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a b s t r a c t

This research involves implementation of genetic network programming (GNP) and standard dynamic pro-

gramming to solve the knapsack problem (KP) as a decision support system for record clustering in dis-

tributed databases. Fragment allocation with storage capacity limitation problem is a background of the

proposed method. The problem of storage capacity is to distribute sets of fragments into several sites (clus-

ters). Total amount of fragments in each site must not exceed the capacity of site, while the distribution

process must keep the relation (similarity) between fragments within each site. The objective is to distribute

big data to certain sites with the limited amount of capacities by considering the similarity of distributed

data in each site. To solve this problem, GNP is used to extract rules from big data by considering charac-

teristics (value ranges) of each attribute in a dataset. The proposed method also provides partial random

rule extraction method in GNP to discover frequent patterns in a database for improving the clustering

algorithm, especially for large data problems. The concept of KP is applied to the storage capacity prob-

lem and standard dynamic programming is used to distribute rules to each site by considering similarity

(value) and data amount (weight) related to each rule to match the site capacities. From the simulation re-

sults, it is clarified that the proposed method shows some advantages over the conventional clustering algo-

rithms, therefore, the proposed method provides a new clustering method with an additional storage capacity

problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction1

Distributed database management system (DDBMS) could be a so-2

lution for large scale information systems with large amount of data3

growth and data accesses. A distributed database (DDB) is a collec-4

tion of data that logically belongs to the same system but is spread5

over the sites of a computer network (Fig. 1). A DDBMS is then de-6

fined as a software system that permits the management of DDB and7

makes the distribution of data between databases and software trans-8

parent to the users (Bhuyar, Gawande, & Deshmukh, 2012; Zilio et al.,9

2004).10

To handle the data proliferation, efficient access methods and11

data storage techniques have become increasingly critical to main-12

tain an acceptable query response time. One way to improve query13

response time is to reduce the number of disk I/Os by cluster-14

ing the database vertically (attribute clustering) and/or horizon-15

tally (record clustering) (Guinepain & Gruenwald, 2006, 2008).16
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Improvements in the retrieval time of multi-attribute records can 17

be attained if similar records are grouped close together in the file 18

space as a result of restructuring. This is because fewer page trans- 19

fers are required as the probability of two or more of the target 20

records residing in the same page of storage is increased (Lowden & 21

Kitsopanidis, 1993). 22

In this paper, a novel method combining genetic network pro- 23

gramming (GNP) (Mabu, Chen, Lu, Shimada, & Hirasawa, 2011; Shi- 24

mada, Hirasawa, & Hu, 2006) and standard dynamic programming 25

solving knapsack problems (KP) (Lai, 2006; Singh, 2011) for record 26

clustering is proposed. Hypothesis of this research are the implemen- 27

tation of GNP for data mining can create effective clusters from com- 28

plicated datasets and the concept of KP can be used to define the 29

problem of distributing fragments to several sites considering value 30

(similarity of data) and mass (data size) in DDBMS. Therefore, it could 31

be a solution to the fragment allocation and site storage capacity 32

problems. 33

This paper is organized as follows. Section 2 describes the review 34

of the proposed framework, Section 3 describes a review of litera- 35

tures, 4 describes the detailed algorithm of the proposed framework, 36

Section 5 shows the simulation results, and finally Section 6 is de- 37

voted to conclusions. 38
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Fig. 1. A distributed database environment.

Fig. 2. Basic implementation of GNP S : start node, [J1, … , J4] : judgement node,

[P1, … , P3] : processing node.

2. Review of the proposed framework39

2.1. Genetic network programming40

GNP is an evolutionary optimization technique, which uses di-41

rected graph structures instead of strings in genetic algorithm42

(Holland, 1975) or trees in genetic programming (Koza, 1992), which43

leads to enhancing the representation ability with compact programs44

derived from the re-usability of nodes in a graph structure.45

In GNP, nodes are interpreted as the minimum units of judgement46

and action, and node transition represents rules of the program. After47

starting the node transition from the start node, GNP does not return48

to the start node when the actions are completed. The next judge-49

ment and action are always influenced by the previous node transi-50

tion. Judgement and processing of GNP programs are performed on51

the node level.52

The basic structure of GNP is illustrated in Fig. 2, with S denoting53

the start node. Two other kinds of nodes, judgement nodes and pro-54

cessing nodes, have judgement function Jp and processing function55

Pq, respectively. Jp (p = 1, . . . , n) denotes the pth judgement function56

stored in a library for judgement nodes, while Pq (q = 1, . . . , m) de-57

notes the qth processing function stored in a library for processing58

nodes (Mabu et al., 2011; Shimada et al., 2006).59

In this research, GNP is used to handle rule extraction from60

datasets by analyzing the records. Each judgment node represents an61

attribute with value range. For example, price attribute could be di-62

vided into three ranges (low, middle, high), and one range is assigned63

to one judgment node. GNP makes rules by evolving combinations64

of nodes and measures the coverage of the extracted rules. Coverage65

means that how much records in a dataset each rule can represent66

(cover). Rules that cover at least one record will be stored in the rule67

pool, then in the application for KP phase, the stored rules are dis- 68

tributed to several sites. The point of this paper is to distribute rules, 69

not the data, which contributes to distributing any data into the sites 70

considering the similarities between rules and data. The detailed ex- 71

planation of the implementation of GNP in rule extraction is available 72

in Section 4.1. 73

2.2. Knapsack problem 74

KP is a combinational optimization problem dealing with a set of 75

items, each with a mass and a value, determining the number of each 76

item to include in a collection so that the total weight is less than or 77

equal to the given limit and the total value is as large as possible. KP 78

is defined as follows. 79

maximize S =
n∑

i=1

vixi, subject to
n∑

i=1

wixi ≤ W, (1)

where S = total value of the knapsack (site); i = fragment number 80

(1 ≤ i ≤ n); xi = the number of fragments i; vi = value (similarity 81

to the leader rule of the site) of fragment i; wi = weight (data size) of 82

fragment i; W = capacity of the site. By allowing each fragment (item) 83

to be added more than once to sites, this optimization can handle the 84

problem of replication (Singh, 2011; Zhao, Huang, Pang, & Liu, 2009). 85

Knapsack problem in this research is solved by standard dynamic 86

programming for 0/1 knapsack problem (Toth, 1980). Let us define 87

two dimensional array m[i, w] with row i and column w. m[i, w] 88

shows the value of knapsack when considering items with item num- 89

ber 1, 2, . . . , i − 1, i, and their total weight w. m[i, w] is calculated by 90

Eq. (2). 91

m[i, w] = m[i − 1, w] if wi > W

m[i, w] = max (m[i − 1, w], m[i − 1, w − wi] + vi) if wi � W. (2)

The first step is to calculate m[0, w], then m[1, w] is calculated 92

based on the values of m[0, w]. The same process is repeated to calcu- 93

late m[2, w], . . . , m[n, w]. After finishing calculating m[i, w], the max- 94

imum value among all m[n, w] (0 ≤ w ≤ W) is selected as a solution 95

of the problem. 96

In this research, standard dynamic programming is applied to 97

solve the KP is used to handle a distribution of rules extracted by 98

GNP to each site. Rules with high data coverage will be the leaders of 99

each site and application for KP will consider the similarity between 100

the leader rules and remaining rules (which is considered as a value 101

of item (rule) in KP) and coverage of rules (which is considered as 102

weight in KP) should be matched with site capacities. Therefore, the 103

similar rules to a certain leader are basically put into the same site. 104
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Detailed explanation of the implementation of application for KP in105

the rule distribution is available in Section 4.2.106

3. Literature review107

The proposed method uses GNP algorithm for data mining that108

has been proposed in (Mabu et al., 2011), and the proposed method109

is applied to the storage capacity problem of fragment allocation in110

distributed databases that has been introduced in (Özsu & Valduriez,111

2011). This research involves the implementation of genetic network112

programming (GNP) for data mining and standard dynamic program-113

ming to solve the knapsack problem (KP) for the rule based cluster-114

ing. Introducing storage capacity problem to the database cluster-115

ing and introducing the concept of KP to solve the problem is one116

of the unique points of the proposed method. Moreover, the pro-117

posed method provides partial random feature selection in the rule118

extraction, which can discover frequent patterns of attributes in a119

database and improve the clustering quality. With the above features,120

the proposed method provides an automatic record clustering that121

aims to be a decision support system for record clustering in dis-122

tributed databases.123

The current related literature about fragment allocation is124

(Rahimi, Parand, & Riahi, 2015). The research presents an approach125

which simultaneously makes data fragments vertically and allocates126

the fragments to appropriate sites across the network. Bond Energy127

Algorithm (BEA) is applied with a better affinity measure that im-128

proves the quality of the generated clusters of attributes. BEA can129

find good relations between attributes by discovering frequent items130

between records in a database. The proposed method also discovers131

frequent pattern sets, but it is for realizing an automatic horizontal132

fragmentation or record clustering, not a vertical fragmentation as133

proposed by this literature.134

The current related clustering topic is an automated feature135

weight learning proposed by (Saha & Das, 2015). This article presents136

and investigates a new variant of the fuzzy k-Modes clustering al-137

gorithm for categorical data with automated feature weight learn-138

ing. This method automatically associates higher weights to fea-139

tures which are instrumental in recognizing the clustering patterns140

of the data in the classical fuzzy k-Modes algorithm. The proposed141
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Table 1

GNP gene structure of Fig. 3.

i NTi Ai Ri Ci

1 1 0 0 4

2 1 0 0 7

3 1 0 0 9

4 2 A 1 5

5 2 A 2 6

6 2 B 1 7

7 2 D 2 8

8 2 C 2 5

9 2 C 1 10

10 2 D 1 11

11 2 B 3 4

i : Node number, NTi : Node types;

1 = processing, 2 = judgment, Ai : At-

tribute index, Ri : Attribute range in-

dex, Ci : Connection.

Table 2

Example of dataset.

A1 A2 B1 D2 C2 C1 D1 B3

1 0 1 0 0 1 1 0

1 0 1 1 1 0 0 0

0 1 0 1 1 0 0 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 0 0 0 1 1 1

4.1. GNP rule extraction 165

GNP is used to extract rules from a database by analyzing the 166

database structure including: 167

Attributes amount: the number of attributes in a dataset. Each at- 168

tribute will be divided into some nodes depending on its vari- 169

ation and value ranges (distance of minimum value and maxi- 170

mum value). 171

Data amount: the number of records in a dataset. 172

Data variation: how much different records are contained in a 173

dataset. If every record in a dataset is different, variation is 174

175

176

177

178

179

180

r 181

F 182

n 183

n 184

n 185

186

a 187

t 188

o 189

a 190
ethod in this paper also discovers frequent pattern sets of features

attributes) to improve the performance of clustering, which is ex-

lained in Section 4.1.3, and moreover, the proposed method can deal

ith a storage capacity problem that has not been solved in this liter-

ture.

Another related topic is evolutionary fine-tuning of automated se-

antic annotation systems proposed by Cuzzola, Jovanovic, Bagheri,

nd Gasevic (2015). The literature proposes a Parameter Tuning Ar-

hitecture (PTA) for automating the task of configuring parameter

alues of semantic annotation tools with evolutionary computation.

he similarity with the proposed method is the usage of evolution-

ry computation to find the proper combinations of features for solv-

ng the problem and use feature weight selection, but the problem

f this literature, i.e., semantic annotation, is different from the pro-

osed method in this paper, i.e., the target problem of this paper

s a record clustering with an additional storage capacity limitation

roblem.
. Combination of GNP and knapsack problem

The implementation of record clustering is separated into two

arts: GNP rule extraction, and rule distribution based on standard

ynamic programming for solving knapsack problem, which is ex-

lained in Sections 4.1 and 4.2. In addition, the complexity analysis of

he entire clustering process is described in Section 4.3.

r 191

o 192

t 193

P 194

u 195

T

q

F

r
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100%, if half of the records in the dataset is different, variation

is 50%, and if every record in a dataset is the same, variation

is 1/(the number of data) × 100%. For example, in Table 4 that

will be shown in the later page, there are six data variation in

total 310 data, so the variation is (6/300) × 100 = 1.94%.

GNP is used to extract rules from a dataset by analyzing all the

ecords. Phenotype and genotype structures of GNP are described in

ig. 3 and Table 1, respectively. In Fig. 3, each node has its own node

umber (1–11), and in Table 1, the node information of each node

umber is described. The program size depends on the number of

odes, which affects the amount of rules created by the program.

In the implementation of data mining, judgment node represents

n attribute of the dataset, which is represented by Ai showing an at-

ribute index such as price, stock, etc., and Ri showing a range index

f an attribute value. For example, Ai = A represents price attribute,

nd Ri = 1 represents value range [0, 50] and Ri = 2 represents value

ange [51, 80]. Processing nodes show the start point of the sequence

f judgment nodes which are executed sequentially by their connec-

ion. Sequences of nodes starting from each processing node (P1, P2,

3) are represented by dotted line a, b and c. A node sequence flows

ntil support for the next combination does not satisfy the threshold.
he nodes with the attributes that have already appeared in the se- 196

uence will be skipped. Candidate rules extracted by the program of 197

ig. 3 to the dataset of Table 2 are shown in Table 3. In Table 3, three 198

ules are extracted by the node sequence from each processing node. 199

c network programming and knapsack problem to support record
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Fig. 3. GNP implementation on data mining.

Fig. 4. Node for judg

Table 3

Example of dataset and its support to the extracted rules.

Processing nodes Extracted rules Support Score

Rule Template

A1∧B1 3/6 15.00 6.00

1 A1∧B1∧D2 1/6 21.66 3.67

A1∧B1∧D2∧C2 1/6 31.66 4.67

D2∧C2 2/6 11.66 4.33

2 D2∧C2∧A2 1/6 21.66 3.67

D2∧C2∧A2∧B1 0/6 0 0

C1∧D1 2/6 13.33 4.33

3 C1∧D1∧B3 1/6 21.66 3.67

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

o 217

r 218

4 219

220

n 221

m 222

m 223

1 224

p 225

f 226

i 227

t 228

229

b 230

a 231

c 232

a 233

( 234
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t 238

239

4 240
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e 242
C1∧D1∧B3∧A1 1/6 31.66 4.67

199.95

Score of template is introduced in Section 4.1.3.

The score of rule is defined as follows.

Score of ruler =
{

0 if sup(r) = 0
10 ∗ sup(r) + 10 ∗ (ncon(r) − 1)

×if sup(r) > 0,

(3)

where sup(r) is the support1 of rule r and ncon(r) is the length of

rule r.

Fitness for evaluating an individual is defined as follows.

Fitness = ∑
r∈R

{sup(r) + 10(ncon(r) − 1) + αnew(r)}, (4)

where αnew(r) is an additional value if rule r is newly extracted.

Table 3 shows the length and support of the extracted rules.

Score of rule described by Eq. (3) is not only calculated by its sup-

port(sup(r)) but also by its length(ncon(r)). Considering the rule length

makes rules more reliable because longer rules can cover various

combinations of attributes. For example, A1∧B1 has relatively high

support 3/6 but only has the length two, so the score of rule is only

15.00. On the other hand, C1∧D1∧B3∧A1 has the support only 1/6 but

the length is four, therefore, the score becomes 31.66. αnew(r) is also

included in the fitness because the objective of rule extraction is to

discover new rules from a dataset as much as possible.

The node preparation for GNP rule extraction contains two

phases: node definition and node arrangement. In addition, two kinds

1 Ratio of records that satisfy rule r.
Please cite this article as: W. Wedashwara et al., Combination of geneti

clustering on distributed databases, Expert Systems With Applications (2
ing attributes.

Table 4

Example of frequency table

of price attribute.

x f xf

10 30 300

25 25 625

50 30 1500

80 140 11,200

100 65 6500

150 20 3000

Total 310 23,125

f node arrangement methods are proposed: one is full random ar-

angement and the other is partial random arrangement.

.1.1. Node definition

The main purpose of node definition is to preparing judgment

odes that will be combined to create rules. First step is to find the

inimum and maximum values of each attribute. For example, the

inimum value of “price” attribute is 10 and the maximum value is

50 in the dataset with 310 records. Then, a frequency table is created

er attribute as shown in Table 4. x shows the price of a product, and

shows how many times the product with the same price is recorded

n the dataset. For example, product(s) with price x = 10 appeared 30

imes. Then, mean value of (x f ) is calculated by Eq. (5).

x f =
∑

x f∑
f

= 74.60 (5)

To define nodes from Table 4, data should be divided equally

ased on the amount of data. For example, three nodes could be cre-

ted by dividing value range into three ranges considering the oc-

urrence frequency as shown in Fig. 4. In this example, three ranges

re: x = {10, 25, 50} (85 data), x = {80} (140 data) and x = {100, 150}
85 data). First node and third node contain more than one price be-

ause each single record (10,25,50,100,150) does not have enough fre-

uency to be defined as node. Mean (x f = 75.42) is used to measure

he minimum coverage to become a node. Through the measurement,

he second node can be created from single record (x = {80}) because

f = 140 exceeds x f .

.1.2. Node arrangement : full random

The purpose of node arrangement is to select necessary nodes for

fficiently extracting a large number of rules. Full random method
c network programming and knapsack problem to support record

015), http://dx.doi.org/10.1016/j.eswa.2015.10.006
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rule extraction.
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Table 5

Example of combination of templates with remaining attributes.

Template Remaining attributes Coverage Score of rule

A2∧D3 B1∧C2 0 0

A2∧D3 B3∧C2 10 40.4

A1∧D3 B3 24 34.5
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Fig. 5. GNP

andomly selects nodes from the defined nodes in Section 4.1.1 and

akes graph structures. From the created graph structures, GNP ex-

racts a large number of important rules and stores them in the rule

ool (Fig. 5). The original framework of the rule extraction is de-

cribed in Shimada et al. (2006) in detail.

After rules are extracted, GNP will measure the amount of cover-

ge archived by the rules. In this research, coverage of rule r means

he number of records that match (covered by) rule r. If a rule covers

t least one data, such rule is added to a rule pool, otherwise, the rule

s discarded. Rules with high coverage will be defined as elite rules

nd be the leaders of each cluster (site) in KP process. Rule extraction

rocess continues until all the records in a dataset are covered.

To create a large number of good rules, crossover and mutation are

xecuted.

Crossover: exchange one or more node(s) between parents to make

new rules.

Mutation: change one or more node(s) to make different combi-

nation of nodes.

Crossover is effective to switch weak nodes (nodes with less data

requency) of the parents with strong nodes (nodes with more data

requency). Mutation is effective to switch weak nodes of one indi-

idual to strong nodes.

.1.3. Node arrangement : partial random

Partial random method has two sequential processes of GNP, the

rst process is to find template rules and the second process is to ex-

cute general rule extraction of GNP combined with the templates

reated in the first process. Templates are extracted to obtain combi-

ations of attributes that frequently happen in the dataset. Score of

emplate is calculated by Eq. (6), and the templates with high scores

ill be used in the second process.

Score of templatet =
{

0 if sup(t) = 0
10 ∗ sup(t) + (ncon(t) − 1)

× if sup(t) > 0
(6)

Contrary to the score of rule (Eq. (3)) which gives more weight on

he node length, the score of template gives more weight on support

s shown by Eq. (6). For example, the scores of templates are shown in

able 3 where the results are relatively contrast to the score of rules.

1∧B1 has the highest score of template although the node length is

ust two. When A1∧B1 is used as a template, partial random will be

mplemented by randomizing remaining attributes such as C and D.
Please cite this article as: W. Wedashwara et al., Combination of geneti

clustering on distributed databases, Expert Systems With Applications (2
A3∧D3 B1∧C2 14 40.5

In the template extraction process, only a few number of at-

ributes are included in GNP rule extraction. It aims to increase the

ossibility to get templates with high support. For example, in “A.

nding template” in Fig. 6, the combination of attribute A and D is

efined as a template as a result of the score calculation (Eq. (6)). It

ill increase the possibility to find good combinations with attribute

and D. In “B. rule extraction”, the template and the remaining at-

ributes, that is B and C, are considered. The rule extraction process

an obtain rules with longer length than the templates.

Table 5 shows a simple example of partial random for easy expla-

ation. Each template contains attribute A and D, and it is combined

ith the remaining attributes, that is B and C. The generated rule of

3∧D3∧B1∧C2 obtains the highest score of rule (Eq. (3)) because it

as long rule length and high coverage.

.2. Rule distribution based on standard dynamic programming for

olving knapsack problem

After all the records in a dataset are covered by rules extracted by

NP, standard dynamic programming for solving KP problem is used

o distribute rules to several sites. Rules with high coverage (elite)

ecome the leaders of each site, then application considers the simi-

arity of the remaining rules to the leader rules (value) and coverage

f the rules (weight) in order to distribute the remaining rules to the

ites. Similarity of remaining rule r1 to leader rule r2 is calculated by

q. (7).

S(r1, r2) = Nmatch(r1,r2)
Max{Nante(r1),Nante(r2)} (7)

(r1, r2) : similarity between rule r1 and r2, Nmatch(r1, r2) : the number

f matched attributes between r1 and r2, Nante(r) (r ∈ {r1, r2}) : the

umber of attributes in rule r.

Max{Nante(r1), Nante(r2)} means that longer rule length becomes

divider to the number of matched attributes between two rules

N (r , r )). When the longer rule includes attributes that are not
match 1 2

c network programming and knapsack problem to support record
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Fig. 6. Node arrangement optimization in GNP.

Table 6

Example of similarity calculation between leader and remaining rules.

Rule A B C D Nmatch(r1, r2) S(r1, r2)

Leader A1 B3 C2 – – –

1 aA1 B2 C1
aD2 2 2/4

2 A2
aB3

aC2
aD1 3 3/4

3 aA1 B1
aC2 – 2 2/3

a Matched attribute.

contained in the shorter rule, those attributes are assumed to be310

matched. Examples of similarity calculation are shown in Table 6.311

From Table 6, rule 2 shows the highest similarity to the leader. The312

leader rule does not have attribute D, so every attribute D in the re-313

maining rules is assumed to be matched.314

4.3. Complexity analysis315

The main processes of the proposed method with their complexity316

analysis are summarized as follows.317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Table 7

Comparison of crossover rate.

Crossover rate Average score of rules Iteration

0.01 20.31 28

0.05 20.29 25

0.1 20.24 23

0.2 20.12 23

0.5 19.78 22

Each cluster cannot store all the rules when the sum of the cov- 345

erage of the rules exceeds the storage limitation. Complexity in 346

this process is related to the number of rules and clusters, and 347

the storage limitations of each cluster. The large number rules 348

increases the complexity by increasing the possible combina- 349

tions of the rule distribution, while the large number of clus- 350

ters and small storage limitations also increase the complexity 351

352

5 353

354

t 355

c 356

u 357

R 358

c 359

5 360

361

a 362

o 363

m 364

5 365

366

q 367

a 368

s 369

d 370

371

t 372

T 373
(1) Rule extraction part

(a) Node definition : This process prepares judgment nodes

that will be combined to create rules. Complexity in this

process is related to the number of data and attributes. The

large number of attributes affects the number of nodes to

be defined. The large number of data affects the complexity

of creating a frequency table per attribute.

(b) Node arrangement : This process selects necessary nodes

for efficiently extracting a large number of rules. Complex-

ity in this process is related to the number of attributes.

The large number of attributes affects the number of pos-

sible combinations of attributes that could be extracted.

Rule extraction process continues until all the data in a

dataset are covered, therefore, the large number of possible

combinations requires more iterations to cover all the data.

To efficiently dealing with this complexity, partial random

method is designed to hold the frequent patterns with high

coverage to be used in the next iteration.

(c) Extracted rules measurement : This process measures the

coverage archived by the extracted rules. Complexity in this

process is related to the number of data. The large number

of data affects the number of measurement process of each

rule.

(2) Rule distribution part: Standard dynamic programming is used
to solve the KP problem, that is, the extracted rules are dis-

tributed to several clusters with the consideration of the simi-

larity between rules (value) and coverage of the rules (weight).

d 374

t 375

s 376

Please cite this article as: W. Wedashwara et al., Combination of geneti
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by compounding the several purposes of distribution process.

. Simulations

First, full random and partial random methods in the rule extrac-

ion of GNP are compared. Then, the knapsack rule distribution is

arried out and its results are analyzed. Finally, the clustering sim-

lations using six datasets downloaded from UCI Machine Learning

epository (archive.ics.uci.edu/ml/) are executed and their results are

ompared with other five conventional clustering algorithms.

.1. GNP rule extraction

In this section, GNP rule extraction is executed and the parameter

nalysis of crossover rate and mutation rate is carried out to find the

ptimal parameters, then the performance of the two node arrange-

ent methods is compared.

.1.1. Parameter analysis of crossover rate and mutation rate

Main parameters of the proposed method that influences the

uality of the extracted rules and iteration time are crossover rate

nd mutation rate. Therefore, the comparisons of several parameter

ettings of crossover rate and mutation rate are executed using the

atasets with three attributes and 1000 samples.

Table 7 shows the average score of rules and iterations needed

o cover all the data when the crossover rate is set at several values.

able 7 shows that the increment of the crossover rate slightly re-

uces the iteration time, and decreases the average score of rules. In

his paper, the crossover rate 0.01 is used to obtain the best average

core of rules although the iteration time increases a little. However,
c network programming and knapsack problem to support record
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Table 8

Comparison of mutation rate.

Mutation rate Average score of rules Iteration

0.01 20.29 28

0.05 20.13 26

0.1 19.98 24

0.2 18.45 20

0.5 14.34 18

the average score of rules does not depend on the crossover rate so377

much, thus the performance of the proposed method can be stable.378

Table 8 shows the same comparison as Table 7 when the mutation379

rate is set at several values. Table 8 shows that the increment of the380

mutation rate has more effect on the reduction of iteration time and381

decrease of the average score of rules than the crossover rate. In evo-382

lutionary computation, mutation rate is generally set between 0.01383

and 0.1, and 0.5 is a too large value. In this sense, if the mutation rate384

is set between 0.01 and 0.1, the influence of the parameter setting on385

the average score of rules is not large. From this comparison, we de-386

cided to use 0.01 as the mutation rate to obtain the best average score387

of rules although it slightly increases the iteration time.388

5389

390

t391

T392

o393

t394

e395

m396

o397

t398

399

e400

e401

t402

l403

t404

e405

d406

r407

(408

o409

b410

r411

s412

5413

414

a415

Table 10

Result of knapsack problem (silhouette values).

k Balance of cluster capacity Average Max Min

8 1:1:1:1:1:1:1:1 0.97 0.98 0.92

8 4:2:4:6:4:2:7:5 0.91 0.97 0.88

6 1:1:1:1:1:1 0.87 0.91 0.86

6 1:5:2:6:3:2 0.82 0.88 0.78

4 1:1:1:1 0.75 0.81 0.70

4 1:4:2:1 0.72 0.79 0.68

representation of how well each object lies within its cluster. Silhou- 416

ette value is calculated by Eq. (8). 417

s = b−a
max{a,b} =

{
1 − a/b, if a < b
0, if a = b
b/a − 1, if a > b

(8)

s: Silhouette value for a single sample. The Silhouette value for a set 418

of samples is given as the mean of the Silhouette values of each 419

sample. 420

a: the average dissimilarity (distance) of data within the same clus- 421

ter. 422

b: the lowest average dissimilarity (distance) to any other cluster. 423

The results of rule distribution are shown in Table 10. All the sim- 424

ulations are executed with the same number data (5000) and data 425

variation (50%). k is the number of clusters (sites), “Balance of clus- 426

ters capacity” shows the proportion of capacity of each site, for exam- 427

p 428

m 429

s 430

v 431

v 432

o 433

d 434

s 435

r 436

p 437

d 438

s 439

r 440

c 441

v 442

c 443

t 444

d 445

s 446

ization

ore

.15

.01

.23

.07

.15

.02

.63

teratio

numbe

s.
.1.2. Comparison of node arrangement methods

The result comparison between two node arrangement methods,

hat is, full randomization and partial randomization, is shown in

able 9. Six datasets are used for the comparison, where the number

f data (5000) and the data variation (50%) are the same, however

he number of attributes is different. The performance evaluation is

xecuted to compare the iterations needed to cover all the data, the

ean rule length, the number of extracted rules, and the mean score

f rules. Here, iteration means the number of individuals created in

he rule extraction until all the records are covered.

When the number of attributes is increased, the number of it-

rations needed to cover all the data tends to be increased. How-

ver, comparing the iteration needed by full randomization and par-

ial randomization, partial randomization shows better results, i.e.,

ess iteration are needed. Rules are extracted until all the records in

he dataset are covered, but the records that have been already cov-

red will not be re-included. Significant difference between full ran-

om and partial random is in the average node length where partial

andom basically shows longer length. By finding frequent item-set

template), partial random can establish the minimum node length

f rules in each cluster. Partial random basically extracts larger num-

er of longer rules than full random, therefore, the mean scores of

ules extracted by partial random shows better results. From the next

ection, partial random method is used in the simulations.

.2. Knapsack rule distribution

Here, silhouette value (Rousseeuw, 1987) is used to evalu-

te the clustering results. Silhouette provides a succinct graphical

Table 9

Results of GNP rule extraction with full random

Attr Full random

Itr n Rule Cvrg Sc

3 34 2.33 34 29 10

3 78 2.23 12 808 10

8 564 3.45 23 42 20

8 1056 2.76 52 182 10

15 6290 2.46 34 20 10

15 987 4.23 12 833 30

90

Attr : the number of attributes, Itr : number of i

n : mean length of each rule, Rule : the average

Cvrg : mean coverage, Score : mean score of rule
Please cite this article as: W. Wedashwara et al., Combination of geneti
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le, 1:1:1:1 means all the four sites have the same size, and 1:4:2:1

eans the second site (size four) is four times larger than the first

ite (size one). “Average, Max and Min” show the data on silhouette

alues obtained by the generated clusters. According to the silhouette

alues, the proposed method shows good clustering ability in the case

f larger k and the balanced cluster capacity. The silhouette values are

ecreased as k decreases and the cluster capacity is unbalanced. This

ituation happens because of the capacity incompatibility between

ule coverage and cluster capacity. For example, when the cluster ca-

acity is only 100 data left, and the coverage of a certain rule is 120

ata, 20 data will be distributed to another cluster, which affects the

ilhouette result. If the number of sites k is larger, various kinds of

ules can be distributed to many sites, then more closer (similar) rules

an be included in each cluster, which contributes to better silhouette

alues. If the cluster capacity is unbalanced, some sites have larger

apacity and some have smaller. The sites with larger capacity have

o contain various kinds of rules (which sometimes have a little far

istance from each other), therefore, the silhouette values become

maller.

in six datasets.

Partial random

Itr n Rule Cvrg Score

25 3.00 39 23 20.29

45 3.00 18 526 20.02

435 6.62 43 22 50.26

786 5.43 57 145 40.13

5987 7.35 45 21 60.23

789 11.25 8 1110 100.03

290.96

ns to cover all the records,

r of rules,
c network programming and knapsack problem to support record
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Table 11

UCI dataset.

Attribute Classes Samples Data type

Wine quality 12 2 4898 Real

Car evaluation 6 4 1728 Int

Image segmentation 19 7 2100 Int, real

Shuttle 9 7 54,600 Int

Covertype 54 8 581,012 Int

Yeast 8 10 1484 Real

5.3. Comparison with other methods447

Six datasets from UCI machine learning repository (shown in448

Table 11) for comparison and the clustering performance is evaluated449

by both silhouette value and accuracy rate.450

Five methods for the comparisons with the proposed method, i.e.,451

K-means (Ahmad & Dey, 2007), Hierarchical Clustering (Karypis, Han,452

& Kumar, 1999), Fuzzy C means (Bezdek, Ehrlich, & Full, 1984), Order-453

constrained solution in K-means Clustering (OCKM) (Steinley & Hu-454

bert, 2008) and K Affinity Propagation (Zhang, Wang, Norvag, & Se-455

bag, 2010). All the methods used in the comparisons are unsuper-456

vised clustering methods and use the euclidean distance as a distance457

metric except Hierarchical Clustering. The parameter setting of each458

method is determined as described below :459

(1) K-means : Euclidean distance is used as the distance metric.460

461

462

463

464

465

466

467

468

469

470

471

472

473

(5) K Affinity Propagation : Euclidean distance is used as the dis- 474

tance metric and affinity propagation is used to improve the 475

clustering quality. The value of k is set as the number of classes 476

of each dataset. 477

(6) Proposed method: The main parameters of the proposed 478

method are crossover rate and mutation rate, and these param- 479

eters are determined based on the results in Tables 7 and 8 as 480

described in Section 5.1.1, where several settings of crossover 481

rates and mutation rates are evaluated in terms of the average 482

score of rules and the iterations needed to cover all the data. 483

Although the conventional clustering methods can set the number 484

of clusters to be created, they do not have a function to measure clus- 485

ter capacity as the proposed method with the function for solving KP. 486

Thus, the cluster capacity problem is not discussed in this compar- 487

ison. The proposed method can execute clustering considering the 488

cluster capacities, which is one of the advantages over the conven- 489

tional clustering algorithms. 490

In the simulations, accuracy rate is used as another clustering per- 491

formance metric in addition to silhouette value. Accuracy rate is a 492

common measure used to evaluate how well clustering algorithms 493

perform on a dataset with a known structure. Accuracy rate shows 494

different result from silhouette depending on the dataset. 495

Table 12 shows the evaluation result with silhouette and Table 13 496

shows the evaluation result with accuracy rate. Star marks (∗) on the 497

side of the results in both tables indicate the best results in each row 498

(dataset). The proposed method obtains the highest average results 499

as shown in the last row of Tables 12 and 13. In both Tables 12 and 13, 500

t 501

o 502

v 503

d 504

w 505

s 506

T 507

v 508

i 509

510

t 511

o 512

s 513

.

ilhoue

27

09

03

98∗

67

79

92

aluatio

ith ac

86

99

76

64∗

05

12

74
the value of k is set as the number of classes of each dataset.

(2) Hierarchical Clustering : agglomerative is used as the hierar-

chy strategy and single linkage is used as a clustering method.

The clustering procedure finishes when the number of groups

reaches the number of classes of each dataset.

(3) Fuzzy C means : Minimum improvement of the fuzzifier m

which determines the level of cluster fuzziness is set at 1.0 ×
10−5. The value of k is set as the classes of each dataset.

(4) Order-constrained solution in K-means Clustering (OCKM) :

Euclidean distance is used as the distance metric and recursive

dynamic programming strategy is used to improve the cluster-

ing quality. The value of k is set as the number of classes of each

dataset.

Table 12

Methods comparison with silhouette evaluation

Dataset Methods comparison with s

OCKC KAP FCM

Wine quality 0.172 0.182 0.2

Car evaluation 0.795 0.789 0.8

Segmentation 0.234 0.265 0.3

Shuttle 0.324 0.314 0.3

Covertype −0.214 −0.453 −0.1

Yeast 0.634 0.622 0.7

Mean 0.324 0.287 0.3

Table 13

Methods comparison with accuracy rate ev

Dataset Methods comparison w

OCKC KAP FCM

Wine quality 0.642 0.613 0.7

Car evaluation 0.689 0.678 0.6

Segmentation 0.678 0.724 0.7

Shuttle 0.812 0.787 0.8

Covertype 0.675 0.646 0.7

Yeast 0.667 0.704 0.8

Mean 0.694 0.692 0.7
Please cite this article as: W. Wedashwara et al., Combination of geneti

clustering on distributed databases, Expert Systems With Applications (2
he proposed method also shows better clustering results in five out

f total six datasets. The proposed method loses against other con-

entional methods for “shuttle” dataset only. Structure of “shuttle”

ataset, shown in Table 11, does not show straight pattern to describe

hy the proposed method loses against other methods, but Table 13

hows that mean accuracy rate of all the methods (last column of

able 13) for “shuttle” dataset is the highest (0.824), that is, other con-

entional methods show better clustering results for the dataset that

s relatively easy to make clusters comparing to other datasets.

Here, pay attention to the last column of Tables 12 and 13 showing

he mean values of silhouette (Table 12) and accuracy rate (Table 13)

f all the methods. For example, in Table 12, “covertype” dataset

hows very low silhouette value which reaches −0.26, but its average

tte

K-means HC GNP Mean

0.123 0.224 0.241∗ 0.195

0.801 0.752 0.812∗ 0.793

0.253 0.296 0.305∗ 0.276

0.312 0.354 0.352 0.342

−0.254 −0.346 −0.125∗ −0.260

0.626 0.786 0.788∗ 0.706

0.310 0.344 0.396∗

n.

curacy rate

K-means HC GNP Mean

0.771 0.695 0.787∗ 0.716

0.701 0.698 0.701∗ 0.694

0.725 0.712 0.792∗ 0.735

0.839 0.818 0.824 0.824

0.676 0.622 0.708∗ 0.672

0.692 0.801 0.856∗ 0.755

0.734 0.724 0.778∗
c network programming and knapsack problem to support record
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accuracy rate in Table 13 is 0.672. In this case, “Covertype” dataset has514

the largest number of attributes (54). Silhouette value is very sensi-515

tive to the data variation, thus the mean silhouette value of all the516

methods become lower than other cases (datasets). The similar re-517

sults are also shown for “wine quality” and “image segmentation”518

datasets. By analyzing such results in Table 12, we can find that the519

large number of attributes tends to decrease the silhouette value be-520

cause it increases the complexity of attribute combinations, while521

the large number of classes increases silhouette values because it be-522
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Bhuyar, P. R., Gawande, A. D., & Deshmukh, A. B. (2012). Horizontal fragmentation tech- 556
nique in distributed database. International Journal of Scientific and Research Publi- 557
cations, 2(5). 558

Cuzzola, J., Jovanovic, J., Bagheri, E., & Gasevic, D. (2015). Evolutionary fine-tuning of 559
automated semantic annotation systems. Expert Systems with Applications. 560

Guinepain, S., & Gruenwald, L. (2006). Automatic database clustering using data min- 561
ing. In Proceedings of the 17th international workshop on database and expert systems 562
applications (DEXA’06) (pp. 124–128). IEEE. 563

Guinepain, S., & Gruenwald, L. (2008). Using cluster computing to support automatic 564
and dynamic database clustering. In Proceedings of the 2008 IEEE international con- 565
ference on cluster computing (pp. 394–401). IEEE. 566

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University 567
of Michigan Press. 568

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using 569
dynamic modeling. Computer, 32(8), 68–75. 570
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omes easier for many clusters to maintain data similarity, in other

ords, it is difficult for a few clusters to clearly separate many kinds

f data fragments.

. Conclusions

This paper proposes a novel clustering method combining Ge-

etic network programming and knapsack problem to handle record

lustering. The proposed method can find good combinations of at-

ributes to create rules for clustering, and also consider the capacity

f sites to distribute rules.

The proposed method provides a new clustering method with an

dditional storage capacity problem that is compatible with big data

ith large number of attributes, samples and clusters, and the clus-

ering performance is evaluated with six datasets from UCI machine

earning repository and the best average results comparing to other

ve conventional clustering algorithms are achieved.

The proposed method is less suitable for online processing be-

ause of the evolution time to obtain good rules. The proposed

ethod is suitable for an offline processing that requires the optimal

esults than processing time.

In the future research, it is necessary to execute simulations with

eal DDBMS with running applications to test the applicability of

he proposed method. The proposed method can be also developed

s a middle-ware between distributed databases and an applica-

ion of database fragment allocation management that can access

RUD (Create Read Update Delete) matrix of databases. The algorithm

hould be also improved to execute online processes. Combinations

ith other algorithms such as fuzzy logic and neural network can be

ealized to improve the ability of the proposed method.
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