
Using architectural constraints to drive software
component reuse while adding and enhancing features

In a global software engineering team

Susmita Vaikar, Madan Mohan Jha
Siemens Technology and Services Pvt. Ltd.

Pune, India
susmita.vaikar@siemens.com, madan.jha@siemens.com

Felix Brunner
Siemens Schweiz AG,

Zug, Switzerland
brunner.felix@siemens.com

Abstract—we develop integrated systems that consist of software
and hardware components with a lifespan ranging from 10-15
years. During the life span of these systems, market needs change
significantly due to technological advancements, environmental
needs, and cultural preferences. Cost of change of software vis-à-
vis hardware is a big driver which often leads to the introduction
of change to software for meeting evolving market expectations.
The biggest advantage of software-‘easy adaptability’-is also its
biggest drawback, because it makes software susceptible to
change. Hence, designing software is extremely challenging
specially in Globally Distributed Software Development (GDSD).
In this practice paper, we share our approach of leveraging the
constraints of software architecture, the challenges
encountered and lessons learnt which enabled higher software
reuse when adding and enhancing features while reducing overall
costs and shrinking time to market for a Globally Distributed
Software Development team.

Keywords—Software Re-usability; Architectural Constraint;
Architectural Challenges; Tradeoffs; Globally Distributed Software
Development;

I. BACKGROUND
The integrated systems we develop are continually

becoming more software intensive, whereas in the past they
were more hardware intensive. Furthermore, since several
years, our systems have been evolving while growing both in
size and complexity.

Software architecture therefore plays a leading role and it
has become a central artifact in the life cycle of our systems,
because they provide the various stakeholders with an
overview of the organization of these systems. Software
architecture is de�ned as “the set of structures of a software
system, necessary for reasoning about it…(and) is composed of
software entities, the relations between them as well as
properties of these entities and relations” [1]. Software
architecture makes both the components of a software system
and the dependencies between these components explicit [2].
By the year 1990 the term “software architecture” began to
attract substantial attention both from the research community
and from the industry [3]. The challenges to create evaluate
and maintain these huge systems have greatly stimulated the
growth of the field of architecture. The importance of software
architecture for large and complex software systems can be
explained by the following reasons [4].

• Mutual communications: Most systems stakeholders
can use software architecture as a basis to understand
the system, form consensus, and communicate with
each other.

• Early design decisions: Software architecture is the
earliest artifact that enables the priorities among
competing concerns to be analyzed. Such concerns
include tradeoffs between functional and non-
functional aspects such as performance, security,
maintainability, and modifiability. Additional
competing concerns can be cost of current
development vs. future maintenance costs or functional
completeness or tradeoffs between technical and non-
technical aspects such as time to market or budget.

• Transferable abstraction of a system: The model of
software architecture is transferable across systems. In
particular, it can be applied to other similar systems
and promote large scale reuse.

While software systems are evolving, architecture decisions
and principles need to be followed. Changing architecture
decisions is difficult and it requires a careful impact analysis
taking the reasons for past changes into account.. Therefore
documenting architecture decisions including the reasoning for
the decisions is an important activity in software development
processes [5]. Architecture constraints are among the most
important descriptions encountered in the documentation of an
architecture decision. [7]

An architecture constraint represents the speci�cation of a
condition which an architecture description must adhere to in
order to satisfy an architectural decision. Therefore architecture
constraints play an important role in design decisions and
architecture validation. When designing software architecture,
the decisions and constraints need to be connected to business
goals. Design decisions are often made for non-technical
reasons: strategic business concerns, meeting the constraints of
cost and schedule, using available personnel, and so forth [8].

2016 IEEE 11th International Conference on Global Software Engineering

2329-6313/16 $31.00 © 2016 IEEE

DOI 10.1109/ICGSE.2016.23

139

II. INTRODUCTION
Typically the lifespan of our integrated systems ranges from

10-15 years. During its life span a system passes through four
different phases (1) Introduction, (2) Growth, (3) Maturity, and
(4) Decline.

Market needs for integrated systems are changing

significantly due to environmental, cultural, and technological
advancements. The cost of change of an integrated system
depends on the lifecycle phase it is in. The growth phase for
our products is critical and challenging for two reasons: 1) the
product has to differentiate itself in the presence of intensified
competition that along with market requirements guide which
features need to be added to a product, 2) the product
undergoes a transition due to large inflow of requirements.

We work on a product line platform which is in growth
phase and developed across 3 continents (Europe, Asia, and
North America). We provide multiple applications based on
this platform and are continuously extending the scope of the
product line. Hence it is important to have a structure in place
which will act as a guideline for adding new features for all
teams across the geographies.

In the subsequent sections we will detail such a structure
along with challenges we faced and the lessons we learnt.

III. THE FOUR PILLARS
We designed a four pillar approach for using architectural

constraints to drive software component reuse while adding or
enhancing features. These four pillars are: (A) requirement
engineering analysis based on why vs. what, (B) Variant
analysis, an efficient approach for arriving best suitable design
option (C) Key architectural decisions and tradeoff analysis
for effective reuse, (D) Software component reuse plan.

A. Requirement Engineering:
For our product line requirement engineering is challenging

because requirements from different applications are analyzed
and platform requirements need to be derived. On the other
hand clear and valid requirements are a prerequisite for
systematic software design and development since errors at an
early stage propagate through the development process and are
difficult to resolve later. Requirements elicitation process deals

with ambiguity, informality, incompleteness and inconsistency,
in which the “knowledge” of the requirements is not clear [9].
Requirements can be classified as functional requirements
(FRs) and non-functional requirements (NFRs), e.g. reliability,
maintainability, and performance. These requirements are key
inputs to software architecture design [10]. We follow standard
requirement engineering processes which are (1) requirement
elicitation, (2) requirement analysis, (3) requirement
specification and (4) requirement validation.

1) Requirement elicitation: We document all the possible
inputs gathered from the market/key users and different
stakeholders. Because our product line is replacing a set of
legacy systems, these stakeholders include key-users and
product managers of these systems. The global nature of the
product also makes it necessary for requirements to come in
from different market segments.

2) Requirement analysis: In the analysis phase we do not
look to documented requirements in isolation but rather use
multidimensional inspection approach (see fig. 2). We
evaluate requirements against legacy and competitor systems,
study technological advancements, market needs, feasibility
and estimate cost of realization. Based on this initial analysis
we decide together with stakeholders which requirements are
likely to be realized in the next release and therefore need
further evaluation. These candidates go through a segregation
process where we study commonality and variability and
categorize the requirements based on whether they fall into the
scope of the platform or are unique to a single application or
product. Requirements with platform impact may be further
split into an application specific requirement and a derived
technical platform requirement. All platform requirements are
ranked according to business goals. Application requirements
that are assigned to a separate application team for further
analysis. Non-functional requirements are derived using a
scenario based approach.

3) Requirement specification: All the requirements which
have gone through a multi layered filtering process during

analysis are further refined in cooperation with stakeholders
and documented in the scope of the current platform release.

Fig. 2. Multidimensional Inspection

Fig. 1. Product Lifecycle [13]

140

4) Requirement validation: During validation phase we
check for requirement attributes such as completeness,
consistency, feasibility and testability.

B. Variant analysis:

 There can be multiple design options for a solution that
fulfills a certain requirement in a product line. Variant analysis
is the process of arriving at the most suitable design option by
collecting alternatives, documenting and evaluating them. The
evaluation can be done conceptually, but often requires
prototype development to evaluate feasibility, advantages, and
disadvantages of different design alternatives.
Clear documentation of the results of the variant analysis has
been useful to us in below mentioned cases:

• Multiple valid design alternatives can exist and a
decision of these options may be deferred. Here a
documentation of the analysis avoids the repetition of
design work during later project phases.

• Design options in a product line platform impact
design options for applications of the product line. A
design option can enforce constraints or it can serve as
a blueprint for product design. The architecture for a
product line may encompass a collection of different
alternatives for dealing with commonalities and
variations among products. Capturing these
alternatives and the rationale for each alternative
enables the team constructing a product to have a list
of potential solutions to choose from. [11]

The variants will have different advantages and constraints that
need to be evaluated in context of the existing architecture.
While doing variant analysis for a new requirement for our
product line the selection of a suitable variant is challenging. In
the global software development scenario multiple
stakeholders are involved for arriving to a decision. The use of
the following criteria supports the selection process:

• Quality attributes of the architecture and their rank. We
use a set of quality attributes documented in a utility
tree. For every quality attribute we have collected a set
of representative scenarios that are used while
assessing a design alternative.

• Ease of integration with the existing architecture and
its components. An architecture that encompasses a
large number of different design patterns can easily
become inconsistent an incomprehensible over time
A design that integrates seamlessly into the existing
architecture avoids the inevitable complexity

• The percentage reuse vs. build which influences the
time to market and maintainability. Reuse by adapting
existing components may increase the complexity of
an individual component design but at the same time
reduces the complexity of the overall architecture by
eliminating duplication associated with multiple
designs. On the other hand duplication may be
acceptable if the complexity of reuse is too high.

• Upcoming technological and easy adaptation of them.
While some technologies provide clear benefits and

their use in architecture is advantageous; the
indiscriminate inclusion of new technologies, may over
time, lead to an excessively complex architecture. We
track technologies at organizational level and govern
their use by a technology roadmap.

• Impact on applications built on top of the product line.
Consistency among design options and the resulting
simplicity is a decisive factor in making a product line
platform usable for application and product
development.

In specific cases variants may satisfy all the points above
but introduce some constraints on the requirements. In such a
case we may restructure a requirement in cooperation with key
stakeholders. Variant analysis requires striking a balance
between different options, their functional aspects related to an
individual requirement, and non-functional aspects related to
the overall architecture.

We had a case for the development of a new feature with
two design variants:

• A new feature developed from scratch resulting in the
development of an additional component.

• The new feature developed by reuse and adaptation of
existing components.

 The development from scratch had greater flexibility in
terms of accommodating the specifics of the requirement but
would have a higher time to market and higher future
maintainability costs. The complexity of adapting an existing
component was lower than the complexity of managing two
independent solutions.

 Reuse of existing components had limitations in
functionality but advantage of significant savings and quick
time to market. At this point we looked back at the
requirements to identify the points that were not fulfilled
because of the reuse and look back at the why vs. what analysis
to identify possible alternatives to achieve the goals which the
new requirement intended to realize. This resulted in
identification of constraints and new ideas for achieving the
goals. The requirements were modified in agreement of key
stakeholders.

C. Key architecture decisions and tradeoffs
Quality attributes of large software systems are greatly

influenced by the system’s architecture. These quality
attributes often have impact on each other and cannot be
analyzed in isolation. For example, modifiability and flexibility
affects performance, security affects usability, and
performance and complexity affects maintainability and
subsequently cost.

If we simply optimize for a single quality attribute, we may
ignore other attributes of importance. Even more significantly,
if we do not analyze for multiple attributes, we have no way of
understanding the tradeoffs made in the architecture—places
where improving one attribute causes another one to be
compromised. [12]

141

The architecture evolves with new requirements that are
introduced. Before taking a design decision, we considered
following key aspects

• Develop common understanding of the business goals,
the requirement, and design decisions among key
stakeholders. If the rationale behind design options and
decisions is explained to key stakeholders, they might
be more willing to compromise on functionality and
adjust requirements.

• Constraints, key tradeoff decisions of the existing
architecture. Past decisions are required to judge
whether a new design decision is consistent or leads to
inconsistency and design erosion.

• Compare existing architecture against the key quality
attributes of a new requirement. During variant
analysis, functional aspects often take precedence over
non-functional aspects. This typically leads to
unsatisfactory solutions with a penalty of high cost for
change at later stages.

• List of architectural sensitivity points. Knowledge
about the sensitivity points of the architecture is
needed to judge the risks of a design option and is a
decisive factor whether early prototyping is required to
validate a critical decision.

• Brainstorm on different approaches, rationale and their
impact. Stakeholders such as product managers,
requirement engineers or architects often believe that
there is only “one correct design option”.
Brainstorming helps opening up the solution space.

We followed the above mentioned steps in one of the case
where we had new requirement which imposed strict
conditions in terms of latency and the reuse candidate could
not satisfy the strict condition without change. We
brainstormed to identify and prioritize workflows with
acceptable latency limits along with trade-off analysis of
quality attribute for each workflow which helped in identifying
various solution options. While it was never in doubt that new
functionality could be provided and the additional flexibility in
the component should not decrease maintainability
significantly, prototyping was required to evaluate whether the
strict latency conditions could be fulfilled through redesign of
an existing component.

D. Software component reuse plan
It is important to use a structured approach when taking

reuse decisions. We are facing additional challenges due to the
fact that design teams are located at different sites, nevertheless
design decisions with global impact need to be coordinated.
Following are the highlights of our approach in assessing re-
use candidates.

• Component repository - We keep a global repository of
software components. This repository is constantly
updated and captures key aspects such as
responsibilities, non-functional characteristics,
assignment to layers and interfaces.

• Architectural and design tradeoffs – Decisions taken as
part of variant analysis including tradeoff analysis are
captured and documented in the repository.

• Technical debt and limitations – Design limitations and
technical debt are documented. On one hand this
serves as key input for a team whether a component
can be reused, on the other hand the level of reuse can
determine the priority to address limitations and
technical debt.

• Design and Product Quality Objective - Captures the
quality objectives for a component based on its
importance, e.g. the expected level of reuse or the
impact of failures.

IV. CHALLENGES
We applied the four pillars approach when we had to add
significant functionality to our product line platform and faced
the following challenges.

The requirements specification was incomplete. The
specification was mainly driven by existing solutions in legacy
products. Significant quality aspects such as performance and
usability where not covered. The commonality and variability
between different domains supported by our product line
platform where not sufficiently understood.

Product Management that is responsible for the requirements
specification had undergone recent personnel change and is
located in a different geographical location.

We addressed these deficiencies by inspecting legacy products
from all relevant domains. We asked specifically for customer
feedback on existing solutions and derived additional quality
requirements thereof. We organized regular meetings with
product managers to discuss the additional knowledge we
gained during the analysis. During these regular meetings we
often had to ask for the why vs. what as initial versions of the
requirements specification where focused on a single solution.

During the variant analysis we evaluated a component as a
reuse candidate because it provided the majority of required
functionality and promised significant savings in development
and therefore a faster time-to-market. The challenge was to
evaluate whether the existing component could be adapted to
satisfy higher performance requirements without introducing
unmanageable complexity.

We started with the development of prototypes to evaluate
whether the requirements could be met and assess the impact
of change on the existing code base. During this activity we
realized that we could not satisfy all requirements when re-
using an existing component. We had to introduce additional
constraints to the requirement. In order to convince product
management to accept a solution that does not satisfy the
original requirement and deviates from the functionality
provided in legacy products we had to explicitly state the
tradeoffs involved. Full functionality vs. a simpler solution
with significantly reduced software maintenance costs and
better performance. In addition we could demonstrate that
reuse would also lead to a more consistent overall product with
better usability.

142

V. LESSONS LEARNT
• Requirement engineering is an iterative person driven

activity. Evolves with further knowledge

• Requirements evaluated from all dimensions and
filtered in agreement with key stakeholders add value
to the product line.

• An architecture which is open to change and evolution
is beneficial for any product. Simple, understandable
and consistent architectures are inherently open for
change. Flexibility and the resulting complexity must
be limited to places where a concrete need for
variability exists.

• Every step in the process of architecture design and
implementation can and must be allowed to go back to
the requirements for reconsideration.

• Documentation of past and current design decisions
comes in handy

• Early use feedback proved helpful to uncover issues
with having a solution defined with too much legacy
system in mind

• Variant analysis is a very important step and provides
inputs for future variant analysis and component re-
use. Capturing of the results is needed to understand
and evaluate historical decisions when evaluating new
requirements.

• Architecture tradeoff analysis not only helps in
balancing the quality attributes at the time the
architecture is created but adds value for addition of
new requirements and evaluating the possibilities for
component re-use.

• Cautious evaluation of re-use candidate against the
quality attribute of the new business requirement helps
in creating re-usable prototype and also saves time and
cost

• Component re-use has multiple advantages like time to
market, consistency, learnability (reduce training
efforts) and especially maintainability, but care has to

be taken to avoid component re-use in cases of widely
diverging functional and more important non-
functional requirements.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,

3rd Edition. Addison- Wesley, 2012.
[2] Mourad Oussalah , Software architecture: Principles, techniques and

tools.By Copyright c 2013 John Wiley & Sons, Inc, Chapter 2
SOFTWARE ARCHITECTURE:ARCHITECTURE CONSTRAINTS,
p1

[3] R. Kazman. Software Architecture. In Handbook of Software
Engineering and Knowledge Engineering, S-K Chang (ed.). World
Scientific Publishing, 2001.

[4] P. C. Clements and L. M. Northrop. Software Architecture: An
Executive Overview. CMU/SEI-96-TR-003, 1996

[5] Philippe Kruchten, Rafael Capilla, and Juan Carlos Duenas. The
decision view’s role in soft- ware architecture practice. IEEE Software,
26(2) :36–42, 2009.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, and J. Stafford. Documenting Software Architectures, Views and
Beyond, Second Edition. Addison-Wesley, 2010.

[7] Chouki Tibermacine, Christophe Dony, Salah Sadou, and Luc Fabresse ,
Architecture Constraints as Customizable, Reusable and Composable
Entities

[8] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard
Lipson, Jeromy Carriere , The Architecture Tradeoff Analysis Method

[9] Jaya Vijayan and G.Raju , A New approach to Requirements Elicitation
Using Paper Prototype by

[10] Lin Liao ,From Requirements to Architecture: The State of the Art in
Software Architecture Design

[11] Felix Bachmann and Len Bass ,Managing Variability in Software
Architectures

[12] Rick Kazman, Mario Barbacci, Mark Klein, S. Jeromy Carrière ,
Experience with Performing Architecture Tradeoff Analysis

[13] http://www.referenceforbusiness.com/management/Or-Pr/Product-Life-
Cycle-and-Industry-Life-Cycle.html

143

