
IEEE SYSTEMS JOURNAL 1

An Internal Intrusion Detection and Protection
System by Using Data Mining and

Forensic Techniques
Fang-Yie Leu, Kun-Lin Tsai, Member, IEEE, Yi-Ting Hsiao, and Chao-Tung Yang

Abstract—Currently, most computer systems use user IDs and
passwords as the login patterns to authenticate users. However,
many people share their login patterns with coworkers and request
these coworkers to assist co-tasks, thereby making the pattern as
one of the weakest points of computer security. Insider attackers,
the valid users of a system who attack the system internally, are
hard to detect since most intrusion detection systems and firewalls
identify and isolate malicious behaviors launched from the outside
world of the system only. In addition, some studies claimed that
analyzing system calls (SCs) generated by commands can identify
these commands, with which to accurately detect attacks, and at-
tack patterns are the features of an attack. Therefore, in this paper,
a security system, named the Internal Intrusion Detection and
Protection System (IIDPS), is proposed to detect insider attacks at
SC level by using data mining and forensic techniques. The IIDPS
creates users’ personal profiles to keep track of users’ usage habits
as their forensic features and determines whether a valid login user
is the account holder or not by comparing his/her current com-
puter usage behaviors with the patterns collected in the account
holder’s personal profile. The experimental results demonstrate
that the IIDPS’s user identification accuracy is 94.29%, whereas
the response time is less than 0.45 s, implying that it can prevent a
protected system from insider attacks effectively and efficiently.

Index Terms—Data mining, insider attack, intrusion detection
and protection, system call (SC), users’ behaviors.

I. INTRODUCTION

IN the past decades, computer systems have been widely
employed to provide users with easier and more convenient

lives. However, when people exploit powerful capabilities and
processing power of computer systems, security has been one
of the serious problems in the computer domain since attackers
very usually try to penetrate computer systems and behave
maliciously, e.g., stealing critical data of a company, making
the systems out of work or even destroying the systems.

Generally, among all well-known attacks such as pharming
attack, distributed denial-of-service (DDoS), eavesdropping at-
tack, and spear-phishing attack [1], [2], insider attack is one of
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the most difficult ones to be detected because firewalls and in-
trusion detection systems (IDSs) usually defend against outside
attacks. To authenticate users, currently, most systems check
user ID and password as a login pattern. However, attackers
may install Trojans to pilfer victims’ login patterns or issue a
large scale of trials with the assistance of a dictionary to acquire
users’ passwords. When successful, they may then log in to
the system, access users’ private files, or modify or destroy
system settings. Fortunately, most current host-based security
systems [3] and network-based IDSs [4], [5] can discover a
known intrusion in a real-time manner. However, it is very
difficult to identify who the attacker is because attack packets
are often issued with forged IPs or attackers may enter a system
with valid login patterns. Although OS-level system calls (SCs)
are much more helpful in detecting attackers and identifying
users [6], processing a large volume of SCs, mining malicious
behaviors from them, and identifying possible attackers for an
intrusion are still engineering challenges.

Therefore, in this paper, we propose a security system, named
Internal Intrusion Detection and Protection System (IIDPS),
which detects malicious behaviors launched toward a system
at SC level. The IIDPS uses data mining and forensic profiling
techniques to mine system call patterns (SC-patterns) defined
as the longest system call sequence (SC-sequence) that has
repeatedly appeared several times in a user’s log file for the
user. The user’s forensic features, defined as an SC-pattern
frequently appearing in a user’s submitted SC-sequences but
rarely being used by other users, are retrieved from the user’s
computer usage history.

The contributions of this paper are: 1) identify a user’s foren-
sic features by analyzing the corresponding SCs to enhance the
accuracy of attack detection; 2) able to port the IIDPS to a
parallel system to further shorten its detection response time;
and 3) effectively resist insider attack.

The remainder of this paper is organized as follows.
Section II introduces the related work of this paper. Section III
describes the framework and algorithms of the IIDPS. Experi-
mental results are shown and discussed in Sections IV and V,
respectively. Section VI concludes this paper.

II. RELATED WORKS

Computer forensics science, which views computer systems
as crime scenes, aims to identify, preserve, recover, analyze,
and present facts and opinions on information collected for a
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security event [7]. It analyzes what attackers have done such
as spreading computer viruses, malwares, and malicious codes
and conducting DDoS attacks [8]. Most intrusion detection
techniques focus on how to find malicious network behaviors
[9], [10] and acquire the characteristics of attack packets,
i.e., attack patterns, based on the histories recorded in log
files [11], [12]. Qadeer et al. [13] used self-developed packet
sniffer to collect network packets with which to discriminate
network attacks with the help of network states and packet
distribution. O’ Shaughnessy and Gray [14] acquired network
intrusion and attack patterns from system log files. These files
contain traces of computer misuse. It means that, from synthet-
ically generated log files, these traces or patterns of misuse
can be more accurately reproduced. Wu and Banzhaf [15]
overviewed research progress of applying methods of compu-
tational intelligence, including artificial neural networks, fuzzy
systems, evolutionary computation, artificial immune systems,
and swarm intelligence, to detect malicious behaviors. The
authors systematically summarized and compared different in-
trusion detection methods, thus allowing us to clearly view
those existing research challenges.

These aforementioned techniques and applications truly con-
tribute to network security. However, they cannot easily authen-
ticate remote-login users and detect specific types of intrusions,
e.g., when an unauthorized user logs in to a system with
a valid user ID and password. In our previous work [16],
a security system, which collects forensic features for users
at command level rather than at SC level, by invoking data
mining and forensic techniques, was developed. Moreover, if
attackers use many sessions to issue attacks, e.g., multistage
attacks, or launch DDoS attacks, then it is not easy for that
system to identify attack patterns. Hu et al. [17] presented an
intelligent lightweight IDS that utilizes a forensic technique
to profile user behaviors and a data mining technique to carry
out cooperative attacks. The authors claimed that the system
could detect intrusions effectively and efficiently in real time.
However, they did not mention the SC filter. Giffin et al. [18]
provided another example of integrating computer forensics
with a knowledge-based system. The system adopts a prede-
fined model, which, allowing SC-sequences to be normally
executed, is employed by a detection system to restrict program
execution to ensure the security of the protected system. This is
helpful in detecting applications that issue a series of malicious
SCs and identifying attack sequences having been collected
in knowledge bases. When an undetected attack is presented,
the system frequently finds the attack sequence in 2 s as its
computation overhead. Fiore et al. [19] explored the effec-
tiveness of a detection approach based on machine learning
using the Discriminative Restricted Boltzmann Machine to
combine the expressive power of generative models with good
classification accuracy capabilities to infer part of its knowledge
from incomplete training data so that the network anomaly
detection scheme can provide an adequate degree of protection
from both external and internal menaces. Faisal et al. [20]
analyzed the possibility of using data stream mining to enhance
the security of advanced metering infrastructure through an
IDS. The advanced metering infrastructure, which is one of
the most crucial components of smart card, serves as a bridge

Fig. 1. IIDPS system framework.

for providing bidirectional information flow between the user
domain and the utility domain. The authors treat an IDS as
a second-line security measure after the first line of primary
advanced metering infrastructure security techniques such as
encryption, authorization, and authentication.

III. IIDPS

In this section, we first introduce the IIDPS framework and
describe components of the IIDPS in detail. Two algorithms are
also presented for generating a user habit file and detecting an
internal intruder.

A. System Framework

The IIDPS, as shown in Fig. 1, consists of an SC monitor
and filter, a mining server, a detection server, a local compu-
tational grid, and three repositories, including user log files,
user profiles, and an attacker profile. The SC monitor and filter,
as a loadable module embedded in the kernel of the system
being considered, collects those SCs submitted to the kernel and
stores these SCs in the format of 〈uid, pid, SC〉 in the protected
system where uid, pid, and SC respectively represent the user
ID, the process ID, and the SC c submitted by the underlying
user, i.e., c ∈ SCs. It also stores the user inputs in the user’s
log file, which is a file keeping the SCs submitted by the user
following their submitted sequence. The mining server analyzes
the log data with data mining techniques to identify the user’s
computer usage habits as his/her behavior patterns, which are
then recorded in the user’s user profile. The detection server
compares users’ behavior patterns with those SC-patterns col-
lected in the attacker profile, called attack patterns, and those
in user profiles to respectively detect malicious behaviors and
identify who the attacker is in real time. When an intrusion
is discovered, the detection server notifies the SC monitor and
filter to isolate the user from the protected system. The purpose
is to prevent him/her from continuously attacking the system.

Both the detection server and the mining server are run on
the local computational grid to accelerate the IIDPS’s online
detection and mining speeds and enhance its detection and
mining capability. If a user logs in to the system by using
another person’s login pattern, the IIDPS identifies who the
underlying user is by computing the similarity scores between
the user’s current inputs, i.e., SCs, and the behavior patterns
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stored in different users’ user profiles. In the IIDPS, the SCs
collected in the class-limited-SC list, as a key component of
the SC monitor and filter, are the SCs prohibited to be used by
different groups/classes of users in the underlying system, e.g.,
a secretary cannot submit some specific privileged SCs. There-
fore, commands that generate these SCs will be prohibited to
be used by all secretaries.

B. SC Monitor and Filter

An SC in fact is an interface between a user application and
services provided by the kernel. Generally, a huge amount of
SCs are generated during the execution of a job, i.e., a task or
process. For example, when a user changes his/her password
by submitting a “passwd” shell command to a Linux operating
system, up to 2916 SCs will be generated, including open(),
close(), read(), write(), etc. Therefore, it is hard for a system to
monitor all SCs at the same time, particularly when many users
are running their programs. As a result, we need to filter out
some commonly used safe SCs.

To find out what SCs are typical ones generated by a shell
command, the statistic model of term frequency-inverse docu-
ment frequency (TF-IDF) is used to analyze the importance of
intercepted SCs collected in a user log file. In the information
retrieval domain, the relationship between a term and a docu-
ment is similar to that between an SC ti and the command, e.g.,
j, which generates ti. The term frequency (TF) employed to
measure the weight of the frequency of an SC produced by j is
defined as

TFi,j =
ni,j∑k=h

k=1 nk,j

(1)

where ni,j is the number of times that ti is issued during the
execution of j, h is the number of different SCs generated when
j is executed, and the denominator

∑k=h
k=1 nk,j sums up the

numbers of times that all these SCs are launched. The inverse
document frequency (IDF), the measure of the importance of ti
among all concerned shell commands, is defined as

IDFi = log
|D|

|{j : ti ∈ dj}|
(2)

where |D|, the cardinality of D, is the total number of shell
commands in the concerned corpus and {j : ti ∈ dj} is the
set of shell commands dj , in which each member generates ti
during its execution. The TF-IDF weight of ti generated by j is
defined as

(TF-IDF)i,j = TFi,j × IDFi. (3)

In fact, the TF-IDF weight as one of the feature weighting
methods in data mining and information retrieval domains
increases proportionally to the number of times an SC appears
in a user log file, and it can indeed show the importance of a
certain SC.

Table I lists four shell commands, including chmod, kill,
date, and rm, and the SCs they generate. The SC close(19)
appearing in chmod row represents that the SC close() is
generated for a total of 19 times when chmod is executed.

TABLE I
SCS AND THEIR GENERATION FREQUENCIES DURING THE

EXECUTION OF FOUR SPECIFIC COMMANDS

Thus, the TF weight of close() calculated by using (1) is
0.2021(= 19/94) where 94 is the total number of times that
SCs are generated during the execution of chmod. The TF
weight of the SC kill() during the execution of kill command
is 0.02128(= 1/47).

According to Table I and (2), the IDF weights for open()
and unlinkat() are 0(= log 4/4) and 2(= log 4/1), respectively,
since the latter is only generated by the rm command, meaning
among the four commands, unlinkat() is a representative SC of
rm, and open() is issued by all the four commands, indicating
that it cannot represent any one of the four commands. The
TF-IDF weight of the remaining SCs can be calculated in the
similar manner.

In the IIDPS, all collected data are analyzed by a data mining
tool, iData Analyzer [21], in which class predictability and class
predictiveness are two parameters utilized to evaluate intraclass
and interclass weights, respectively, of an attribute among
classified attribute classes. In the following, class predictability
is defined in Definition 1, and class predictiveness is defined in
Definition 2.

Definition 1 (Class Predictability): Given a class C and
a categorical attribute A with v1, v2, v3, . . . , and vn as its
candidate values, class C’s predictability score on A = vi,
denoted by P (A = vi), is defined as the percentage with which
A’s value in C is vi. The sum of the predictability scores
for attribute A on all its candidate values in C is equal to
1, i.e.,

∑
∀T (A=vi)∈C P (A = vi) = 1 where T (A = vi) is an

instance of C with A = vi. Given an SC ti and a command
j, the predictability score of ti measures the percentage with
which ti ∈ Q where Q is the set of SCs produced during the
execution of j. (Note that other commands may also generate ti
during their execution.) The predictability score of ti, denoted
by P (ti), characterizing the execution of j, meets the criterion
that

∑
∀ ti∈Q P (ti) = 1.

Definition 2 (Class Predictiveness): Given a class C and a
categorical attribute A with v1, v2, v3, . . . , and vn as its candi-
date values, the attribute value vi’s predictiveness score P (A =
vi) is defined as the probability with which an instance T with
A = vi resides in C. The sum of the predictiveness scores for
A on all of A’s candidate values among classes in {C} is equal
to 1 where {C} is the set of classes, in which each member has
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Fig. 2. Supervised learning results generated by invoking the iData Analyzer
Data Mining tool to calculate the class predictability and predictiveness scores
for the kill() SC. The high predictiveness score shows that kill() is a represen-
tative SC of kill command.

Fig. 3. Control flow of the generation of a user profile.

A as one of its attributes, i.e.,
∑

∀T (A=vi)∈{C} P (A = vi) = 1.
Let Sj be the set of SCs generated by j. The predictiveness
score of an SC ti, denoted by P ′(ti), is employed to measure
the probability with which ti is a member of Sj among all
the shell commands {j : ti ∈ Sj} generating ti during their
execution. The predictiveness score of ti among all elements
of {j : ti ∈ Sj} is

∑
∀ tj∈Sj ,j∈{k:ti∈Sk}

P ′(ti) = 1. (4)

Generally, the training instances of the mining process
should contain all the related shell commands and those SCs
generated by these commands. With iData Analyzer, the super-
vised learning output class sheet of the kill command is shown
in Fig. 2. The typical SC kill() is one with a small predictability
score, i.e., 0.02(= 1/47), meaning that only one instance of
kill() is generated during the execution of kill command, and
the SC obtains a high predictiveness score, i.e., 1(= 1/1),
among all class commands, depicting that kill() is one of the
representative SCs of kill command.

C. Mining Server

As shown in Fig. 3, a mining server extracts SC-sequence
generated by a user u from u’s log file, counts the times that a
specific SC-pattern appears in the file, and stores the result in
〈SC-pattern, appearance counts〉 format in u’s habit file. After

Fig. 4. Algorithm for generating a user u’s habit file.

this, SC-patterns’ similarity weights are calculated to filter out
those SC-patterns commonly used by all or most users. Then,
the output result is compared with all other users’ habit files
in the underlying system to further identify u’s specific SC-
patterns. Finally, the similarity weight is computed to generate
u’s user profile. The details of these processes will be described
later.

1) Mining User and Attacker Habits: The IIDPS processes
SCs collected in u’s log file with a sliding window, named
a log-sliding window (L-window for short), which is used
to identify consecutive SCs of size |Sliding window| along
their submitted sequence and partition the SCs in the window
into k-grams where k is the number of consecutive SCs, k =
2, 3, 4, . . . , |Sliding window|. In this paper, |Sliding window| =
10. In addition, another sliding window of the same size (i.e.,
the same number of SCs), called compared-sliding window
(C-window for short), is employed to identify other SC-patterns
also in u’s log file. This time, k’ consecutive SCs, preserving
their submitted sequence, are extracted from a C-window to
generate a total of (|Sliding window| − k′ + 1) k′ − grams,
k′ = 2, 3, 4, . . . , |Sliding window|.

The mining server invokes Algorithm 1 shown in Fig. 4 to
compare k-grams and k′-grams. At first, all SCs collected
in u’s log file are treated as a long SC-sequence. When
all the

∑|Sliding window|
k=2 (|Sliding window| − k + 1) k-grams,

derived from the L-window, have been compared with the∑|Sliding window|
k′=2 (|Sliding window|− k′ + 1) k′-grams, derived

from the C-window, by using the longest common subsequence
algorithm [22], which reveals the similarity between two strings
by skipping noises, the C-window shifts right one input SC
(e.g., originally beginning at position x, and then moves to the
position beginning at x+ 1), and the aforementioned compari-
son is performed again until the C-window covers the last SC-
sequence of size |Sliding window|. The next L-window shifts
right one SC, and the above comparison continues. The process
ends when the comparison, in which the L-window covers the
second SC-sequence of size |Sliding window| to the last (i.e.,
i = G− 1) and the C-window contains the last SC-sequence
of size |Sliding window| (i.e., j = G), is completed where
G = |log file| − |Sliding window|. Theorem 1 shows that the
time complexity of 〈k-gram, k′-gram〉 comparison is O(n6).
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Fig. 5. Example of comparison between k-grams in an L-window and two k′-grams in two C-windows of ten SCs.

Theorem 1: The time complexity of Algorithm 1 is O(n6)
where n is the size of the sliding window.

Proof: Let m = |SC-sequence| − (|Sliding window| −
1), which is the number of sliding windows that can be
identified in the given SC-sequence. Then, a user profile
is generated by invoking |m∗(m− 1)/2| times of the
〈L-window,C-window〉 pairwise comparison, and each
〈L-window,C-window〉 pairwise comparison has

|Sliding window|∑
k=2

(|Sliding window| − k + 1) ∗

|Sliding window|∑
k′=2

(|Sliding window| − k′ + 1) (5)

times of 〈k-gram, k′-gram〉 comparisons. Let n =
|Sliding window|, and let l = |SC-sequence|; the total
time of 〈k-gram, k′-gram〉 comparison, denoted by Ttotal, is

Ttotal=
(l− n+1)(l−n)

2
×

n∑
k=2

(n− k + 1)×
n∑

k′=2

(n−k′+1)

=
(l − n+ 1)(l − n)

2
× n(n− 1)

2
× n(n− 1)

2
∼= 1

8
(l − n)2(n)4. (6)

This means that the time complexity of 〈k-gram, k′-gram〉 com-
parison is O(n6). Of course, if we consider the time complexity
on l, it will be O(l2). �

Fig. 5 gives an example of 〈k-gram, k′-gram〉 comparison.
The solid-line rectangles list two compared SC-sequences. A
shaded area is a C-window. The dash-line rectangle contains
an SC-sequence, i.e., a k-gram, extracted from an L-window
where k = 10. In the upper rectangle (i.e., marked with
C-window 1), SCs that match those in the k′-gram where
k′ = 10 include brk, fstat64, and mprotect (omitting () of an SC
for simplicity). The remaining SCs, including close, open, read,
access, open, mmap2, and write, are noises and thus ignored.
When k′ = k = 10, the longest common subsequence between
the k-gram and the k′-gram in the lower rectangle (marked with
C-window 2) includes execve, access, open, open, and brk.

2) Creating User Profiles and Attacker Profiles: In Fig. 3, a
user’s user profile is a habit file with an SC-pattern’s appearance
count being substituted by its corresponding similarity weight.
We further remove those SC-patterns with similarity weight less
than a predefined threshold since they are not the representative
ones that can discriminate the user from other users in the
underlying intranet. An attack pattern (or a signature), which
may be an attacker-specific pattern or a pattern commonly used
by attackers, can be identified in the same method. Similarly,

TABLE II
EXAMPLE OF USER HABIT FILES D, SC-PATTERNS T ,

AND THEIR CORRESPONDING Di’S

an attack pattern that an attacker frequently submits but others
have seldom or never submitted will be considered as one of the
attacker’s representative attack patterns and will obtain a high
similarity weight. Hence, signatures collected in an attacker
profile (see Fig. 1) can be classified into common signatures and
attacker-specific signatures. The latter can be used to identify
who the possible attackers are when a protected system is
attacked by attacker-specific signatures.

Given a set of user habit files D = {UH1, UH2, . . . , UHN}
where N is the number of users, let T = {CS1, CS2, . . . ,
CSk} be the set of SC-patterns retrieved from elements of
D. Let Di = {UH ′

1, UH ′
2, . . . , UH ′

Mi}, 1 ≤ i ≤ k, be the
set of UH’s in which each UH contains the specific ele-
ment CSi, CSiεT , Di ⊆ D, and |Di| = Mi. Examples of Di

are listed in Table II, in which D1 = {UH1, UH2, UHN},
D2 = {UH1, UHN−1, UHN}, D3 = {UH2, UH3, UHN−1},
and Dk = {UH1, UH2, UHN−1}.

Equation (7), which is commonly used to assign a weight to a
term in the information retrieval domain [23], is utilized to give
each SC-pattern a similarity weight Wij , which is the weight of
CSi in UHj where

Wij =
fij

fij + 0.5 +
1.5×nsj
nsavg

×
log

(
N+0.5
Mi

)

log(N + 1)

i = 1, 2, 3, . . . , k, and j = 1, 2, 3, . . . , N (7)

in which fij is the appearance count of CSi in UHj , nsj is
the total number of SC-patterns collected in UHj , nsavg is the
average number of SC-patterns that an element of D has, and
log((N + 0.5)/Mi)/ log(N + 1) is the inverse characteristic
profile frequency (ICPF) [23].

D. Detection Server

The detection server captures the SCs sent to the kernel by
the underlying user u when u is executing shell commands and
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Fig. 6. Detection server detects whether u is possibly an internal intruder or
an attacker.

stores the SCs in the u’s log file. After this, the server tries to
identify whether u is the underlying account holder or not by
calculating the similarity score between the newly generated
SCs, denoted by NSCu, in the u’s current inputs (in u’s log
file) and the usage habits, i.e., forensic signatures (also behavior
patterns), stored in u’s user profile to verify u. The Okapi model
[24], which is utilized to calculate the similarity score between
user j’s user profile UHj and an unknown user u’s current input
SC-sequence, denoted by Sim(u, j), is defined as

Sim(u, j) =

p∑
i=1

Fiu ·Wij (8)

in which p is the number of SC-patterns appearing in both
NCSu and UHj , Fiu is the appearance count of SC-pattern
i collected in NCSu, and Wij produced by invoking (7) is
the similarity weight of i in UHj . The higher the Sim(u, j),
the higher the probability, with which u is the person j who
submitted NCSu.

Algorithm 2 shown in Fig. 6 detects an internal intruder. The
detection server needs to generate u’s temporary habit file by
analyzing NCSu so that Fiu is available for later computation.
The concept is similar to that of the mining server but different
in that the comparison between the L-window and C-window
is from the back to the front each time when an SC is input by
u, i.e., when the L-window contains the last |Sliding window|
SCs, the C-window lefts shift one SC from the L-window
and compares the k-grams and k′-grams individually derived
from them. After this, for each left shift on the C-window,
the two windows compare. The comparison continues until the
C-window covers the first |Sliding window| SCs of NCSu.

In the following, two examples are given to show how the
L-window and C-window are compared in Algorithms 1 and 2.

Let {1, 2, 3, 4, 5, 6, 7, 8} be the given SC-sequence, and let
the size of a sliding window, i.e., |Sliding window|, be 5. The
comparison performed by the mining server in Algorithm 1
is shown below. 〈12345, 23456〉1 → 〈12345, 34567〉2 →
〈12345, 45678〉3 → 〈23456, 34567〉4 → 〈23456, 45678〉5 →
〈34567, 45678〉6, where the format of (X,Y )z represents
that the SC-sequence X contained in the L-window and the
SC-sequence Y collected in the C-window are compared
in the zth comparison in Algorithm 1 where |X| = |Y | =
|Sliding window|.

When Algorithm 2 is invoked by the detection server, the
sliding window left shifts, i.e., going back, to identify the
SC-sequences on each new input SC. If the user’s inputs are
less than or equal to |Sliding window|, i.e., 5, no action is
performed. When the user inputs the sixth SC, the L-window
contains SCs 2, 3, 4, 5, and 6 and the C-windows cover
SCs 1, 2, 3, 4, and 5, i.e., 〈23456, 12345〉1. After the sev-
enth SC is input, the comparison will be 〈34567, 23456〉4 →
〈34567, 12345〉2. On receiving the eighth SC, the de-
tection server performs comparisons 〈45678, 34567〉6 →
〈45678, 23456〉5 → 〈45678, 12345〉3. In this algorithm, all the
identified SC-patterns are input to u’s new habit file NHFu

rather than j’s habit file where j’s account is the one u logs in.
From the examples, we can see that these two algorithms

yield the same comparison pairs, i.e., 〈12345, 23456〉1 to
〈34567, 45678〉6 by Algorithm 1 and 〈23456, 12345〉1,
〈34567, 23456〉4, 〈34567, 12345〉2, 〈45678, 34567〉6,
〈45678, 23456〉5, and 〈45678, 12345〉3 by Algorithm 2,
meaning that the two algorithms utilize the same comparison
contrapositive logic and generate the same NHFu given the
same NCSu. Theorem 2 shows that the time complexity of
detecting an internal intruder or an attacker is O(gn5).

Theorem 2: The time complexity of detecting an internal
intruder or an attacker is O(gn5) where n is the size of a sliding
window, and g is the number of legal users.

Proof: Let n = |Sliding window|, and let g be the number
of legal users. Each time when the underlying user u newly
inputs an SC and the number of entered SCs is larger than n, the
last n SCs will be identified as an L-window. Let |NCSu| = l.
Now, in the NCSu, a total of l − n+ 1 sliding windows can
be found, meaning that the time of sliding window comparison
between the L-window and the remaining l − n C-windows
is l − n. According to Theorem 1, for each pairwise sliding
window comparison, there are (n(n− 1)/2)× (n(n− 1)/2)
〈k-gram, k′-gram〉 comparisons. Let Tcomp be the total number
of 〈k-gram, k′-gram〉 comparisons in the NCSu

Tcomp = (l − n)× n(n− 1)

2
× n(n− 1)

2
. (9)

Since there are g users in the IIDPS, the total time of
〈k-gram, k′-gram〉 comparisons is

T ′
total=g×Tcomp=g × (l−n)×n(n−1)

2
×n(n−1)

2
. (10)

This indicates that the time complexity of Algorithm 2 is
O(gn5). �

However, in this paper, |Sliding window| is limited to less
than 10. Hence, the times consumed for 〈k-gram, k′-gram〉
comparison by Algorithms 1 and 2 are both short.
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Definition 3 (Decisive Rate): For the detection server, given
an unknown user u’s NHFu and the similarity score between
NHFu and user q’s user profile UHq, 1 ≤ q ≤ N , where N is
the number of users, the decisive rate of r(1 ≤ r ≤ N), denoted
by x, among the N users is defined as x = (N − rank(r))/N ,
0 ≤ x ≤ 1, where rank(r) is the order of user r from the top
after the similarity scores of the N users are sorted where r’s
account is the one u logs in.

The decisive rate of r’s user profile x should be within the
top y ∗ 100%, where y is the decision threshold. If not, u is
considered as an intruder rather than r.

1) Attack Types: Three types of intrusions are generated in
this paper. Type-I attack is defined as the situation where a user
of a specific group submits an SC, which the group members
are prohibited to use. Type-II attack is an attack that launches a
sensitive SC, which is defined as one that may erase or modify
sensitive data or system settings, to change the environmental
settings of the system or attack the system. A Type-III attack
consists of SC-level attack patterns, i.e., SC-patterns, each
of which is treated as an attack stage. In fact, an attacker
mixing-specific SC can sometimes successfully penetrate a
security system.

Generally, SC-patterns that generate a buffer–overflow
attack often contain a normal SC with a parameter longer than
the buffer’s defined length. With this kind of attack, an attacker
can penetrate a system by using a Type-III attack and then
grant a higher access right to attack the system, e.g., cracking
password or acquiring root privilege. The SCs launching a
Type-III attack are called a multistage attack pattern. Basically,
a single-SC attack pattern is a special category of multistage
attack patterns when both the number of stages and the number
of SCs are equal to 1.

Type-I and Type-II attacks, defined in the group’s class-
limited-SC list, can be detected by comparing an input SC
directly with the SCs collected in this list. Type-III attack can
be identified by invoking Algorithm 2.

As previously stated, all attackers’ SC-patterns are also pre-
sented in the format of a profile. Given an NCSu, we can
determine whether the NCSu includes attacker-specific attack
patterns or not by employing the process similar to that of
judging whether u is the holder of the account that u logs in.
After calculating the similarity scores between the correspond-
ing NHFu and all users’ user profiles, if the decisive rate of
the attacker profile is higher than y ∗ 100%, we then suspect
that u is an attacker and the IIDPS will produce a syslog alert
message and reply an “unsafe” message accompanied with the
user’s ID to inform the SC monitor and filter, which will isolate
the user from the system in real time to prevent him/her from
continuously attacking the protected system. Of course, if the
attacker is not a user of the intranet, a trace-back system [25] or
other identification systems [26], [27] are required.

E. Computational Grid

The computational grid consists of a collection of internally
connected stand-alone computers working together as a single
integrated computing resource. In this paper, a mining server

Fig. 7. SMP with open MPI architecture.

and a detection server are implemented on the grid to speed
up data processing. Cluster computing divides a large compu-
tational task into smaller subtasks, which are simultaneously
performed by employing multiple computer processors. Each
processor is responsible for executing some part of the com-
putation, e.g., processing a subset of input data. Typically, the
master node coordinates the distributed processing and com-
bines processing results of all processors to complete the entire
computation. Fig. 7 shows the symmetric multiprocessing clus-
ter (SMP) with open message passing interface (MPI) architec-
ture. The MPI function provides a standardized and portable
environment for processors to mutually exchange messages.
The functions of the mining server are accomplished by the grid
processors with a hostfile that defines computation resources for
the mining server. The detection server is implemented on the
master node of the computational grid with the hostfile defining
computation resources for the detection server.

F. Parallel Speedup

The speedup S of a parallel system, defined as

S =
The time consumed by a single processor to finish a job

The time spent by a parallel system to finish a job
(11)

is one of the parameters used to measure the performance of
the parallel system with n processors. Generally, speedup of
parallel is defined as

S =
1

f +max(f ′
1, f

′
2, . . . , f

′
n)

(12)

in which the total time required by a program to accomplish
a job is 1, f is the sequential part consumed by a single
processor, f ′

i is the time spent by processor i to accomplish its
assigned task, max(f ′

1, f
′
2, . . . , f

′
n) is the response time of the n

processors, and
∑n

j=1 f
′
j = 1− f where (1− f) is the propor-

tion that can be parallelized (i.e., benefit from parallelization)
by employing n parallel processors. In addition, according to
Amdahl’s law [28], S is limited to

S ≤ 1

f + 1
n (1− f)

(13)

where (1− f)/n is the response time if the n processors
employed to accomplish the job are identical. In the limit, as n
tends to infinity, the maximum speedup approaches to 1/f . In
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TABLE III
RESPONSE TIME OF ALGORITHM 1 BY USING PARALLEL

COMPUTING (UNIT: SECONDS)

practice, if f is a small component, performance-to-price ratio
falls rapidly as n is increased.

Based on Minsky’s conjecture theorem [29], over thousands
of processes, the detection server speedup ratios are propor-
tional to log2 n where n is the number of processors, meaning
that the detection server that has too many sequential parts
cannot be executed in parallel. In addition, a huge amount of
messages are delivered among parallel processors. When the
performance of the employed local computation grid is known,
based on the length of the given SC-sequence, we can then
determine and employ an appropriate number of grid nodes to
serve as the mining server and the online detection server.

In the IIDPS, as shown in Fig. 1, the master node Pm

of the local computation grid computes the total numbers of
〈k-gram, k′-gram〉 comparison pairs, calculates computation
data size for each slave node Pi, and identifies the log file
segment, denoted by LS(i), for Pi, 1 ≤ i ≤ NP , where NP is
the number of available slave nodes. In each 〈k-gram, k′-gram〉
comparison, the lengths of k-gram and k′-gram are the same,
and both k-gram and k′-gram are retrieved from NCSu, k =
2, 3, . . . , |Sliding window| where |Sliding window| = |L−
window| = |C − window|. Next, the Pm sends LS(i) to Pi.
On receiving NCSu, Pi compares the k-gram and k′-gram
pairs identified in LS(i) and returns the identified SC-patterns,
and their corresponding appearance counts to Pm. Once Pm

receives the results from slave nodes, it sums up the SC-
pattern’s appearance counts to establish the user’s profile. After
collecting all users’ profiles, Pm calculates each SC-pattern’s
similarity weight by invoking (7) for each user’s user profile
and distributes all the user profiles to each parallel computer
of local computational grid. With parallel processing, the time
required by Pm to wait for the completion of identifying of SC-
patterns and their appearance counts will be greatly reduced.
Table III lists the response time of Algorithm 1 by using parallel
computing.

IV. EXPERIMENTS

To verify the feasibility and accuracy of the IIDPS, three
experiments were performed. The first defined the decisive rate
threshold between the user profile established for u and each of
other users’ user profiles. The second studied the accuracy for
the online detection server when NCSu was submitted by u.
The third compared the IIDPS with several state-of-the-art host-
based IDSs (HIDSs).

Fig. 8 illustrates the configuration of the experimental
testbed, which consists of 12 users; one protected computer,

Fig. 8. Logical configuration of the testbed employed in this paper.

named Alpha; and another two members of the computational
grid, named Beta with 48 processing cores and Gamma with
12 processing cores. All the computers operate with Linux
operating system, and the memory size for each computer is
at least 25 GB. The measured bandwidths and network types
between two arbitrary nodes of the computational grid are also
illustrated in Fig. 8.

In the IIDPS testbed, the SC monitor and filter is first
installed into the Alpha computer to obtain each user’s log file
during the time period between February 1, 2014, and July 31,
2014. The SCs from 12 different categories of users are col-
lected as the experimental data, including the system (root),
oracle, message queue (mq), reservation, ticketing, financial,
operating strategy (os), backup, configuration management
(cm), web application, business rule, and audit users. A total
of 193 613 SCs have been collected from 12 log files, in which
the length of a sliding window is 10.

A. Decisive Rate Threshold

To determine the decisive rate threshold, 75% of log records
are selected as the training data from each of the 12 log files
to generate 12 corresponding user profiles, and the remaining
25% are the test data. Ten times of this experiment were
performed. Given a known user u’s current input SC-sequence,
i.e., NCSu, if the similarity score between NCSu and u’s
user profile is ranked within the top y ∗ 100% among the
similarity score between NCSu and each of the 12 users’ user
profiles, as aforementioned, the decisive rate threshold is y. The
experimental results of decisive rate are shown in Table IV, in
which average decisive rate is 0.9312. Therefore, the threshold
y is set to 0.9 to evaluate whether the underlying user u of an
account is the account holder or not. Besides, the paragraph size
is defined as 3 ∗ |Sliding window|, i.e., 30 SCs. This means that
the detection server calculates the decisive rate for u when the
length of u’s current input SCs achieves k times the length of a
paragraph, where k is a positive integer. The purpose is to avoid
continuously computing ranking on each input SC.

Fig. 9 shows the decisive rate between u’s current inputs and
both the attacker profile and u’s user profile. The logid is the
log sequence ID, uid is the user ID (i.e., u with ID = 1000),
ncslength is the length of the input SC-sequence (which is
30 ∗ k, k = 1, 2, 3, . . .), attacker field records the decisive rate
for the similarity score between u’s current input and attack
signatures (attack pattern) in the attacker profile, and user field
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TABLE IV
TWELVE USERS’ DECISIVE RATES OBTAINED BY CROSS COMPARING

USERS’ LOG FILES (25% OF TEST DATA)

Fig. 9. Detection server calculates decisive rates when the number of u’s
current input SCs reaches k times the paragraph size, which is 30 SCs,
k = 1, 2, 3, . . ..

represents the decisive rate for the similarity score between u’s
current input and the SC-patterns collected in u’s user profile.
If the user field is lower than the predefined threshold 90%
(= 0.9) or the attacker field is higher than the threshold 90%,
the user will be suspected as an attacker.

As shown, when the SC-sequence length is 120, user =
0.8924, which is smaller than 0.9. Therefore, the detection
server alerts the system manager that the current user may
not be this account’s holder. When the ncslength = 150,
attacker = 0.9153, which is larger than 0.9, and user =
0.8073, which is lower than 0.9. Therefore, the detection server
alerts the system manager that the current user is suspected as
an insider.

B. Detection Accuracy

In the second experiment, we again randomly chose 75% of
users’ computer usage history as the training data for creating
12 user profiles, and the remaining 25% are the test data to
simulate user u’s online inputs. The purpose is to gain the
similarity scores between u and all the users so that the IIDPS
can judge who the user u is in the intranet.

The statistical information for 12 user profiles generated by
the mining server is listed in Table V, in which the “Account
ID” shows the user’s ID, |Training data| is the number of SCs
in the training data, |Habit file| is the number of SC-patterns
(rather than SCs) collected in a habit file, and |User profile| is
the number of SC-patterns gathered in the user’s user profile.
About 40% of users’ common patterns were removed since
their similarity weights are less than the predefined threshold
0.001.

The statistics of user identification accuracy are listed in
Table VI, in which “No. of Paragraph” is the number of times

TABLE V
STATISTICS OF 12 USER PROFILES GENERATED BY THE

MINING SERVER IN PARALLEL

for calculating decisive rate while evaluating the user’s test
data where the paragraph size is 30 SCs, “Times of being an
account holder” is the average times of its tenfold value that
decisive rate is larger than the predefined threshold, and “Times
of being an attacker” is the average times of its tenfold value
that the decisive rates are smaller than predefined threshold, i.e.,
the times that the detection server alerts the system manager
that the current user is an attacker. The “Detection accuracy”
is the accuracy of verifying the user’s identity. The database
management system utilized to store and process the data is
SQLite. There is a total of 100-GB DRAM and 10-TB hard
disks’ space in the IIDPS, and less than 1 GB is used to store
users’ profiles.

C. Comparison With Other HIDSs

The IIDPS is a typical HIDS that monitors internal events
of a system. A HIDS often gathers and analyzes information is-
sued by users within a system to identify possible threats. To in-
vestigate the system’s intrusion detection capability, in the third
experiment, the IIDPS is compared with four HIDSs, including
OSSEC [30], AIDE [31], SAMHAIN [32], and Symantec CSP
[33]. The OSSEC analyzes log data, checks file integrity, moni-
tors set policies, detects rootkits, alerts suspected attacks in real
time, and responds actively. It has a collaboration learning agent
that analyzes log files to identify simple Type-III attacks. AIDE
(Tripwire) checks file and directors’ integrity for a predefined
time interval given by the system administrator. SAMHAIN
provides file integrity checking and log file monitoring and
analysis. It also detects rootkits, monitors ports, identifies rogue
root privilege executables, and figures out hidden processes that
issue Type-I and Type-II attacks. Symantec CSP as a superset
of the Symantec host IDS can detect part of the Type-III attacks
and DDoS attacks launched by a system. It identifies DDoS
attacks issued by a system by monitoring the system’s outbound
traffic. However, this may also trigger false-positive alarms,
particularly when users or normal programs upload data to the
Internet.

In this paper, an insider attacker may log in to a system by
using another user’s login ID and password and do something
maliciously. As previously stated, a Type-I attack is an attack
in which a certain group is prohibited to use. A Type-II attack
utilizes rootkits to issue sensitive SCs, i.e., unlinkat() and kill(),
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TABLE VI
USER IDENTIFICATION ACCURACY OF THE IIDPS

TABLE VII
COMPARISON OF THE IIDPS WITH OTHER HIDSS

to modify sensitive data or resource of a system. A Type-III
attack employs GDB, i.e., a program debugging tool, to trace
a running process and launches a DDoS attack to intrude an
outside-world system.

The comparison results of these schemes are shown in
Table VII, in which “�” means that the system has the
designated function, “x” represents that the system does not
provide this function, and “Δ” shows that the system has the
function, but it does not completely meet that of the IIDPS. All
these systems, except the IIDPS, do not have the function of
identifying a possible user. The response times of a system for
all attack types are also shown in Table VII, in which IIDPS
outperforms the other tested systems.

V. DISCUSSION

In this paper, an IIDPS is developed to detect insider attacks
at SC level by using data mining and forensic techniques.
The experimental results show that the IIDPS can effectively
resist several aforementioned attacks. The outcome extends
the features of [16], confirming that data mining and forensic
techniques used for intrusion detection provide effective attack
resistance.

The second experiment indicates that the average detection
accuracy is 94.29%. However, in Table VI, the accuracy of user
backup is 89.97% since backup’s log file has more common
SCs than the other users’. It also shows that the IIDPS may
detect inaccurately when user’s habit suddenly changes. Never-
theless, in most cases, the IIDPS can still identify the legality
of a login user.

When a user inputs a command, hundreds or thousands of
SCs will be generated. Analyzing a huge number of SCs often
takes a long time. As shown in Table VII, the IIDPS spends
0.45 s to identify a user. Although other systems consume
longer time for data analysis than the IIDPS does, how to mine
SCs in an efficient method should be addressed. Employing a
local computational grid can accelerate the processing speed of
the miming server and detection server. Generally, users’ foren-
sic features retrieved from their basic operations are helpful in
detecting the users’ malicious behaviors and tell us who the
possible attackers are. This can also detect malicious behaviors
for systems employing GUI interfaces. However, many third-
party shell commands [34], [35] have been developed, includ-
ing those used in Oracle Database, Oracle WebLogic, IBM
WebSphere MQ, and some user-developed applications. We
need to study the SCs generated and the SC-patterns produced
by these commands so that the IIDPS can detect those malicious
behaviors issued by them and then prevent the protected system
from being attacked. Additionally, mining user profiles by
using an unsupervised cluster approach can also improve the
performance of the mining process because processing big data
is indeed an engineering challenge. Moreover, to detect an
attack and reduce the corresponding response time, we need
a cluster workload monitor, a faster filter, an efficient detection
algorithm, and a fault-tolerant environment provided by a com-
putational grid. Furthermore, a mathematical analysis on the
IIDPS’s behaviors is helpful in deriving its formal performance
and cost models, with which users can predict performance and
cost of the IIDPS before using it. The model proposed in [36]
can be further used to increase detection accuracy and improve
the decisive rate.

Furthermore, one may ask how a behavior record is created
for a new user and how the IIDPS updates a user profile. The an-
swer of the first question is that, when there is a new user k, the
IIDPS creates k’s log file, habit file, and user profile on his/her
first login and then follows the procedure shown in Fig. 3 to
generate k’s user profile. The answer of the second question
is that, each time when k logs in to the system, in addition to
the SC k that directly submits, the IIDPS also identifies those
SC-sequences generated by submitted commands. These SC-
sequences are then used to detect whether k is an attacker or not
by invoking algorithm 2. When k is recognized as a legal user,
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the IIDPS continues collecting k’s SCs and updating his/her
profile according to the procedure shown in Fig. 3 on his/her
logout. Once k’s user profile is updated, it can be used for next-
time detection.

VI. CONCLUSION

In this paper, we have proposed an approach that employs
data mining and forensic techniques to identify the represen-
tative SC-patterns for a user. The time that a habitual SC-
pattern appears in the user’s log file is counted, the most
commonly used SC-patterns are filtered out, and then a user’s
profile is established. By identifying a user’s SC-patterns as
his/her computer usage habits from the user’s current input SCs,
the IIDPS resists suspected attackers. The experimental results
demonstrate that the average detection accuracy is higher than
94% when the decisive rate threshold is 0.9, indicating that the
IIDPS can assist system administrators to point out an insider
or an attacker in a closed environment. The further study will
be done by improving IIDPS’s performance and investigating
third-party shell commands.
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