2014

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 5

work has been done on security problems in STA SaaS sys-

tems.

3 Tenant-based access control model for
MTA and STA in service-oriented SaaS

In MTA or STA SaaS platforms, a tenant is an autonomous

entity that can make many decisions including, keeping its

own privacy and sharing its resources to its subtenants, al-

lowing them to do further customization on what it provides,

acting as a SaaS administrator in its own territory. This sec-

tion introduces a tenant-based access control model called

TMS-ARBAC based on ARBAC, for different-level tenants’

isolation and sharing in STA service-oriented SaaS.

3.1 Overview of TMS-ARBAC

As shown in Fig. 2, TMS-ARBAC model adds three new en-

tity components: tenants, chief administrative roles and fed-

erals on ARBAC. Tenant hierarchy is added to represent the

hierarchy relationships between tenants and subtenants. But

every component in TMS-ARBAC is not the same as defined

in ARBAC.

Fig. 2 The TMS-ARBAC Model

• Tenants (T) A tenant is an entity that establishes its

own policies, and an application builder. It owns the re-

sources rented from the system, and customizes its own

application. It can create subtenants (ST) and users, au-

thorizing what they can do with the resources the ten-

ant owned or controlled. A unique tenant name is used

to specify its autonomous area (including entities, re-

sources, and permissions) from other tenants. The sys-

tem administrator can neither access to a tenant’s pri-

vate data, nor do any changes within each tenant’s per-

missions scope beyond service-level agreement (SLA).

Every ST must have a parent-tenant, but a parent-tenant

may have many ST s. A ST gets resources from its

parent-tenant, and then it can do its own customization,

and create its own users. In multi-level STA [1], a ST

can create its own ST s.

• Roles (R) R has the same definition as in ARBAC.

But unlike traditional RBAC, a role is narrowed down

to a tenant scope, which is invisible to any other tenants

normally. The role assignments come from its tenant’s

administrators, not from the SaaS administrator.

• Users (U) Both tenants and subtenants can create their

users. The difference between “tenants” and “users” is

that: “tenants” are organizations, but “users” are end

users. Users are also narrowed down to a tenant’s terri-

tory. Tenant or subtenant administrators authorize their

end users by “roles”. A user may have many roles. A

role can be assigned to many users. A user’s functions

are distinguished by the roles it is assigned to, being an

administrator, a tenant manager or a regular application

user in its work zone.

• Federals (F) A federal is created for cross-tenant

resource sharing, not including those between parent-

child tenants. It is not a real organization or association,

but a virtual entity. The assignments of tenants, roles

and users in a federal will be further discussed in Sec-

tions 3.3 and 3.6.

• Permissions (P) P here has the same definition as in

ARBAC. But in the service-oriented SaaS, resources

and their access permissions need to be further subdi-

vided, which will be further discussed in Section 3.5.

• Sessions (S) S here has the same definition as in

RBAC. In a session, the roles assigned to the user can be

activated. Note that in MT and ST SaaS, a user and the

active roles of a session may be from the system, a ten-

ant/subtenant or a federal. For tenants’ privacy require-

ments, exclusive constraints should be used to avoid

cross-tenant information purloin.

• Chief administrative roles (CAR) Administrative roles

(AR) and administrative permissions (AP) are related to

administrative work of tenants, roles, users and permis-

sion assignment, and autonomous area management,

which will be further introduced in Section 3.4.

6 Front. Comput. Sci.

Table 1 lists all the abbreviations and their descriptions

used in our model and strategies. All the relations labeled on

the arrows in Fig. 2 will be formally defined in Section 3.3.

Table 1 Notations used in our model and strategies

Notation Description

AA Autonomous area

AP Admin permission

APA Permission to AR assign

ARH Admin roles hierarchy

AR Admin role

AT A Tenant to CAR assign

AUA AR to user assign

CAR Chief admin role

CAP Chief admin permission

CAPA CAR to user assign

CS O Chief security officer

CAUA CAR to user assign

IP Inherited permission

F Federal

FUA Outer role (O_R) to user assign

FR Federal relationships

O_R Outer role

P Permission

PA Permission to RR assign

PA2T Permission to AA assign

PP Private permissions

R Roles

RH Role hierarchy

RR Regular role

S Session

ST Subtenant

T Tenant

T H Tenant hierarchy

TR Tree relationship

U User

UA RR to user assign

3.2 Autonomous area tree management

System administrators, tenants and their subtenants, roles and

users all live in one SaaS platform. Each entity has its own

work domain. Unlike its identity in the traditional RBAC, the

system administrator is no longer the most powerful author-

ity. It creates tenants, giving tenants proper authorities to ac-

cess to the SaaS platform resources according to SLA. It also

revokes tenants’ authorities and deletes them with SLA. Once

a tenant is dropped, all its subtenants, roles, users and its pri-

vacies will be also dropped.

In MTA and STA, tenants are autonomous entities. Sub-

tenants, roles and users should be defined in a tenant scope.

For tenant isolation, roles cannot be granted to users of other

tenants. Once a tenant is created, the authorization and au-

thentication in the tenant scope cannot be interfered by the

system administrator or other tenants.

To meet above requirement for tenants, we propose “au-

tonomous area (AA)” to describe the security control area

of one tenant. An AA is a named scope to restrict a tenant’s

RBAC security administration range. Each AA has a unique

name. Every entity (such as a role, a user or a permission) of a

tenant is unique in the tenant’s AA with a unique entity name

and its AA’s name as a prefix. The access to control policies

for one tenant can only be assigned to the entities in its AA.

Obviously, each AA has an independent name space. So,

the entities in different AA can have the same name, which

ensures a tenant to name its internal objects freely, without

the consideration of name conflict with those in other tenants

in MTA and STA environment.

As a tenant may have its subtenants, an AA may have its

sub-AAs. All the AAs in MTA and STA environment form

an AA-tree, representing the tenants’ hierarchies, as Fig. 3

shows.

Fig. 3 An AA-tree structure of TMS-ARBAC model

However, from the point of view of tenants’ hierarchies

and AAs’ creation order, the authority inheritance from the

child-node to its parent-node is forbidden in the AA-tree.

The objects in an AA cannot be visible from any other AA,

even though the two AAs have a direct parent-child relation-

ship between them, unless there is an explicit authorization

of sharing, which will be discussed in Section 3.6.

3.3 TMS-ARBAC Model

The entity components and their relationships in one AA are

shown in Fig. 4. And the TMS-ARBAC model is composed

of a set of AAs.

The formal definitions of TMS-ARBAC model are as fol-

lows.

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 7

Fig. 4 Components and relationships in an AA-tree structure

Definition 1 An AA has the following components:

• U: a set of users created in current AA;

• R, AR and CAR: disjoint sets of (regular) roles, admin-

istrative roles and chief administrative role created in

current AA;

• O_R: a set of outer roles shared by other AAs with the

current AA;

• P, AP and CAP: disjoint sets of (regular) permis-

sions, administrative permissions and chief administra-

tive permissions in current AA;

• S : a set of sessions;

• PA ⊆ P × R: many-to-many permission to regular role

assignment relation;

• PA2T ⊆ P × A: many-to-many permission to AA as-

signment relation;

• APA ⊆ AP × AR: many-to-many permission to admin-

istrative role assignment relation;

• CAPA ⊆ (AP∪CAP) ×CAR: many-to-one permission

to chief administrative role assignment relation;

• UA ⊆ U × R: many-to-many user to regular roles as-

signment relation;

• FUA ⊆ U × O_R: many-to-many user to O_R as-

signment relation. The inheritance or transitive relations

among outer-roles are not allowed;

• AUA ⊆ U × AR: many-to-many user to administrative

role assignment relation;

• CAUA ⊆ U ×CAR: many-to-one user to chief adminis-

trative role assignment relation; in a tenant’s AA, there

is only one chief security officer (CSO);

• RH ⊆ R × R: partially ordered role hierarchy;

• ARH ⊆ AR × AR: partially ordered administrative role

hierarchy (both hierarchies are written as � in infix no-

tation);

• user : S → U: maps each session si to the single user

user(si) (constant for the session’s lifetime);

• roles : S → 2R∪O_R∪AR∪CAR: maps each session si to a

set of roles, roles(si) ⊆ {r|(∃r′ � r)[(user(si), r′) ∈ UA∪
AUA∪ FUA ∪CAUA]} (which can change with time),

and session si has the permissions
⋃

r∈roles(si){p|(r ∈
(R∪AR)∧(∃r′′ � r)[(p, r′′) ∈ PA∪APA])∨(r ∈ CAR∪
(p, r) ∈ CAPA) ∨ (r ∈ O_R ∧ (p, r) ∈ area(r).PA)},
where area(r) denotes the AA in which the role r is cre-

ated.

• There is a collection of constraints stipulating which

values of the various components enumerated above are

allowed or forbidden.

• The definitions of U, R, AR and S in an AA are just the

same as ARBAC97 model, so in this paper we will not

discuss them in detail.

Definition 2 The TMS-ARBAC model is denoted as a tuple

〈AA, TR, FR〉:

• AA = {a1, a2, . . . , an}, where ai is an AA, n is the cardi-

nality of AA;

• If n � 1, TR is an empty set; else TR is a set of relation-

ships denoted as 〈ai, a j, P〉, where if a j is a sub-AA of

ai, then P is the permission set that a j inherited from its

parent-AA ai. If not, then a j is the parent-AA of ai and

P is the permission set that ai grants to its parent a j for

resource sharing purpose. Each AA must have one and

only one parent-AA, except the root AA.

8 Front. Comput. Sci.

• FR is a set of federal relationships. A federal f is de-

fined as a five-tuple: f = 〈Fid,Ca, Fm, Fo, Fc〉, repre-

senting the resource sharing relationships between non-

parent-child tenants. In which,

Fid is the unique ID of the federal f .

Ca is the chairman of f elected by all the federal

members. It is also an AA.

Fm = {a1, a2, . . . , ak}, (k � 1), is a subset of AA,

which represents the AAs joined in f .

Fo = {〈ai, a j, ai.r〉} | ai ∈ Fm ∧ ak ∈ Fm ∧ i �
k ∧ ai.r ∈ ai.R}, which means AA ai shares a role

ai.r with another AA ak in f .

Fc is a group of constraints to f (such as time limit

for f , exclusive constraints between two federals,

etc.) and to the assignment constraints from f to

its user.

According to Definition 2, there may be two types of re-

lationship between two AAs: parent-child relationship and

federal relationship.

The parent-child relationships always exist, so that every

autonomous area in AAs constitutes a tree.

The federal relationship allows several AAs to unite a fed-

eral, and share roles between each other within the federal.

The O_R of an AA ai is a set of roles given by other AAs in

the federal which ai belongs to. Fid is added to O_R to dis-

tinguish outer roles assigned from the same AA of different

federals.

ai.O_R=
⋃

f∈FR{(a j.r, f .Fid) | (∃〈ai, a j, a j.r〉∈ f .Fo | i� j)}.

3.4 Chief administrative role and chief administrative per-

missions

1) Chief administrative role (CAR)

In ARBAC97 model, administrative roles only have the

permissions to control regular roles, and the administration

of all the administrative roles and permissions is under con-

trol of a CSO, who has the highest authority in the system.

But this premise no longer holds in the STA environment.

When RBAC mechanism is applied to an AA, the cre-

ation and assignment of the regular roles and administrative

roles are supposed to be done by the CSO of the tenant, not

the CSO of the SaaS platform. Furthermore, since tenants

may have subtenants and subtenants are also autonomous,

the parent-tenant should allow a subtenant to specify its own

CSO to do administrative work in the subtenant’ AA. In the

multi-level STA environment [1], this process will continue

recursively.

Thus, in the STA environment, each tenant has one CSO.

There is not one global centralized CSO but many CSOs are

distributed throughout the whole system. The administrative

work includes creating users, RRs and ARs, permission as-

signment, and new sub-AAs or federals, which is continued

dynamically in the life cycle of the SaaS system.

In TMS-RBAC model, we still use the RBAC mechanism

to authorize CSOs. In each AA, except the original AR is de-

fined in ARBAC97, we introduce a new administrative role,

CAR, with highest authority in an AA. All the security admin-

istrative work of CSOs can be performed through CAR. Each

AA has one CAR, in charge of developing and maintaining

RBAC policies in the AA.

The difference between CAR and AR is that the former can

be used to manage not only the regular roles but also the lat-

ter. This difference is achieved through a special set of per-

missions called CAP, as shown in Fig. 4.

When an AA is created, the CAR of this AA is created and

granted the entire CAP automatically. Meanwhile, a default

CSO user is created and the CAR is assigned to him automat-

ically. In other words, the creation and assignment of CAR

and CSO is involved in the automatic action of creating an

AA. Then the CSO can be in charge of this AA.

No user could delete or modify the default user CSO or the

role CAR because they are created by the system. But deleting

an AA ai will result in the deletion of ai’s CSO, CAR, and all

the entities and resources in such AA. Taking into considera-

tion that the parent-tenants should be in control of whether a

subtenant could recruit subtenants, when creating an AA, the

parent CAR member is allowed to specify whether the child

CAR has the permissions to create or delete a sub-AA.

Constraint 1 There is one and ONLY one CAR in one AA.

2) Chief administrative permissions (CAP)

In TMS-ARBAC, the chief administrative permissions al-

low members of CAR c to perform some special administra-

tive operations. These operations are described as follows.

• AddUser(c, u, a), which creates a user u in the AA a.

The effect of the operation is: a.U ← a.U ∪ {u};
• DeleteUser(c, u, a), which deletes a user u from the

AA a, where u ∈ a.U. The effect of the operation is:

a.U ← a.U − {u};
• AddAdminRole(c, ar,Rs, a), which creates an admin-

istrative role ar with immediate senior role set Rs in

the AA a. The effect of the operation is: a.AR ←
a.AR ∪ {ar}; a.ARH ← a.ARH ∪ ({ar} × Rs);

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 9

• DeleteAdminRole(c, ar, a), which deletes an adminis-

trative role ar from the AA a, where ar ∈ a.AR. All

the related tuples in relations APA, AUA and ARH are

also deleted. The effect of the operation is: a.AR ←
a.AR − {ar};

• CreateAutonomousArea(c, as, a, Pi, b), which creates a

sub-AA as with immediate parent a. The permission set

that as is inherited from a is Pi, where Pi ⊆ a.P. And b

is a Boolean, denoting if as can create its sub-AA. The

effect of the operation is:

AA← AA ∪ {as};
TR← TR ∪ {〈a, as, Pi〉};
as.P← Pi;

as.U ← {CSO};
as.CAR← {CAR};
as.CAUA← {(CSO,CAR)};
as.CAPA← as.CAP × {CSO};
if b is true, as.CAP includes all operations in this

section; otherwise, as.CAP includes all operations in

this section except CreateAutonomousArea, DeleteAu-

tonomousArea, and ModifyAutonomousArea.

The CAP is assigned to CAR by the system during the

CreateAutonomousArea operation. They can only be

assigned to CAR, and cannot be passed on to other ARs.

In addition, since the CAP is assigned to CAR by the

system, it is not allowed to be revoked from CAR by

any user.

• DeleteAutonomousArea(c, as), which deletes a sub-AA

as. The effect of the operation is:

AA← AA− ↓ as;

TR ← TR − {〈ai, ai j, P〉 | ai ∈↓ as}; ↓ as is the set of

AAs that belongs to the subtree whose root is as.

• ModifyAutonomousArea(c, a, as, Pi, P′i), which a mod-

ifies the sharing permission set of AA as from P′i to Pi.

The effect of the operation is:

TR← (TR − {〈a, as, P′i〉}) ∪ {〈a, as, Pi〉};
as.P← (as.P − P′i) ∪ Pi;

as.PA← as.PA − {(p, r) | p ∈ (P′i − Pi)}.
• CreateFederal(c, ai, cc, f , b), which creates a new fed-

eral f . And b is a Boolean, denoting if ai is a member

of f . The effect of the operation is:

f .Ca ← ai;

if b=TRUE, f .Fm ← {ai}; else f .Fm ← ∅;

f .Fo ← ∅;

f .Fc ← {cc};
FR← FR ∪ { f }.

• JoinFederal(c, ai, f), which adds a new member ai to

federal f . The effect of the operation is:

f .Fm ← f .Fm ∪ {ai}.
• ShareOuterRole(c, ai, a j,Ro, cc, f), which shares a set

of roles Ro in AA ai with another AA a j with a set of

constraints cc, where Ro ⊆ ai.R and both ai and a j are

members of federal f . The effect of the operation is:

f .Fo ← f .Fo ∪ {〈ai, a j, ai.r〉 | ai.r ∈ Ro};
a j.O_R← a j.O_R ∪ {(ai.r, f) | ai.r ∈ Ro};
f .Fc ← f .Fc ∪ {cc}.
Note: which role can be an O_R is decided by ai.CSO;

and the outer-roles assignment to users (FUA) of a j is

implemented by a j.CSO.

• RevokeOuterRole(c, ai, a j,Ro, f), which revokes a set

of roles Ro from another AA a j in federal f , where

Ro ⊆ ai.R. The effect of the operation is:

a j.O_R← a j.O_R − {(ai.r, f) | ai.r ∈ Ro};
f .Fc ← f .Fc − {cc | cc.r ⊆ ai.r | ai.r ∈ Ro};
f .Fo ← f .Fo − {〈ai, a j, ai.r〉 | ai.r ∈ Ro}.
Note: when an outer-role ai.r is deleted from a j, the

related FUA in a j will be revoked by a j.CSO.

• QuitFederal(c, ai, f), which deletes a member ai from

federal f . The effect of the operation is:

RevokeOuterRole(c, ai, a j,Ro, f), where a j ∈ f .Fm∧i �
j ∧ Ro ⊆ ai.R};
f .Fo ← f .Fo − {〈ax, ay, ax.r〉 | ax = ai ∨ ay = ai};
f .Fm ← f .Fm − {ai}.

• DropFederal(c, ai, f), which drops federal f created by

ai. Only the creator of federal f can do this operation.

The effect of the operation is:

QuitFederal(c, ai, f), where ai = f .Ca;

FR← FR − { f }.

Constraint 2 To avoid implicit privilege inheritance in role

hierarchy, the partial order on O_Rs is NOT allowed both in

ai and a j of 〈ai, a j, ai.r〉 ∈ Fo(i � j).

Constraint 3 A set of outer roles (ai.r) can be assigned to

an AA a j as an O_R ONLY by their owner ai. No grantee AA

can assign an O_R to others.

10 Front. Comput. Sci.

Constraint 4 If an AA a joins two federals fi and f j, a ∈
fi.Fm ∧ a ∈ f j.Fm, any outer role a.o_ri of fi is invisible and

invalid to f j.

Constraint 5 To avoid the privacy leakage among differ-

ent federals, exclusive constraints need to be added to federal

user assignment, which means, NO user can simultaneously

belongs to different federals in one session.

3.5 Permissions (P)

In an AA on a SaaS platform, permissions are not the same

as in ARBAC97. Their differences are as follows.

1) The scope of permissions assigned to a role is restricted

to its AA.

Permissions are related to resources. In the MTA and STA

environment, each tenant only rents and owns part of the re-

sources in the SaaS platform, so the permissions range for

roles should also be bounded. In our model, the permissions

to be granted from AR to RR are restricted to a subset of the

AA’s permission set.

2) The permissions consist of inherited and private permis-

sions.

Because a tenant’s customization and secret data are also

resources and do not belong to the SaaS system, the permis-

sion set of each AA consists of two parts: permissions in-

herited from parent AA or shared from child AAs (called in-

herited permissions, IP) and permissions of private resources

owned by the current AA (called private permissions, PP).

• For an AA ai: ai.P = ai.IP ∪ ai.PP;

• ai.IP ⊆ parent(ai).P∪sub(ai).P, since ai.IP is inherited

from ai’s parent-AA or shared by its sub-AAs;

• if a subset of ai.PP is granted to its sub-AA or parent-

AA a j, it turns to be an relative permission of a j. For

secret keeping, we require that it cannot be re-granted

to other tenants from a j.

Constraint 6 A set of private permissions (ai.PP) can be

assigned to an AA a j ONLY by their owner ai. a j has no

right to pass on ai.PP to other tenants.

A tenant may determine to revoke permission from its sub-

tenant, and then all related permission-to-role assignments

should be revoked in turn. Furthermore, if the subtenant has

granted the permission to its subtenant, more complicated

process is needed to ensure an exhaustive revocation.

3) Different resources have different permissions.

According to EasySaaS, system resources include GUIs,

workflows, service components and Data (denoted as G, W,

S, D). From the resources access control view, we prefer to

divide these resources into two parts: AppComponent(G, W,

S) and Data, for they have obvious difference on operations

and data properties.

For STA applications and data access design, three ques-

tions should be considered.

• What permissions can tenants subtenants have?

• What permissions can tenants give to subtenants?

• What permissions can subtenants allow tenants to have?

Permissions that an AA can have and can grant to (or re-

voke from) others are concluded in Table 2.

Note that regular users of an AA are not application cre-

ators, and cannot do application customization. The applica-

tion permissions to users are only “use” in application execu-

tion period, while the permissions to AA managers are “sub-

scribe” and “customization” (the latter is default approved by

our SaaS system) in application building period. “Upgraded”

is a special permission from a component renter Ti to SaaS

system, specifying whether Ti allows the auto-upgrade of the

component.

When a tenant’s private permissions are given to one of its

subtenants, these permissions’s privacy, re-grant of such IP

is not permitted. From the data resources view, data should

be detailed as “data” and “data space”. Data sharing can be

viewed as sharing a data space with shared data inside. But

subtenants renting a data space from a tenant may cause a

new access control problem.

When a new tenant Ti logs in the SaaS system, usually

the system will give Ti an AA ai with data space DS i. When

a subtenant Ti j of Ti is created, usually it will be given a

sub-AA ai j with data space DS i j by ai. ai j.DS i j is partitioned

Table 2 Permissions that can be assigned to an AA

Permission property AppComponents’ permission set DataSpace/Data’s permisstion set

IP for public Own/grant/revoke: {Us/S , TUs/TS ,U pd} Own/grant/revoke: {R, I,U,D,TR,T I, TU, T D}
Ti.PP→ Ti j.IP for ST Own: {Us/S ,U pd} with no re-grant Own: {R, I,U,D} with no re-grant

PP for privacy owner Own: {Us,U,D,U pd}; Grant/Revoke: Own: {R, I,U,D, TR,T I,TU, T D}; Grant/revoke:

∅ /{Us/S ,U pd} ∅/{R, I,U,D}
Note: Us: use, S : subscribe, R: read, I: insert, U: update, D: delete, U pd: upgraded, T : transfer.

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 11

from its parent’s data space, which satisfies ai j.DS i j ⊆
ai.DS i. Once DS i j is given to ai j, ai cannot access to it with-

out ai j’s permission (expect in the data sharing case). But in

the SaaS administrator’s view, DS i j still belongs to ai. DS i j

becomes a “black area” of ai, since ai owns DS i j but can-

not control it. Adding data encryption on DS i j by its last

owner ai j can help solve the “black area” problem. When

ai j is dropped, ai re-gains the authority of DS i j. Correspond-

ingly, the encryption of ai j on DS i j is also removed. From

the system’s view, data space renting is a data space’s multi-

ple partition case.

From the AppComponent view, once a component is cre-

ated and published on the SaaS platform, only its provider

can update or upgrade the platform. Whether tenants who

subscribe it do customization on it or not, there will be no

change on the original component. But whether a tenant can

or cannot do customization on it needs permission. For com-

ponents reusability, application components are decomposed

on SaaS platform as workflows and service components. A

rented component can be a composite one. Once one of a

composite component’s sub-components is upgraded, this

whole composite component should also be upgraded for its

every renter. From the system view, application components

renting is a component’s multiple composition case.

To solve the access control problems in above two cases,

two metadata tables should be added to record the renting

history of decomposed data space or composite application

components. They are:

• RCompositeInfoTable(r_id, r_parent, r_owner),

records the composition or decomposition relations of

resource components and data;

• RRenterTable(r_id, granterAA, granteeAA, permis-

sions, timeLimit), records the resource permissions that

the granter AA gives to the grantee AA with time limit.

3.6 Sharing strategies among tenants

As described above, in TMS-ARBAC model, two tenants (in-

cluding a tenant and its subtenant) are strictly isolated from

each other by their AAs. But in STA SaaS, sharing relation-

ships between two tenants can be categorized as: tenant-

subtenant relationship (T -ST), tenant-tenant relationship (T -

T) and subtenant-subtenant relationship (ST -ST). Sharing

strategy for each situation is given below.

1) T -ST sharing strategy

The T -ST sharing relationships are hierarchy sharing be-

tween a tenant and its subtenants. Five sub-models of two-

level STA models (TSTA) [1] are defined to describe the

sharing content between tenants and subtenants, which are:

server-customers model (SC-TSTA), software-data model

(SD-TSTA), master-slaves model (MS-TSTA), slave-masters

model (SM-TSTA) and partner-partners STA (PP-TSTA). Us-

ing these sub-models, the resource sharing properties be-

tween a tenant and its subtenants are concluded in Table 3.

As shown in Table 3, for application components sharing,

“customization” and “upgrade propagation” permissions are

required in each STA model. Both of them should be set as

default AppComponent sharing properties in MTA and STA

SaaS. AppComponents’ “sharing mode” is related to service

component implementation for each renter. From the access

control view, it is more related to how user authentication

information passes among different sub-components or in-

stances.

In TMS-ARBAC model, TR〈ai, ai j, P〉 in the AA-tree is

used to describe the parent-child resource hierarchy sharing

relationships. The permission set P tells us what are shared

between the parent-child tenants. The sharing between a ten-

ant and its subtenants is realized by assigning shared re-

sources and related permissions to the AA of the grantee.

The sharing from parent to child AA is inheritance sharing,

built with two operations: CreateAutonomousArea and Mod-

ifyAutonomousArea. The sharing from child to parent AA

is the child’s privacy sharing, implemented by ModifyAu-

tonomousArea.

Automatic permission assignment operations between AA

ai and its sub-AA ai j are described as follows.

• DSPAssignFromTtoST(ai, ai j, ds, Pi), which ai j is

given an isolated data space ds with permission Pi.

The effect of the operation is:

ai j.P ← ai j.P ∪ {Pi}, where Pi ⊆ {(r_idi j, ds),R, I,U,

Table 3 Sharing properties between parent-child tenants in TSTA models

Sharing properties SC-TSTA SD-TSTA MS-TSTA SM-TST PP-TST

AppComp sharing T → ST T → ST T → ST T → ST T ↔ ST

Sharing mode one instance one instance multiple instances multiple instances multiple instances

Customization ST ST ST ST T and ST

Data sharing No T → ST T → ST T → ST T ↔ ST

Upgrade propagated Yes Yes Yes Yes Yes

12 Front. Comput. Sci.

D, TR, T I, TU, T D}, where r_idi j is the resource id of

ai j is not allowed to have its own sub-AA, then Pi ⊆
{(r_idi j, ds),R, I,U,D};
insert into RCompositeInfoTable with tuple

(r_idi j, r_idi, r_idi.Owner), where r_idi is the resource

id of ds’s parent data space;

insert into RRenterTable with tuple (r_idi j, ai, ai j, Pi,

timeLimit), ai j becomes the current last renter of r_idi j.

Note: though ai’s permissions on r_idi still exist, ds is

“locked” by ai j’s encryption.

• DataSharePAssignFromTtoST(ai, ai j, t_name, key_

range[m, n], Pi), which allows ai j to access ai’s table

t_name within key_range[m, n] with a permission set

Pi.

ds← dataS pace(t_name, key_range[m, n]);

ai j.P← ai j.P ∪ {Pi}, where Pi ⊆ {ds,R, I,U,D,

TR, T I, TU, T D}. If Data (t_name, range[m, n]) is ai’s

private data, then Pi ⊆ {ds,R, I,U,D}.
• DataSharePAssignFromSTtoT(ai, ai j, t_name, key_range

[m, n], Pi), which allows ai to access ai j’s table t_name

within key_range[m, n] with permission Pi.

ds← dataS pace(t_name, key_range[m, n]);

ai.P ← ai.P ∪ {Pi}, where Pi ⊆ {ds,R, I,U,D}.
Data(t_name, range[m, n]) is ai j’s private data.

• AppCompSharePAssignFromTtoST(ai, ai j, acp, Pi),

which allows ai j to rent ai’s application component

acp with a permission set Pi.

ai j.P ← ai j.P ∪ {Pi}, where Pi ⊆ {acp,Us, S , TUs,

TS }. If acp is ai’s private application component, then

Pi ⊆ {acp,Us, S };
insert into RRenterTable with tuple(acp_id, ai, ai j,

Pi, timeLimit), and acp_id is the resource id of acp.

Every renter of each application component is recorded

here, which helps components’ upgrade and revocation.

• AppCompSharePAssignFromSTtoT(ai, ai j, acp, Pi),

which allows ai j to share its application component

acp with ai with a permission set Pi.

ai.P← ai.P∪{Pi}, where Pi ⊆ {acp,Us, S }. The acp is

ai j’s private application component;

insert into RRenterTable with tuple (acp_id, ai j, ai,

Pi, timeLimit), and acp_id is the resource ID of acp.

2) T -T sharing strategy

In MTA and STA environment, tenants from different par-

ents can unite a federal to share resources with each other,

which means users of tenant Ti can span the isolation be-

tween tenants to access another tenant T j’s resources. We as-

sume that a federal does not need to create special compo-

nents for its all members. Or the federal will become a new

tenant. So, we narrow down the federal sharing relationships

to role sharing. In TMS-ARBAC model, T -T sharing is sup-

ported by federals and O_Rs, with CreateFederal, JoinFederal

and ShareOuterRole operations. Whether a federal is a data-

sharing or appComponent-sharing case is decided by the O_R

definition.

Federal chairman, which is also an AA elected by other

federal members, is responsible for the management of fed-

eral members and O_Rs, without interfering in any AA. The

granter AA decides which role can be an O_R. And which

user will be assigned the O_R is decided by the grantee AA

with constraints Fc. Which O_R can be assigned to which

specific AA or all federal members is defined with federal

constraints Fc.

3) ST -ST sharing strategy

ST -ST refers to inside-tenant relationships. In our real life,

there are branches of one company or organization having

the same application requirements, but working on different

regions.

If the sharing resources between two subtenants are their

customized application components or their isolated data,

which is a special case of T -T sharing, the ST -ST sharing

strategy is federal sharing. The only difference between ST -

ST federal and T -T federal is that in ST -ST federal their

parent-AA is the chairman, but in T -T federal the chairman

is also a member of the federal.

If not, the two subtenants must share resource directly from

their parent. This can be easily solved by T -ST sharing strat-

egy with inheritance sharing of the same data space or the

same application components of their parent.

The difference between the federal sharing (FR in AA-

tree) and parent-child sharing (TR in AA-tree) is that: the

latter takes the granularity of permission, so that the adminis-

trators of the receiver AAs can combine the permissions into

different roles flexibly to meet the access control requirement

of the organizations; so that local users can only access to

outer resoarnes through specifecd roles with strict constraints

to achieve more reliable security.

4 Evaluation of TMS-ARBAC

4.1 Security analysis of TMS-ARBAC

Considering an AA as a distributed autonomous organization

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 13

in the cloud, the sharing security among AAs turns to be a

secure interoperation problem [20–22] in a STA SaaS envi-

ronment.

From the access control view, the security attributes of a

system are expressed with an access control list (ACL) [23].

The security aspect of interoperation is represented by ac-

cess rights across AAs. There are two kinds of interoperation

among AAs, TR and FR, in TMS-ARBAC. The AA secure

interoperation problem can be defined as: given the access

control lists for each AA in a MTA and STA SaaS system,

an interoperation TR and/or FR, which is a set of access con-

trol entries where, for each entry, the subject and the object

belong to different AAs. The general problem is to decide if

there exists any access that is not permitted in one AA but is

permitted as a result of interoperation, investing and remov-

ing security violations while maintaining a reasonable level

of interoperation.

According to TMS-ARBAC model, each AA has an ACL

= {∪IP,∪PP,∪O_R}, denoting a set of IP given by its parent-

AA or sub-AAs, its PP and O_Rs given by the federals it

joins. We define (ai, a j, p/o_r) as an access from AA ai to a j’s

resources through some sharing mode (permissions or O_Rs).

Two kinds of security interoperation problems should be ad-

dressed: hierarchy sharing interoperation and federal sharing

interoperation.

With FR and TR, class interoperations in an AA-tree are

shown in Fig. 5.

Fig. 5 Interoperations in the AA-tree. (a) Hierarchy sharing access in an
AA-tree; (b) hierarchy sharing and federal sharing access; (c) two federals
sharing access with one same AA

• Security analysis of hierarchy sharing interoperation

among AAs

Assume an AA ai has ACLi = {∪IPi,∪PPi,

∪O_Ri}, while ∪O_Ri = ∅.

Case 1 If ∪IPi � ∅, PPi = ∅, all resources that can be ac-

cessed by ai are inherited from its parent-AA or shared by its

sub-AA. Class ∪IPi by resource types are as follows.

Case 1-1: data spaces exclusive access permissions from

parent to child AA (that is the data space allocating case). The

owner of such data space (denoted as dsi) is changed from its

parent-AA to ai. So, it becomes an exclusive resource of ai.

If ai has a subtenant ai j, and allocates some free data spaces

(denoted as dsi j) of ai to ai j, then ai.DS = dsi − dsi j, which

is still an exclusive resource of ai.

Case 1-2: data sharing permissions between parent-child

AAs. That is, ai’s access to the data owned by its parent-

AA/sub-AA is a permitted access. If such data are secret data

of the granter-AA, the grantee-AA cannot re-grant them to

other AAs.

Case 1-3: AppComponent sharing permissions between

parent-child AAs. If the AppComponent is a public compo-

nent without secret or personal information, every AA can

use it with permissions. If not, only an individual instance of

it will be given to ai. No one but only the component owner

can modify the original components. No AA can get others’

component privacy. If such component is a customized com-

ponent of the granter-AA, the grantee-AA has no right to re-

grant it to others.

So, ai’s access to the resources shared, no matter they are

private or not for its parent-AA or sub-AA, is either exclu-

sive or authorized. For ai’s parent-AA, the resources it gives

to its subtenant are either shared with its permissions or ex-

clusively allocated to ai. No security violations exist in both

ai and its parent-AA.

Case 2 If ∪IPi � ∅,∪PPi � ∅, ai has its own private

data or customized application components. Here leave inter-

nal AA administration aside. ai either monopolizes the pri-

vate resources or shares some of them with its parent-AA or

sub-AA (as described in Case 1-2 or 1-3) with permissions.

Constraint 6 is used to prevent privacy leaking outside ai and

its authorized relative-tenants.

Case 3 Considering an AA-tree with height =3, as shown

in Fig. 5(a), the interoperation between parent-child AAs is

all implemented by granting permissions of one AA to the

other. Unlike roles, permissions have no hierarchies or par-

tial ordering relation. No extra access path can be created for

cross parent-child AAs’ access.

Meanwhile, shared resources (except secret or private re-

sources) can be conditionally transmitted throughout the

14 Front. Comput. Sci.

whole AA-tree. For example, as shown in Fig. 5(a), ai j1

can share ai j with its data access permission p, denoted as

(ai j, ai j1, p). Supposed such data is not secret but worthy,

(ai, ai j, p′)(p′ ⊆ p), and aik can inherit part of such data from

ai(aik, ai, p′′)(p′′ ⊆ p′), etc. This demonstrates that resources

can be flexible shared in an AA-tree (a hierarchical organiza-

tion), satisfying the application requirement of the STA SaaS.

However, we find a kind of security violations in such hi-

erarchy sharing interoperation. Using above example, if what

are shared are the same data stored in the same data space

(which means no data copy), then ai and aik can access the

data of ai j1 without its authorization. But such data shared

are not secret, or the authority transmission will be forbid-

den with Constraint 6. Likewise, an AppComponent can also

be cross-level shared without direct permissions. But such

component can only be public, without private information

leaking. We can also use mandatory access control or trust

domain management to avoid such kind of security violation.

• Security analysis of federal sharing interoperation among

AAs

Assume AA ai has ACLi = {∪IPi,∪PPi, ∪O_Ri}, while

∪O_Ri � ∅, which means ai may join several federals to

share resources of other AAs.

Case 4 Assume there is only one federal in an AA-tree, as

shown in Fig. 5(b), a federal f1 has two AAs, ai j and aik, with

an access (ai j, aik,O_R). If (ai j, ai, p1) and (ai, aik, p2) (p1 ⊆
p2) exist (the same case as the above security violation), as-

sume that O_R and p1 are both assigned to one user u in ai j,

then u has two ways to access aik. Can both O_R and p1 be

assigned on one resource of aik?

No. Because in this case, ai j and aik are siblings, what shar-

ing between them with federal sharing mode must be secret,

as defined in Section 3.6 3) ST -ST sharing strategy. But the

other access control list is an authority transmission way. The

sharing resources must not be secret or private. So, there is

no security interoperation violation in this case.

Case 5 If we add a new access (aik, ai j,O_R′) in f1, may

there be a security violation in f1?

No. According to Constraint 2, the partial order on O_Rs

is cut off both in ai j and aik. No access loop can be created

between aik and ai j. And the user to whom the O_R is as-

signed is decided only by the grantee AA with O_R assign-

ing constraints in f1, to avoid the O_R to be assigned to any

untrustworthy user.

Case 6 Assume there are two federals with one same AA

in an AA-tree, as shown in Fig. 5(c), federal f2 with fed-

eral members ai j1 and ai j2, f3 with ai j2 and aik1. If accesses

(ai j1, ai j2,O_R1) and (ai j2, aik1,O_R2) individually exist in f2

and f3, may there be an access from ai j1 to aik1 derived?

Yes. Though with Constraints 3 and 4, ai j2 cannot assign

O_R2 as an outer role to ai j1, but if ai j2 can read aik1’s data

and write them down in its own data space, then it can trans-

fer them to ai j1 with O_R1. We use Constraint 5 to avoid di-

rect transmission from aik1 to ai j2 then to ai j1. But this illegal

access may still implicitly exist. We can use separation of

duties, such as Chinese Wall security policy, and trust man-

agement to deal with such violation problem.

4.2 The characteristics of TMS-ARBAC

The typical characteristic of TMS-ARBAC is to reconcile the

demand of tenant isolation and resource sharing in STA SaaS.

1) The isolation and autonomy of every tenant

• Each tenant has its isolated work area AA. Resources,

roles and users are all restricted in such work area. So,

an AA builds a strict isolation wall from other tenants.

• System-level and tenant-level administrations are

clearly separated. The system administrators care more

about system resources allocation and management, but

tenant administrators care about how to use their own

resources. The SaaS system is also an AA. Each AA

has its CAR and CSO. Different job functions can be

clearly defined and executed in different AAs.

• Each tenant establishes its access control policies with

application requirements in its AA. System administra-

tors cannot interfere with a tenant’s internal manage-

ment. A tenant cannot interfere with its subtenants’ in-

ternal affairs. Only the resource allocation and revoca-

tion permissions obey the AA hierarchies.

2) Resource sharing for tenants

• Federal sharing Subscribed resources are shared be-

tween unrelated tenants or sibling tenants in one fed-

eral. The ownerships of such resources are not changed.

Security is ensured by federal trust and O_R constraints.

• Inheritance sharing System resources inherit from

parent to child tenants. The ownership of such resource

may be changed from the parent-tenant to the subtenant,

such as the data space re-allocation case. Once the own-

ership is changed, the former owner loses its authority

to the resource till the revocation of the subtenant. If not

changed, the grantee has no right to update the original

resources.

• Privacy sharing between tenants Private resources,

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 15

including application customization and secret data, are

privately shared between parent-child tenants or sibling

tenants, which is a kind of private resource reuse. Pri-

vacy ownership cannot be changed. Privacy access priv-

ileges can only be issued by its owner. The grantees are

forbidden to spread others’ privacy, which keeps secret

from spreading.

The model function comparison between TMS-ARBAC

and four typical MTA access control models (H-RBAC [8],

T-arbac [9], access control on EET [4] and Salesforce6) are

shown in Table 4.

Table 4 STA and MTA access control models comparison

Model A B C D E F

Function separation between system administra-
tors and Tenants

� � � � � �

Tenant self-management � � � � � �

Tenant creation by its parent tenant � × × � � �

Subtenant self-management � × × × � /

Roles restricted in tenant scope � � � � � �

Tenant resource isolation � � � � � �

Resource federal sharing between tenants � / / � / �

Resource inherited between parent-child tenants � × × � / �

Subtenants do re-customization � / / × / �

Privacy sharing between tenants � × × × × /

Note: A = TMS-ARBAC; B = H-RBAC; C = T-arbac; D = EET access con-
trol; E = N-RBAC; F = Salesforce security; � = support; × = not support; /
= not mentioned

From the comparison above, TMS-ARBAC and the Sales-

force security solution are the best to satisfy the STA ac-

cess control requirement. But Salesforce only focus on the

CRM field; and it handles MTA and STA in its special way

on Force.com. TMS-ARBAC treats each subtenant as au-

tonomous individual, and handles various sharing relation-

ships with loose-coupled tree structure, which is a generic,

flexible and decentralized model that can be easily applied to

cloud environment.

This model can also be used on other system environments

besides cloud, only if the environment has multiple users,

numerous resources (e.g., service, application components,

and/or data), and has the access control requirement to let

each user or user group exclusively own some resources, cus-

tomize its own application and/or flexibly share some single

resource or resource package with others.

5 A case study

This paper applies the TMS-ARBAC model to the access

control of a geographic e-Science data and tools sharing

cloud platform based on EasySaaS.

1) The geographic e-Science society

This society holds e-Science data from various geographic

areas, including geo-data, weather data, hydrologic data and

geological disaster data. The organization of such geographic

e-Science society is shown in Fig. 6.

Fig. 6 The geographic e-Science society organization

Each sub-society is an independent organization or enter-

prise, which may have hierarchical branches, divided as one

national headquarter, several province-level departments and

city-level departments. Different from above sub-societies,

the geo-disaster research center is divided by the job func-

tions of departments, such as: data collection department,

data analysis department and disaster prediction department.

Each sub-society has its corresponding data services, in-

cluding regular data services (such as data upload, download

and cleansing, etc.) and special services (such as vector data

slicing algorithms and various data mining algorithms).

2) Resource isolation and sharing requirements

• Isolation requirements

I-1: different research fields or sub-societies are inde-

pendent enterprises or organizations; the geo-disaster

research center is an independent organization too.

I-2: in a sub-society, such as in the geo-society, each

province-level branch is an autonomous entity, which

owns several city-level sub-branches with similar job

functions distributed in different area.

I-3: every sub-society, branch or sub-branch has its own

data space.

• Sharing requirements

S-1: common components global sharing. Such as data

upload, and download services are shared in the whole

society.

S-2: downward application components sharing. In one

6) Designing record access for enterprise scale. https://twitter.com/ salesforcedocs, 2015

16 Front. Comput. Sci.

sub-society, the national headquarter may share its ap-

plication components with its province branches, and a

province branch may share its components with its city

branches. Service customization in national-level and

provincial-level is permitted.

S-3: sibling branches. Two sibling branches (province-

level or city- level) may have similar business routines,

sharing the similar service components with their own

customization.

S-4: upward data sharing. Each branch submits its data

to its upper department, e.g., a city-level department

submits its data to the province- level department it be-

longs to, and a province-level department submits its

data to its national-level department.

S-5: federal data sharing. The geo-disaster center can

gather science data from different research fields for

geo-disaster analysis and prediction. And its research

results can be published to the related fields.

From the view of S-2 and S-4 sharing requirements, this

geographic e-Science SaaS system is a slave-master STA

case.

3) Access control strategies for the geographic e-Science

SaaS cloud

According to above application requirements, Fig. 7 shows

the geographic e-Science SaaS cloud infrastructure. The ac-

cess control strategies are given out as follows.

Fig. 7 The geographic e-Science SaaS cloud infrastructure

• Isolation strategy: using AAs to isolate organiza-

tions/enterprises; in one AA, using roles assignments

to limit user’s working zone.

For I-1, each sub-society is built as a tenant in the SaaS

platform. Corresponding AA is given to each tenant:

Geo-AA, Hydr-AA, Weath-AA, etc. The geo-disaster

center is also a tenant: Disa-AA. Roles are assigned

to the national headquarter managers of an AA to split

their working zones.

For I-2, each province-level branch in one sub-society

is built as a subtenant. For example, different province-

level departments are subtenants of Geo-AA. Their

AAs are denoted as: GP1, GP2, etc.

For I-2 and I-3, each sub-branch of a province-level

branch can also be defined as a subtenant. But since

these city-branches may have the same application

logic, only their data space needs to be separated. This

is a traditional MTA case. We use roles and users as-

signments to share service components and separate

data for such sub-sub-branches.
Disa-AA has different branches with different job func-

tions, but every branch may use the same data. Since

few application components sharing exist between

branches, such branches are not defined as subtenants,

but using roles and users assignments to control their

access to service components.

• Sharing strategies
For S-1, a public resource mark is given for global shar-

ing. For every tenant to access the common components

freely, a special mark “PUBLIC” is given to the re-

source’s access_Property.
For S-2, the T -to-ST application component shar-

ing strategy is applied. Proper application components

are shared from an AA to its sub-AAs: AppComp-

SharePAssignFromTtoST (ai, ai j, acp, Pi);

For S-3, the ST -to-ST federal sharing strategy is used

for sharing between sibling tenants. Customized ap-

plication components are shared between sibling sub-

tenants: ShareOuterRole (ai.CS O, ai j, aik, ai j.r, cc, f),

where ai j.r is a set of roles to access the customized

components. City-level branch components sharing can

be realized by roles assignments.

For S-4, the ST -to-T data sharing strategy is applied.

Data components are shared from sub-AAs to their par-

ent AA: DataSharePAssignFromSTtoT(ai, ai j, t_name,

key_range[m, n], Pi).

For S-5, the T -to-T federal sharing strategy is used for

sharing between unrelated tenants. Federals are created

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 17

between Disa-AA and other sub-society AAs. O_Rs

are given from sub-society AAs to Disa-AA for data

sharing and geographic disaster analysis and prediction:

ShareOuterRole(c, ai, a j, ai.r, cc, f), where ai.r is a set

of O_Rs for Disa-AA to access their data; and Disa-AA

also creates O_Rs for other sub-society AAs to access

to its research results.

4) Access control sub-system design in the geographic e-

Science SaaS cloud platform

Fig. 8 E-R diagram design for access control in STA SaaS

• Access control database design

The metadata database schema for general access control

in STA SaaS is given in Fig. 8.

• Access control module design

There are two kinds of authorization: system authorization

and user authorization in MTA and STA SaaS platforms.

System authorization creates AA and the entities in an

AA and defines authorization scope for each authorized enti-

ties, such as users, roles (RR and AR), permissions (AP and

P), and resources. User authorization is the user assignments

granted by the ARs in an AA. In an AA, a tenant manager

is different from a user. The former can subscribe compo-

nents from other AAs and do customization, but the later can

only use the components. So, their permissions to application

components are different.

As shown in Fig. 9, when a user enters the system, its user-

name and password are sent to the authentication center. A

tag with the user type, authority scope and role sets informa-

tion is returned for the user’s related resource configuration

in the system.

Fig. 9 The access control workflows in the geographic e-Science SaaS

There are three kinds of users in the system: security ad-

ministrators, application managers and application users. Ev-

ery user has his own work zone. Role sets tell what the user

can access in his work zone.

Security administrations and application customization are

added into the SaaS platform as administration and cus-

tomization services, deployed on the service bus with regular

application services and resource services.

According to the user type, a user will be delivered to cor-

responding services. Authority scope decides the place where

AA the user works. Different resources and permissions are

configured for the user according to their role sets.

The access control module of the geographic e-Science

SaaS platform is given out in Fig. 10.

A security management center is built to manage the access

control of the whole platform, including several distributed

authentication servers, access control servers, dynamic con-

straint control servers and an access control database center.

Service bus scheduler provides corresponding services and

other resources with the roles and permissions of the user.

For system scalability, tasks can be divided by different roles

(such as RR, AR and CAR), different permissions (such as P,

AP and CAP) and different AA scopes. Parallel execution is

provided to ensure system performance and efficiency.

6 Conclusion and future work

This paper analyzes the access control requirements of MTA

18 Front. Comput. Sci.

Fig. 10 The access control module design (Req: request)

and STA SaaS platforms, emphasizing the isolation and shar-

ing issues among tenants, and comes up with a formal defini-

tion of a new TMS-ARBAC model. AAs are used to isolate

each tenant or subtenant, and restrict roles and users to their

work zones in an AA. Each tenant is self-managed and can

do customization easily with the variation of application re-

quirements. An AA-tree is a loosely-coupled and highly ex-

tensible structure, describing the tenants’ hierarchy and var-

ious sharing relationships. For the access control on service-

oriented SaaS, “black area” problem in sub-AA configura-

tion, resource and permission category definitions and differ-

ent sharing properties in different STA modes are also consid-

ered. General authorization operations on an AA and differ-

ent resource sharing strategies are given and implemented on

a geographic e-Science SaaS cloud platform to demonstrate

the model.

Currently, we are working on various access control strate-

gies for different STA models. Future research work will

focus on the scalability and distribution characteristics of

MTA and STA SaaS system to improve efficiency of autho-

Qiong ZUO et al. Tenant-based access control model for MTA and STA in SaaS 19

rization and authentication.

Acknowledgements This paper was based on projects sponsored by the
State Scholarship of the China Scholarship Council.

References

1. Tsai W T, Zhong P. Multi-tenancy and sub-tenancy architecture in

Software-as-a-Service (SaaS). In: Proceedings of the 8th IEEE Inter-

national Symposium on Service Oriented System Engineering. 2014,

128–139

2. Sandhu R S, Coyne E J, Feinstein H, Youman C. Role-based access

control models. IEEE Computer, 1996, 29(2): 38–47

3. Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for role-

based administration of roles. ACM Transactions on Information and

System Security, 1999, 2(1): 105–135

4. Yaish H, Goyal M. Multi-tenant database access control. In: Proceed-

ings of International Conference on Computational Science and Engi-

neering. 2013, 870–877

5. Zhong H, Wang W, Yan G, Lei Y. A role-based hierarchical adminis-

trative model. In: Proceedings of International Conference on Compu-

tational Intelligence and Software Engineering. 2009, 1–4

6. Bien N H, Thu T D. Hierarchical multi-tenant pattern. In: Proceedings

of International Conference on Computing, Management and Telecom-

munications. 2014, 157–164

7. Li D, Liu C, Wei Q, Liu Z, Liu B. RBAC-based access control for

SaaS systems. In: Proceedings of the 2nd International Conference on

Information Engineering and Computer Science. 2010, 1–4

8. Li D, Liu C, Liu B. H-RBAC: a hierarchical access control model for

SaaS systems. International Journal of Modern Education and Com-

puter Science, 2011, 3(5): 47–53

9. Cao J, Li P, Zhu Q, Qian P. A tenant-based access control model T-

Arbac. Computer Science and Application, 2013, 3: 173–179

10. Xia L, Jing J. An administrative model for role-based access control

using hierarchical namespace. Journal of Computer Research and De-

velopment, 2007, 44(12): 2020–2027

11. Tang B, Sandhu R, Li Q. Multi-tenancy authorization models for col-

laborative cloud services. In: Proceedings of International Conference

on Collaboration Technologies and Systems. 2013, 132–138

12. Tang B, Li Q, Sandhu R. A multi-tenant RBAC model for collabora-

tive cloud services. In: Proceedings of the 11th Annual International

Conference on Privacy, Security and Trust. 2013, 229–238

13. Wang B, Huang H, Liu X, Xu J. Open identity management framework

for SaaS ecosystem. In: Proceedings of IEEE International Conference

on e-Business Engineering. 2009, 512–517

14. Tsai W T, Huang Y, Shao Q H. EasySaaS: a SaaS development frame-

work. In: Proceedings of IEEE International Conference on Service-

Oriented Computing and Applications. 2011, 1–4

15. Masood R, Shibli M A, Ghazi Y, Kanwal A, Ali A. Cloud authoriza-

tion: exploring techniques and approach towards effective access con-

trol framework. Frontiers of Computer Science, 2015, 9(2): 297–321

16. Krebs R, Momm C, Kounev S. Architectural concerns in multi-tenant

SaaS applications. In: Proceedings of the 2nd International Conference

on Cloud Computing and Service Science. 2012, 426–431

17. Maenhaut P J, Moens H, Decat M, Bogaerts J, Lagaisse B, Joosen W,

Ongenae V, De Truck F. Characterizing the performance of tenant data

management in multi-tenant cloud authorization systems. In: Proceed-

ings of IEEE/IFIP Network Operations and Management Symposium.

2014, 1–8

18. Weissman C D, Bobrowski S. The design of the Force.com multitenant

Internet application development platform. In: Proceedings of ACM

SIGMOD International Conference on Management of Data. 2009,

889–896

19. Wei S, Yen I L, Thuraisingham B, Bertinod E. Security-aware service

composition with fine-grained information flow control. IEEE Trans-

actions on Service Computing, 2013, 6(3): 330–343

20. Gong L, Qian X L. The complexity and composability of security in-

teroperation. In: Proceedings of IEEE Symposium on Research in Se-

curity and Privacy. 1994, 190–200

21. Gong L, Qian X L. Cumputational issues in secure interoperation.

IEEE Transactions on Software Engineering, 1996, 22(1): 43–52

22. Shafiq B, Joshi J B D, Bertino E, Ghafoor A. Secure interoperation in a

multi-domain environment employing RBAC policies. IEEE Transac-

tions on Knowledge and Data Engineering, 2005, 17(11): 1557–1577

23. Lampson B W. Protection. ACM Operating Systems Review, 1974,

8(1): 18–24

Qiong Zuo is a lecturer of the School

of Computer Science and Technology,

Huazhong University of Science and Tech-

nology, China and was a visiting scholar in

Arizona State University, USA from 2014

to 2015. Her research interests are database

system management, cloud computing and

big data management.

Meiyi Xie is a lecturer of the School

of Computer Science and Technology,

Huazhong University of Science and Tech-

nology, China. Her research interests are

in information security, including database

security, intrusion tolerance, cryptography

and privacy-preserving data publishing.

Guanqiu Qi received his PhD in Schools

of Computing, Informatics, and Decision

Systems Engineering, Arizona State Uni-

versity, USA in 2015. His research interests

are service-oriented architecture, Software-

as-a-Service, Testing-as-a-Service and big

data testing.

20 Front. Comput. Sci.

Hong Zhu is a professor of School of Com-

puter Science and Technology, Huazhong

University of Science and Technology,

China. Her research interests are in data

security, including database security, cryp-

tography and privacy-preserving data pub-

lishing.

