
An Approach for Enabling Effective and Systematic
Software Reuse

In a Globally Distributed Software Engineering Team that uses a Lean Development
Methodology

Roopa M. S., V. S. Mani
Siemens Technology and Services Pvt. Ltd.

Bangalore, India
roopa.ms@siemens.com, vs.mani@siemens.com

Stefan Halwas
Siemens AG

Nuernberg, Germany
stefan.halwas@siemens.com

Abstract—we share our experience in pursuing effective
software reuse in a globally distributed software engineering
team that uses a lean development methodology. The paper
outlines the journey, starting from recognizing the potential for
reuse, the steps taken to enable systematic reuse in lean projects,
the challenges faced, and the corrective actions taken to ensure
effectiveness of systematic reuse. The main lessons learned
include: i) identification of relevant domains for reuse, ii)
explicitly assigning responsibilities for reuse component
development, iii) providing enabling infrastructure, iv) defining
more rigorous software development processes for reuse
components, and v) establishing a centralized team for
developing reuse components. The results of our successful reuse
initiative including the significant increase in quality and a 12
percent reuse of total code developed have been presented.

Keywords—software reuse, global software engineering, lean
development methodology

I. INTRODUCTION
We share our experience in pursuing effective software

reuse in a globally distributed software engineering team
consisting of about 1,000 engineers distributed across locations
in North America, Europe, and Asia.

II. BACKGROUND

Our organization develops products in a highly regulated
industry. We are involved in developing hardware, software,
and firmware for multiple product families. Due to the nature
of the industry, these products have long lifecycles and are
expected to perform as specified for several decades. In
addition, the products must fulfill regulatory requirements that
entail conforming to industry standards. Hence, for our
products, quality is non-negotiable.

To ensure on-time delivery of high-quality software, the
team had switched to lean software development methodology
[1,2]. The team had been operating for over 10 years and had
addressed the issues encountered in global software
development [3,4].

III. INITIAL APPROACH FOR SOFTWARE REUSE

The potential of software reuse within our organization was
immediately recognized when we started software
development. At that time, reuse was achieved by merely
copying source parts from one project into another without any
governing process. We soon observed a rapid increase in
maintenance effort and growing incompatibility between
products. We realized that we required a systematic approach
to organize reuse [5]. Subsequently, we explored ways to
harness the potential of software reuse and proposed an
approach to the management with the following objectives: 1)
reducing development time and costs by reusing existing
components, 2) ensuring components with the same
functionality have identical behavior and look and feel, and 3)
increasing quality by systematic reuse of software components.

Our approach focused on four main areas: A) relevant
domains for reuse, B) organizing for reuse, C) funding, and
ensuring reuse, and D) enabling infrastructure and processes to
facilitate reuse.

A. Relevant domains for reuse
In view of the differences of handling reuse in the different

technical areas, we identified relevant reuse domains that were
aligned with the development technologies and product
platforms. These are listed in Table I. Our approach to
identifying domains shares the objectives of domain analysis
[6] while being pragmatic without the rigor of formalism.

TABLE I. RELEVANT REUSE DOMAINS

Reuse domains Focus topics
1 PC software PC platform based software components
2 Test and diagnostics Test tools, test scenarios, and test strategies

3 Embedded software Software components for embedded
platforms

4 Third-party software Handling, tracking, and organizing third-
party software

5 Hardware Hardware circuit blocks

6 Documentation Technical documentaton for different
products

7 Open source
software

Handling, tracking, and organizing open
source software

2016 IEEE 11th International Conference on Global Software Engineering

2329-6313/16 $31.00 © 2016 IEEE

DOI 10.1109/ICGSE.2016.14

134

B. Organizing for reuse
For each reuse domain, we identified members of the

different project teams, who were assigned dual roles – one for
project related tasks and another for reuse component related
tasks. We also defined two new roles: domain owner and
component owner. Domain owners are typically architects or
subject matter experts who are expected to drive reuse in their
domain. For their domain, they are responsible for: 1) assessing
proposals for both new reuse components and significant
enhancements in existing components, 2) defining a reuse
roadmap, and 3) the architecture of the reuse components. On
the other hand, component owners are responsible for: 1)
design, 2) implementation, 3) testing, 4) release, and 5)
maintenance of the reuse component (see Fig. 1).

C. Funding, and ensuring reuse
All activities were funded by the projects on a need basis

(see Fig. 1). Further, to ensure support for reuse, the architect
team was given a target to reduce costs explicitly through reuse
of software. In addition, it was an unwritten understanding that
the entire development organization would support the domain
owners and the component owners in achieving the goals of
reuse.

INITIAL APPROACH
All projects fund the development of reuse components based on usage

PROJECT 1 PROJECT 2 PROJECT 3 PROJECT N

Funding 1 Funding 2 Funding 3 Funding n

COMMON ARCHITECTURE TEAM

Fig. 1. Organizing for reuse in the initial approach

D. Enabling infrastructure and processes to facilitate reuse
To support systematic software reuse, we invested in

enabling infrastructure: 1) configuration management and
defect tracking of the reuse components, and 2) web portal to
share information related to reuse components, and to highlight
the benefits of the reuse initiative.

1) Configuration management, release management, and
defect tracking: We aligned the configuration management,
release management, and defect tracking of the reuse
components with the respective systems in the projects. This
allowed different projects to include the reuse components like
any other project component. In addition, defect handling was
adjusted for reuse purposes, so that all projects could report
and track the defects in reuse components.

2) Web portal: The web portal contained information
about the different reuse components, their features,
documentation links, release versions, and their component
owners. Thereby, all information required to decide whether or

not to reuse a component was readily available. The portal
reported the usage of reuse components. It also computed the
savings realized. Savings were computed as (number of
projects-1) � (half the total development cost of the
component). This computation was based on analysis of past
data, which showed that the overhead costs associated with
reuse were about half the development costs. See Table II.

TABLE II. COMPUTATION OF SAVINGS

No. of projects reusing component Savings (units)
1 0
2 500
3 1,000
4 1,500

Total cost of development of reuse component = 1,000 units

IV. EXPERIENCES AND ISSUES WITH THE INITIAL APPROACH

The initial approach was successful. We were able to
identify about 200 reuse components. Moreover, about 100 of
these were internally developed and used successfully. In
addition, team members across the organization actively
contributed to the software reuse initiative.

However, over time, we encountered a variety of issues due
to which project and product managers began to lose trust in
the reuse initiative. These are detailed below and the
quantitative data is presented in Table III.

A. Prioritization
As component owners were a part of a project team, they

used to assign higher priority to project-specific tasks due to
pressures of project deadlines, and lower priority to the
development tasks for reuse components. This impacted the
ability of the component owners to deliver reuse components
as scheduled to the other projects, resulting in far too many
escalations and unpleasant discussions.

B. Feature bias
The component owners also demonstrated a bias towards

features that were needed by their projects and by critical large
projects. This had a double negative impact. One, the smaller
projects did not get the functionality they needed in the reuse
components. Two, the reuse components bloated as more and
more project-specific functionality got included in them.

C. Quality
Since the component owners were not provided with a

standardized design and test strategy for the delivery of the
reuse components, no consistent design and test strategy was
followed. This impacted the quality of the reuse components,
especially with respect to non-functional requirements like
maintainability, scalability, and the other ‘ilities’. The quality
issues became evident during enhancement and maintenance of
the components. It was also reflected in the over 200
unresolved defects and the considerable time, about 70 percent,
spent in resolving defects.

Component
Owner 5

Component
Owner k

Component
Owner 3

Component
Owner 1

Component
Owner 2

Component
Owner 4

Domain
Owner 1

Domain
Owner 2

Domain
Owner 3

Domain
Owner k

135

D. Communication
As there was no single point contact for multiple

components, project managers had to interact with multiple
component owners, which made it difficult to track the
progress in the different components. Furthermore, all reuse
issues had to be escalated to the management.

E. Funding
Typically, product managers were unwilling to bear the

additional costs associated with the reuse of software
components, such as the efforts associated with increased
communication and conflict management coupled with the
costs associated with more rigorous design, testing, and
documentation.

V. ANALYZING THE ISSUES
We analyzed the issues in the initial approach with the aim

of identifying steps to address them. The root causes for the
issues were:

A. Dual Responsibility
Inability of component owners in scheduling workload

while playing a dual role of being project team member and at
the same time designing, developing, testing, maintaining, and
enhancing a reuse component. Though the budgeted effort for
tasks related to reuse components was adequate, the challenge
lay in scheduling these tasks along with the typically
unpredictable daily project pressures.

B. Enforcement of processes
Component owners were not enforced to follow defined

standard processes while developing reuse components.
Further, processes for the specific requirements of reuse
components had not been defined. Hence, component owners
were able to progress through the entire development lifecycle
of reuse components without adequately involving other
specialist teams such as architecture, usability, and test; which
resulted in lower quality.

C. Single point of contact
Lack of a single point of contact for all reuse components

made it difficult to resolve issues such as the delayed delivery
of features, enhancements, and defect fixes. These coupled
with quality problems of reuse components led to project
managers questioning the value of the reuse initiative.

D. Reluctance in funding reused code base
Though product managers were willing to harvest the

benefits of reuse, they were reluctant to take on the additional
costs related to development and maintenance of reuse
components within their existing budgets.

VI. CHANGED APPROACH

To counter the causes of the issues faced we made several
changes to the initial approach. The issues we encountered
have been reported in reuse literature even in co-located teams
[7,8,9]. However, we observed that the issues were amplified

due to the globally distributed nature of our team. We also
realized that it was difficult to directly lift and drop any of the
suggested practices to resolve our issues [10]. Instead, in the
spirit of lean, we always sought an optimized solution to our
specific issues with the overarching goal of reducing waste.

However, the original goals of the software reuse initiative
remained unchanged. The changes were in the following areas:
1) Creation of a centralized reuse project, 2) Funding, 3)
Processes for reuse component development.

A. Creation of a centraized reuse project
A separate reuse project was created with a dedicated reuse

project manager accountable for all reuse components. The
reuse project manager serves as a single point of contact for all
project teams. This enabled issues related to reuse components
to be resolved effectively.

The reuse project manager is supported by a dedicated
software engineering team that oversees the design,
implementation, testing, enhancement, and maintenance of
reuse components. Most component owners are now part of
the reuse project, which helped us in avoiding the problems
due to dual responsibility. However, a few component owners
are still members of project teams. Domain owners continued
to be part of the common architecture team (see Fig. 2).

B. Funding
The funding of a reuse project was changed with the aim of

shifting the extra costs and risks of reuse production and
consumption out of individual projects [2]. The development
(design, implementation, and test) of a reusable component is
still financed by the project in which the component was
originally planned. However, the additional efforts (extensive
testing, documentation, build and release management, and
management of information on the web portal) are covered by
the reuse project. In addition, the reuse project finances future-
oriented enhancements such as web-enabling all user
interfaces, and minimizing dependence on third-party software
components (see Fig. 2).

Fig. 2. Organizing for reuse in the changed approach

CHANGED APPROACH
All projects fund the development of reuse components based on usage

PROJECT 1 PROJECT 2 PROJECT N REUSE PROJECT

COMMON ARCHITECTURE TEAM

Funding 1 Funding 2 Funding 3 Funding Reuse
The development (design, implementation and test) of a reusable component

is still financed by the project in which the component was originally
planned. Additional efforts (extensive testing, documentation, build and

release management, and management of information on the web portal) are
covered by the Reuse project.

Component
Owner 1

Component
Owner k

Component
Owner 2

Component
Owner 5

Component
Owner 3

Component
Owner 4

Domain
Owner 2

Domain
Owner 1

Domain
Owner k

Domain
Owner 3

136

C. Processes for reuse component development
As part of the new approach, we introduced rigorous

processes for reuse component development with an emphasis
on improving quality [8]. The changes were in the areas of: 1)
enabling reuse in lean software development methodology, 2)
code quality and testing, 3) defect tracking, and 4) release
management.

1) Enabling reuse in teams using lean software
development methodology: Since detailed planning for features
for products was done just before the implementation started,
features related to reuse components came up very late in the
project phase, which was a challenge. To overcome this we
realized that estimation for features related to reuse
components had to be completed at least one ‘takt’ (a takt is
similar to a sprint in agile) ahead of scheduled work. This also
enabled having the dedicated reuse project team fully available
for reuse tasks in a lean way.

2) Code quality and testing: To ensure code quality, we
introduced mandatory static code analysis with pre-specified
goals. In addition, we made the testing process more rigorous
by focusing on the potential impact of the changes to the code,
mandating increased code coverage, and achieving it through
test automation. We also developed smoke tests for project
environments to quickly detect obvious defects. It was possible
to enforce the changed processes because reuse was a separate
project with its own funding.

3) Defect tracking: In the initial approach, after a defect
was resolved by the component owner, there was no mandate
for the project team to close the defect in the defect tracking
system. Hence, the defect tracking system had too many
defects in an improper state, which led to repetitive and
wasteful discussions. To address this, we modified the defect
tracking process. Now, defects in reuse components have to be
reported in the project and cloned to the reuse component. This
meant that unless the reuse defect is closed the project defect
cannot be closed. This ensured timely closure of all resolved
reuse component defects and enabled more effective
monitoring of the unresolved defects.

4) More rigorous release management process: We
introduced a checklist to confirm that the mandated steps prior
to creating a release label are fulfilled. These include
mandatory reviews, static code analysis, test coverage, and
documentation checks. The checklist is reviewed by a team
from the reuse project comprising quality manager, test
manager, and component owner. Since the reuse project is
separately managed, it was possible to enforce this process for
all reuse components.

VII. RESULTS AND IMAPCT

The changed approach resulted in a significant shift in the
culture of the organization with respect to reuse. This helped
the reuse team in increasing quality, reducing development
time, and reducing overall cost.

A. An evolving culture of reuse
By culture of reuse we mean the organization-wide belief

that reuse is beneficial, and the resulting changes in the way the
organization performed its tasks.

With the new approach, the build-for-reuse and build-with-
reuse mindsets were firmly established in the organization [9].

1) Build-for-reuse: By build-for-reuse we mean the reuse
team focused on generic solutions while deliberately using
robust architecture and design practices combined with
stringent code quality checks and reliance on test automation
for more intensive testing.

2) Build-with-reuse: By build-with-reuse we mean the
projects systematically explored the possibility of reuse.
During the product definition phase, the architects in our
organization perform a detailed architectural review where in
addition to general architectural questions, the suitability of
existing reuse components is evaluated, new requirements for
the existing components are identified, and new reuse
components are determined. In addition, the impact of specific
enhancements on other products is assessed.

3) Handling conflicts in requirements of reuse
components: Since we follow a lean development
methodology, requirements are often identified during the
‘takt’ realization. In such cases, the project manager sends
requirements to the component owner who in turn
synchronizes the enhancement with the respective reuse
architect and product architects. If a requirement is in conflict
with the interest of any product, the reuse team tries to find a
common solution by involving domain experts and usability
experts. If a common solution is not found, the product team
implements the feature independently.

4) Unbiased prioritization: Reuse requirements are
prioritized based on the following factors. 1) Project release
criticality, which is typically determined by the need to sustain
market share or requirements of strategic customers. 2) Project
release timeline, which entails giving preference to features
required by projects that need to be released sooner. 3) Risk, if
the impact due to inclusion of a feature is high, then the risk to
the project is assessed to determine if the feature should be
deferred to a future release.

5) Feature assignment: Features are assigned to the reuse
team based on the following factors. 1) Cost-effectiveness,
which entails assessing if it is more cost-effective to implement
a feature in the project or in a reuse component. 2) Resource
availability, if the resources are not available to implement the
feature in the reuse team, the feature is implemented in the
project. If it makes business sense, the feature is subsequently
moved into a reuse component.

6) Communication: One of the challenges faced by a
globally distributed organization is informing all stakeholders
of the existing and planned features in the reuse components.
In addition to the web portal, we send a monthly newsletter to
the entire organization, which contains details of reuse
components released in the current month and details of

137

releases planned in the next month. We also made it a practice
to email the release notes for every component release to all
individuals who had subscribed on the web portal for that
component.

7) Collaboration: Reuse team members and project team
members work together on many occasions such as 1)
clarifying ambiguous requirements, 2) examining hard to
reproduce defects, 3) determining the cause of defects that
cannot be readily isolated, 4) understanding domain-intensive
use cases of the products that demand greater domain
expertise.

8) Flexibility: Since we follow a lean development
methodology, it is essential to accommodate changes in
requirements and their scope. Consequently, planning for reuse
features and enhancements needs to be very flexible to achieve
the desired lean goals. We achieve this flexibility by explicitly
allocating effort for unplanned requirements and high-priority
defects.

B. Achieveing quality, delivery, and cost goals
The cultural changes coupled with the more rigorous

processes helped the reuse team in making improvements in
several areas such as: 1) quality, 2) on-time delivery, and 3)
increase in number of reuse components.

The quantitative data of the improvements are presented in
Table III. The sources of this data are the component
repository, configuration management system, and defect
tracking system.

1) Improvement in quality: With increased focus on
rigorous design and testing, there has been a significant
increase in the quality which is reflected in reductions in: the
number of reported defects, number of unresolved defects, and
time spent on resolving defects. In addition, there has been an
increase in time spent on enhancements.

2) On-time delivery: In the changed approach, project
teams were expected consider dependencies during the
planning phase, which is essential to ensure that the reuse team
is able to deliver the component in time for the required takt.
Thereby, we were able to adhere to committed schedules and
ensure timely delivery of priority enhancements, critical
defects, while resolving and reporting issues more effectively.
It is noteworthy that we have had zero escalations in the last
two years.

3) Increase in number of reuse components: The share of
reuse components completely moved to the reuse project has
increased nearly five-fold in five years, while at the same time
the reuse project budget decreased by 33 percent. (See table
III). It is important to note that in addition to developing new
components, the reuse team is actively enhancing existing
reuse components, within this lower budget.

TABLE III. IMPROVEMENTS IN QUALITY AND PRODCUTIVITY

Initial (2010) Now (2016)
Total amount of code reused Not measured 12%
Average number of unresolved
defects in a year 200 30

Time spent on resolving defects 70% 30%

Time spent on enhancements 30% 70%
Escalations Too many to count 0
Share of reuse components
handled in Reuse project

8% 38%

Reuse budget - 33% less

* Percetage of all software reuse components

VIII. CONCLUSIONS

Despite our organization having experience in global
software engineering, we encountered issues while trying to
enable effective software reuse within our teams, which were
similar to what has been reported in earlier studies of reuse.
However, we observed that the issues were amplified due the
globally distributed nature of our development teams. We were
able to successfully resolve the issues through systematic
corrective actions that were aligned to our lean methodology
and specific to our situation.

IX. REFERENCES

[1] Lean Transformation: How Lean helped to achieve Quality, Cost and
Schedule, Uma V., IEEE 9th International Conference on Global
Software Engineering, 2014

[2] Successfully transforming to Lean by changing the mindset in a global
product development team, U. Samatha, V. S. Mani, IEEE 10th
International Conference on Global Software Engineering, 2015

[3] TAPER: a generic framework for establishing an offshore development
center, G. Hoefner, V. S. Mani, 2nd IEEE International Conference on
Global Software Engineering, 2007

[4] 4 C: An approach for effective people management in an offshore
software development center, G. Hoefner, V. S. Mani, 7th IEEE
International Conference on Global Software Engineering, 2012

[5] Systematic Software Reuse: Architecture, Process and Organization are
Crucial, Martin L. Griss, (http://martin.griss.com/pubs/fusion1.htm)

[6] Domain Analysis: An Introduction, R. Prieto-Diaz, ACM SIGSOFT.
Software Engineering Notes Vol 15 No 2. Apt 1990 Page 47

[7] Incentive compatibility and systematic software reuse, Robert G.
Fichman, Chris F. Kemerer, Journal of Systems and Software, New
York; Apr 27, 2001; Vol. 57, Iss. 1; pg. 45

[8] Why software reuse has failed and how to make it work for you,
Douglas C. Schmidt (http://www1.cse.wustl.edu/~schmidt/reuse-
lessons.html)

[9] Experiences in Software Evolution and Reuse: Twelve Real World
Projects (Research Reports Esprit), 2013 Editors Svein Hallsteinsen,
Maddali Paci

[10] Why new software processes are not adopted, Stan Rifkin, Advances in
Computers, vol. 59, 2003

138

