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Abstract Maximizing product adoption within a customer social network under a
constrained advertising budget is an important special case of the general influence
maximization problem. Specialized optimization techniques that account for product
correlations and community effects can outperform network-based techniques that
do not model interactions that arise from marketing multiple products to the same
consumer base. However, it can be infeasible to use exact optimization methods that
utilize expensive matrix operations on larger networks without parallel computa-
tion techniques. In this chapter, we present a hierarchical influence maximization
approach for product marketing that constructs an abstraction hierarchy for scal-
ing optimization techniques to larger networks. An exact solution is computed on
smaller partitions of the network, and a candidate set of influential nodes is propagated
upward to an abstract representation of the original network that maintains distance
information. This process of abstraction, solution, and propagation is repeated until
the resulting abstract network is small enough to be solved exactly.

Keywords Influence maximization · Marketing · Multi-agent social simulation ·
Optimization

1 Introduction

Advertising in today’s market is no longer viewed as a matter of simply convincing a
potential customer to buy the product but of convincing their social network to adopt
a lifestyle choice. It is well known that social ties between users play an important
role in dictating their behavior. One of the ways this can occur is through social influ-
ence where a behavior or idea can propagate between friends. By considering factors
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such as homophily and possible unobserved confounding variables, it is possible to
examine these behavior correlations in a social network statistically [1]. The aim of
viral marketing strategies is to leverage these behavior correlations to create infor-
mation cascades in which a large number of customers imitate a much smaller set of
informed people, who are initially convinced by targeting marketing schemes.

Marketing with a limited budget can be viewed as a specialized version of the
influence maximization problem in which the aim is to advertise to the optimal set
of seed nodes to modify opinion in the network, based on a known influence propa-
gation model. Commonly used propagation models such as Linear Threshold Model
(LTM) and Independent Cascade Model (ICM) assume that a node’s adoption prob-
ability is conditioned on the opinions of the local network neighborhood [15]. Much
of the previous influence maximization work [8, 10, 25] uses these two interaction
models. Since the original LT model and IC model, other generalized models have
been proposed for different domains and specialized applications. For instance, the
decreasing cascade model generalizes models used in the sociology and economics
communities where a behavior spreads in a cascading function according to a prob-
abilistic rule, beginning with a set of nodes that adopt the behavior [15]. In contrast
with the original IC model, in the decreasing cascade model the probability of influ-
ence propagation from an active node is not constant. Similarly, generalized versions
of the linear threshold model have been introduced (e.g., [5, 23]). The simplicity of
these propagation models facilitates theoretical analysis but does not realistically
model specific marketing considerations such as the interactions between advertise-
ments of multiple products and the effects of community membership on product
adoption.

To address these problems, in previous work [21], we developed a model of
product adoption in social networks that accounts for these factors, along with a con-
vex optimization formulation for calculating the best marketing strategy assuming a
limited budget. These social factors can emerge from different independent variables
such as ties between friends and neighbors, social status, and the economic circum-
stance of the agents. Similar properties have been shown to influence people in other
domains; for instance, Aral and Walker demonstrated the effect of social status on the
influence factor of people on Facebook [3]. We believe that in marketing, all these
factors affect the customers’ susceptibility to influence and their ability to influence
others.

Having a more realistic model is particularly useful for overcoming negative
advertisement effects in which the customers refrain from purchasing any products
after being bombarded with mildly derogatory advertisement from multiple advertis-
ers trying to push their own products. It is critical to model the propagation of negative
influence as well since it propagates and can be stronger and more contagious than
positive influence in affecting people’s decisions [7].

The main limitation of this and similar types of optimization approaches is that
they involve matrix inversion which is slightly less than O(N 3) and is the limiting
factor preventing these algorithms from scaling to larger networks. In this chapter,
we propose a hierarchical influence maximization approach that advocates “divide
and conquer”—the network is partitioned into multiple smaller networks that can
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be solved exactly with optimization techniques, assuming a generalized IC model,
to identify a candidate set of seed nodes. The candidate nodes are used to create a
distance-preserving abstract version of the network that maintains an aggregate influ-
ence model between partitions. Here we demonstrate how this abstraction technique
can be used to scale influence maximization algorithms to larger product adoption
scenarios. Moreover, we present a theorem which shows that the realistic social sys-
tem model has a fixed-point, validating the strategy of optimizing product adoption
at the steady state.

The chapter is organized as follows. Section 2 provides an overview of the related
work in influence maximization. Section 3 introduces our proposed method, Hierar-
chical Influence Maximization (HIM) [22], as well as summarizing the operation of
the realistic product adoption model introduced by [21]. We evaluate our method ver-
sus other influence maximization approaches on both real and synthetic networks in
Sect. 4. This chapter extends on our earlier work [22] by introducing new preprocess-
ing techniques for large networks and presenting a more comprehensive evaluation
of our framework on three larger real-world datasets. We end the chapter with a
discussion of future work.

2 Related Work

Influence maximization can be described as the problem of identifying a small set of
nodes capable of triggering large behavior cascades that spread through the network.
This set of nodes can be discovered using probabilistic approaches (e.g., [2, 17]) or
optimization-based techniques. [12, 21] treat influence maximization as a convex
optimization problem; this is feasible for influencing small communities but does
not scale to larger scale problems. Due to the matrix computation requirements,
these approaches fail when the number of agents in the system increases. Our HIM
algorithm overcomes this deficiency by using a hierarchical approach to factor the
system into smaller matrices.

The HIM model is designed to work on a complex social system where multiple
factors affect the propagation of influence. The simpler case, where the network
topology alone dictates activation spread, has been examined by multiple research
groups, seeking to improve on Kempe’s early work on greedy approaches for influ-
ence maximization [14]. Examples of possible speedups include innovations such as
the use of a shortest-path based influence cascade model [16] or a lazy-forward opti-
mization algorithm [19] to reduce the number of evaluations on the influence spread
of nodes. Clever heuristics have been used very successfully to speed computation in
both the LT model (e.g., the PMIA algorithm [8]) and also the IC model [25]. In this
chapter, instead of using the original cascade models by Kempe et al. we introduce
a cascade model that accounts for product interactions and community differences
in influence propagation.

Proposed models for investigating how ideas and influence propagate through
the network have been applied to many domains, including technology diffusion,
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strategy adoption in game-theoretic settings, and the admission of new products
in the market [14]. For viral marketing, influential nodes can be identified either by
following interaction data or probabilistic strategies. For example, Hartline et al. [11]
solve a revenue maximization problem to investigate effective marketing strategies.
[26] presented a targeted marketing method based on the interaction of subgroups in
social network. Similar to this work, Bagherjeiran and Parekh leverage purchasing
homophily in social networks [4]. But instead of finding influential nodes, they base
their advertising strategy on the profile information of users. Achieving deep market
penetration can be an important aspect of marketing; Shakarian and Damon present a
viral marketing strategy for selecting the seed nodes that guarantees the spread of the
word to the entire network [24]. Our work differs from related work in that our model
not only considers social factors but also incorporates the negative effect of competing
product advertisements and the correlation between demand for different products.
Our optimization approach is largely unaffected by the additional complexity since
these factors only impact the long-term expected value and not the actual solution
method.

Some researchers (e.g., [6, 20]) focus on the adversarial aspect of competing
against other advertisers. In this case, the assumption is that the advertiser is unable
to unilaterally select nodes. In [5] a natural and mathematically tractable model is pre-
sented for the diffusion of multiple innovations in a network. Our work assumes that
influential nodes are selected in a central fashion and partitioned between advertisers
in an adversarial offline process.

3 Method

Our proposed hierarchical approach operates as follows:

1. Create a local network for each node consisting of its neighbors and neighbors of
neighbors;

2. Model the effect of the outside network by assigning a virtual node for each
boundary node to abstract activity outside the local partition;

3. Update the interaction parameters to the virtual node based on the model and the
network connections;

4. Create a candidate set of influential nodes for each local network using convex
optimization to maximize steady state product adoption;

5. Propagate the candidate set upward to a higher-level of abstraction and link the
abstract nodes based on their shortest paths in the previous network;

6. Repeat the abstraction process until the resulting network is small enough to be
optimized as a single partition; the resulting set of candidate nodes is then targeted
for advertisement. Figure 1 shows a flowchart of the algorithm.

Figure 2 demonstrates the process of the algorithm with three hierarchies. The
selected nodes at each local neighborhood, colored in red, are moved to the upper
hierarchy and reconnected based on shortest path distances from the lower-level.
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Fig. 1 The flowchart for our algorithm, Hierarchical Influence Maximization (HIM)
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Fig. 2 At each hierarchical level (Hi ) local neighborhoods are created and virtual nodes (black)
are generated. By using an optimization technique the influential nodes (red) are selected. Nodes
that have been selected at least once as an influential node are transferred to the next level of the
hierarchy. At the higher levels, the connection between selected nodes is defined using the shortest
path distance in the original network. The process is repeated until the final set of influential nodes
is smaller than the total advertising budget

The same process is repeated at the next hierarchy to select more influential nodes.
The procedure terminates at the last hierarchy when the number of influential nodes
finally is smaller than the advertising budget.

3.1 Market Model

To explore the efficiency of the proposed hierarchical influence maximization (HIM)
method in business marketing, we have used the multi-agent system model, presented
by [21], to simulate a social system of potential customers. We have slightly changed
the definition of some parameters in this model to make a more sensible model with
generalized capabilities.
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In this model, the population of N agents, represented by the set A = {a1, . . . , aN },
consists of two types of agents (A = AR ∪ AP ), named Regular and Product agents
respectively. The Regular agents are the potential customers in the market who will
occasionally change their attitudes on purchasing products based on the influence
they receive either from other neighbors or from the Product agents who represent
salespeople offering one specific product.

Regular agents belong to a connected social network where the directed weighted
links in this network possess a history of past interactions among the agents. This
social network is modeled by an adjacency matrix, E, where eij = 1 is the weight
of a directed edge from agent ai to agent a j and the in-node and out-node degree of
agent ai is the sum of all in-node and out-node weights, respectively.

In this model a vector of
−→
Xi is assigned to each agent, both Regular and Product

agents, representing the attitude or desire of the agent toward all of the products in the
market. Each element of this vector, xip, is a random variable in the [−1 1] interval
that indicates the desire of agent ai to buy an item or consume a specific product, p.

In the social simulation, each agent interacts with another agent in a pair-wise
fashion that is modeled as a Poisson process with rate 1, independent of all other
agents. By assuming a Poisson process of interaction, we are claiming that there is at
most one interaction at any given time. Here, the probability of interaction between
agents ai and a j is shown by pij and is defined as a fraction of the connection weight
between these agents over the total connections that agent i makes with the other
agents. Therefore,

pij =

⎧
⎪⎪⎨

⎪⎪⎩

eij

di
out

i, j ∈ AR

uji
Threshold i ∈ AR, j ∈ AP

0 otherwise

(1)

where the Threshold parameter is the total number of links that Product agent can
make with Regular agents. The bounds on Threshold are a natural consequence of
the limited budget of companies in advertising their products. The uji parameter is
an indicator marking whether the Product agent is connected to the Regular agent.

At each interaction there is a chance for agents to influence each other and change
their desire vector for purchasing or consuming a product. During these interactions
the Product agents never change their attitude and maintain a fixed desire vector of 1
toward themselves and −1 toward the other advertising companies. The probability
that agent i is susceptible to agent j is denoted as αij and calculated as:

αij =
⎧
⎨

⎩

eji

di
in

i, j ∈ AR

cte i ∈ AR, j ∈ AP

(2)

The other important parameter in the agent influence process is εij, which
determines how much agent j will influence agent i . This parameter indicates the



Scaling Influence Maximization with Network Abstractions 249

role of social factors in decision making of agents. In contrast to previous work, we
did not restrict this parameter to a specific distribution to provide more flexibility
to the model. Moreover, in real life there is a correlation between the user demand
for different products in the market. The desire of customers for a specific prod-
uct is related to his/her desire toward other similar products. Matrix M models this
correlation, and we consider its effect in our formulation. The ultimate goal of our
marketing problem is to recognize the influential agents in the graph and define a set
of connections between the AP agents and AR agents, in such a way to maximize the
long term desire of the agents for the products. Note that the links between Product
agents and Regular agents are directed links from products to agents and not in the
opposite direction.

3.2 Generalized ICM

We use a generalized version of ICM similar to [13, 21]. The dynamics of the model
at each iteration k proceed as follows:

1. Agent i initiates the interaction according to a uniform probability distribution
over all agents. Then agent i selects another agent among its neighbors with
probability pij. Note that the desire dynamic can occur with probability 1

N (pij +
pji) as agent i’s attitude can change whether it initiates the interaction or is selected
by agent j .

2. Conditioned on the interaction of i and j :

• With propagability αij, agent i will change its desire:

{−→
Xi (k + 1) = εij M

−→
Xi (k) + (

1 − εij
)

M
−→
X j (k)

−→
X j (k + 1) = −→

X j (k)
(3)

Recall that M is the pre-defined matrix indicating the correlation between the
demands of different products.

• With probability of (1 − αij), agent i is not influenced by the other agent:

{−→
Xi (k + 1) = −→

Xi (k)−→
X j (k + 1) = −→

X j (k)
(4)

It is worthwhile to note that the above interaction model can be degraded to the
IC model, if we set εij = 0, M = I, and restrict pijs to be equal to 1 right after
activation of any node and equal to 0 the rest of the time. Also since the values of
the desire vector range from [−1 1], the xips ∈ [0 1] and xips ∈ [−1 0] can be
quantized to 1 and 0 respectively to match the IC model representation of activation
and deactivation.
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3.3 HIM Algorithm

Using these assumptions about customer product adoption dynamics, we devised a
new scalable optimization technique, Hierarchical Influence Maximization (HIM).
The pseudocode of our proposed HIM algorithm is presented in Table 1. Here, matrix
E represents the connection matrix among Regular agents, and matrices P and A
contain all the pij’s and αij’s of the market model, respectively. In other words, all the
interactions and influence probabilities between two pairs of Regular agents, (AR),
are embedded in the elements of these matrices. Agent contains all the information
about Regular and Product agent characteristics including desire vectors, (

−→
Xi ’s), and

influence tag vectors,
−→
Ii ’s with size P , where Iip indicates the number of times that

agent i has been selected as an influential node for product p. The algorithm receives
as input all the available data on the agents and the model, and the output of the
algorithm is the U matrix that contains the assignments of uji’s and shows the final
connection matrix between all the products and influential seed nodes.

The level of the hierarchy is indicated by parameter H which increments until the
stopping criteria are satisfied. At each hierarchy (H ), we iterate over all the nodes
(is) in the network of that hierarchy, (E H ), and list the neighboring agents around

Table 1 HIM Algorithm

HIM (Agent, E, P, A, AR , Hmax , r )

H = 0

EH = E
N H = |AR |
While stopCriteria do

H = H + 1

infList = NULL

for i = 1 to N H do

neighborList = FindNeighborList (i , r , EH )

EH
i = Subgraph (neighborList, EH )

EH
i = AddOutsideWorld (EH , EH

i )

(Pi , Ai ) = UpdateMat (EH, P, A, neighborList )

L = Optimize (Agent, EH
i , Pi , Ai )

infList = infList
⋃

L

Agent = UpdateAgent (infList)

end for

N H = |infList|
U = MakeU (Agent)

stopCriteria = UpdateCriteria (infList, H )

EH = UpdateHierarchy (infList)

end while

return U
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each node. The radius of the neighborhood, denoted with parameter r , indicates the
granularity of analysis. Based on radius r , we partition the network into subsections,
(E H

i ), and update the probability matrices, Pi and Ai for that subsection. HIM selects
the influential agents in that local network, E H

i , using an optimization technique and
tags them for future use. The process of node selection is described in detail in
Sect. 3.3.2. Then we add these influential nodes to the set of influential nodes that
have been identified in other neighborhoods in the same hierarchy.

3.3.1 Outside World Effect

When a local neighborhood is detached from the complete network, there exist
boundary nodes that are connected to nodes outside the neighborhood. These con-
nections that fall outside of the neighborhood can potentially affect the desire vector
of agents within the neighborhood. One possible approach is to ignore these effects
and only consider the nodes inside the partition. In this chapter we account for these
effects by allocating a virtual node to each boundary node. This virtual node is the
representative of all nodes outside the neighborhood that are connected to the bound-
ary node. Figure 3 illustrates the abstraction of outside world effect and shows how
the model’s parameters are calculated between each boundary and virtual node.

3.3.2 Node Selection

The process of selecting influential nodes is repeated at each hierarchy and at each
local neighborhood surrounding node i . Following previous works [12, 13, 21], we
model the desire dynamic of all agents as a Markov chain where the state of the local
neighborhood is a matrix of all existing agents’ desire vectors at a particular iteration k
and the state transitions are calculated probabilistically from the pair-wise interaction

Fig. 3 The network on the left is an example of a neighborhood around node e; the network on
the right is the equivalent network with virtual nodes representing the outside world effect. Here
w can be any interaction parameter such as link’s weight, α, or ε. The direction of the interaction
with the virtual node is based on the type of links the boundary node has with the nodes outside the
neighborhood. The value of the parameter is the average over all similar types of interactions with
outside world
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between agents connected in a network. The state of the local network around agent

i at the kth iteration is a vector of random variables, denoted as Xi(k) ∈ R
NHi P×1

(created through a concatenation of N H
i vectors of size P) and expressed as:

Xi(k) =

⎛

⎜
⎜
⎝

[−→X1(k)]
...

[−−→X N H
i

(k)]

⎞

⎟
⎟
⎠

We calculate the expected long-term desire of the agents in each local network
around agent i and this calculation results in the following formulation:

E[Xi(k + 1)] = E[Xi(k)] + Qi E[Xi(k)]. (5)

In order to solve this system of equations efficiently, we decompose the matrices:

Q =
(

A B
0 0

)

and −→μ X(∞) =
(−→μ R−→μ P

)

(6)

Here A ∈ R
RP×RP is the sub-matrix representing the expected interactions among

Regular agents while B ∈ R
RP×P2

represents the the expected interactions between
Regular agents and Product agents. Figure 4 shows the breakdown of matrix Q.

Fig. 4 Q matrix is a block matrix with size N × N where N is the total number of agents (R + P)

and each block has the size of P × P . Matrices A and B are the non-zero part of this matrix
which represent the interactions among Regular agents and interactions between Regular agents
and Products, respectively
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Moreover, −→μ R and −→μ P are vectors representing the expected long-term desire
of Regular agents and Product agents, respectively, at iteration k → ∞. Note that
vector −→μ P is known since the Product agents, the advertisers, are the immutable
agents, who never change their desire. Solving for −→μ R yields the vector of expected
long-term desire for all regular agents, for a given set of influence probabilities on a
deterministic social network.

A −→μ R + B −→μ P = 0 ⇒ −→μ R = A−1(−B −→μ P) (7)

Thus, we can identify the influential nodes in the network and connect the products
to those agents in a way that maximizes the long-term desire of the agents in the social
system. We define the objective function as the maximization of the weighted average
of the expected long-term desire of all the Regular agents in the network toward all
the products as:

max
u

∑

1≤k≤P

∑

i∈AR

(ρi · −→μ R,i ) (8)

−→μ R,i is the part of −→μ R that belongs to agent i , and ρi parameter is simply a weight
we can assign to agents based on their importance in the network. In the case of
equivalent ρi = 1 for all the agents, the above function reduces to the arithmetic
mean of the expected long-term desire vectors for all agents.

3.3.3 Convergence

Using the Brouwer fixed-point theorem [18], we prove that each local neighborhood
has a fixed-point, hence solving Eq. (5) at steady state is a valid choice. The theorem
states that:

Theorem 1 Every continuous function from a closed ball of a Euclidean space to
itself has a fixed point.

According to the calculation of Eq. (5), E[Xi(k + 1)] is a continuous function as
it is the sum of two continuous ones. Also since

−→
Xi (k + 1) in Eq. (3) is a bounded

function in [−1 1], its expectation (E[Xi(k + 1)]) will be bounded as well. As a
result we have a bounded, continuous function which is guaranteed a fixed point
by the Brouwer fixed-point theorem. This allows us to solve our problem with the
proposed optimization algorithm to find the assignment of uji’s in a way to maximize
the long-term expected desire vector of agents toward all the products in the market.

3.3.4 Update Hierarchy

When we proceed from one hierarchy to the next one, the selected nodes which
are propagated to the upper hierarchy are not necessarily adjacent. Therefore, we
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need to define the interaction model between them based on their position in the
real network. The UpdateHierarchy function is responsible for building the proper
network connection and interaction model for the next hierarchy based on the selected
influential nodes in current hierarchy. These nodes were propagated to the higher
hierarchy by being selected as influential nodes in at least one local neighborhood. It
is possible for a node to be present in multiple partitions and be selected more than
once.

Note that the selected nodes are unlikely to be adjacent nodes in the actual network
E . Therefore we need to find a way to form their connections to construct EH . To
do so, we look at the shortest path between these nodes in network E and use that to
calculate the weight of the edges in E H . In the E H network the weight of the link
between two selected nodes is the product of the weights of the shortest path between
these two nodes in the previous hierarchy. Also the probabilities of interaction and
influence between two influential nodes is set to be the product of the probabilities
along the shortest path between them.

3.3.5 Termination Criteria

To terminate the loop, we establish two different criteria in the UpdateCriteria
function. This function checks the stopping criteria based on the level of the hierar-
chy and the list of influential nodes. One criterion is based on the maximum number
of levels in the hierarchy and the other is based on the ratio of the selected influential
nodes and the advertising budget. According to the stopCriteria output, the algorithm
decides whether to proceed to a higher hierarchy or to stop the search, returning the
current U matrix to be used as the advertising assignment.

3.3.6 Optimization Procedure

The best assignment of Product agents to Regular agents is obtained through solving
the following optimization problem:

maximize
û

‖A−1Vec(M μ̂P û)‖1

subject to xip ∈ [−1 1], ∀ i ∈ AR,∑

j∈AR

uij = cte.
(9)

Here, we are looking for a set of uji’s which minimizes our cost or, in another
words, maximizes the desire value of agents. Since uji’s indicate the existence or lack
of connection between Product and Regular agents, they are binary variables and can
be identified using mixed integer programming. To solve our optimization problem,
we used the GNU Linear Programming Kit (GLPK) package, which is designed for
solving large-scale linear programming (LP) and mixed integer programming (MIP)
problems. GLPK is a set of routines written in ANSI C and organized in the form of
a callable library which is free to download from http://www.gnu.org/software/glpk.

http://www.gnu.org/software/glpk
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4 Evaluation

4.1 Experimental Setup

We conducted a set of simulation experiments to evaluate the effectiveness of our
proposed node selection method on marketing items in a simulated social system with
a static network. The parameters of the interaction model for all runs are summarized
in Table 2a. All results are computed over an average of 100 runs which represent
ten different simulations on each of ten network structures.

In the Regular and Product agent interactions, parameters α and ε are fixed for
a given interaction and are presented in Table 2a. We assume that these parameters
can be calculated by advertising companies based on user modeling. The pij values
for this type of interaction are calculated using Eq. (1) and are parametric. Table 2b
provides the parameters for our HIM algorithm (neighborhood radius and the maxi-
mum hierarchy level). The remaining part of the social system setup is given by
matrix M, which models the correlation between the demand for different products.
This matrix is generated uniformly with random numbers between [0 1] and, as it
has a probabilistic interpretation, the sum of the values in each row, showing the total
demand for an item, is equal to one.

4.2 Benchmarks

We compared our hierarchical algorithm with the non-hierarchical version, Optimized
Influence Maximization (OIM) described in [21] and a set of centrality-based

Table 2 Parameter settings

Parameter Value Descriptions

(a) Market model parameters

Threshold 2 Number of links between P and R agents

ε 0.4 Influence factor between P and R agents

α 0.8 Probability of influence between P and R agents

R Variable Number of Regular agents

P 10 Number of Product agents

NIterations 60,000 Number of iterations

NRun 10 Number of runs

NNet 10 Number of different networks

(b) HIM parameters

r 3 Neighborhood radius

Hmax 5 Max level of hierarchy
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measures commonly used in social network analysis for identifying influential nodes
based on network structure [14].

• OIM: The Optimized Influence Maximization method finds the influential nodes
globally using our optimization method on the original network.

• Degree: Assuming that high-degree nodes are influential nodes in the network,
we calculated the probability of advertising to a Regular agent based on the out-
degree of the agents and linked the Product agents according to a preferential
attachment model. Therefore, nodes with higher degree had an increased chance
of being selected as an advertising target.

• Betweenness: This centrality metric measures the number of times a node appears
on the geodesics connecting all the other nodes in the network. Nodes with the
highest value of betweenness had the greatest chance of being selected as an
influential node.

• PageRank: On the assumption that the nodes with the greatest PageRank score
have a higher chance of influencing the other nodes, we based the probability of
node selection on its PageRank value.

• Random: In this baseline, we simply select the nodes uniformly at random.

To evaluate these methods, we started the simulation with an initial desire vector
set to 0 for all agents, and simulated 60,000 iterations of agent interactions. The
entire process of interaction and influence is governed by Eqs. (3) and (4) (Sect. 3.2).
At each iteration, we calculated the average of the expected desire value of the agents
toward all products. This average is calculated over 100 runs (10 simulations on 10
different network structures) for the synthetic dataset and 100 runs on the real-world
datasets. Note that the desire vector of Product agents remain fixed for all products;
in our simulation it was set to 1 for the product itself and −0.1 for all other products
(e.g., μ1 = [1 − 0.1 − 0.1 . . . − 0.1]).

4.3 Synthetic Dataset

For the synthetic dataset, we used the same network generation technique described
in [21] for generating customer networks. To compare the performance of these
methods, the average expected desire value of the agents in a network with 150 agents
has been shown over time in Fig. 5. Here we selected 150 agents as an optimal number
of agents to compare all the algorithms together. With fewer agents, having ten
simultaneously marketed products saturates the network while with a larger number
of agents OIM suffers from scalability issues.

4.3.1 Marketing Effectiveness

In Fig. 5, by using the marketing-specific optimization methods for allocating the
advertising budget, the desire value of the agents toward all products increases the
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Fig. 5 The average of agents’ expected desire versus number of iterations, calculated across all
products and over 100 runs (10 different runs on 10 different networks). The optimization methods
have the highest average in comparison to the centrality measurement heuristics. As HIM is a
sub-optimal method, it is unsurprising that its performance is worse than the global optimization
method, OIM

most, resulting in the largest number of sales. Although HIM sacrificed some per-
formance in favor of scalability, it clearly outperforms the centrality measurement
methods. The locally-optimal selection approach of HIM results in a slightly lower
performance compared to globally optimal OIM.

Figure 6 shows the final average value of the expected desire of agents in the
last iteration for different number of Regular agents. Although OIM with global
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Fig. 6 The average of the final expected desire vectors for different numbers of Regular agents and
10 Product agents. The optimization based methods (OIM and HIM) outperform the other methods
in selecting the seed nodes. While OIM is more successful than HIM in selecting the influential
nodes, it is unable to scale-up to networks with 300 agents and higher
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Table 3 Runtime
comparison between OIM
and HIM

Number of agents OIM (s) HIM (s)

50 10.67 74.09

100 94.76 160.80

150 290.67 208.97

200 897.51 354.35

optimization method outperforms HIM and other centrality measurement methods,
it is incapable of scaling up to 300 and more agents in the network due to near singular
interaction matrix. HIM, with its ability to scale up linearly, provides a sub-optimal
and yet practical solution in selecting the influential nodes in large networks.

4.3.2 Run-Time

Table 3 shows a runtime comparison between the two optimization methods, HIM
(proposed) and OIM (original). In small networks the runtime of the global opti-
mization method is less than the hierarchical but as the size of network grows, its
run time increases exponentially while the run time of the HIM increases at a slower
rate. The long runtime of OIM for the networks larger than 200 nodes makes the
algorithm impractical for finding influential nodes in very large networks.

4.3.3 Jaccard Similarity

To analyze the differences between the algorithms’ selection of influential nodes, we
use the Jaccard similarity measurement. This measurement is calculated by dividing
the intersection of two selected sets by the union of these sets. Figure 7 shows this
measurement for all pairs of algorithms. The OIM and HIM algorithms have the
highest similarity compared to the other methods with a similarity value of 0.47.
The other pairs of methods have very low similarities, resulting in dark squares in
the figure. Not surprisingly, Random has the least similar node selection to other
methods. This shows that HIM finds many of the same nodes as the original OIM
algorithm, with a much lower runtime cost.

4.4 Real-World Datasets

We also evaluated the performance and scalability of our proposed algorithm on
real-world directed networks from the Stanford Network Analysis Project (http://
snap.stanford.edu/).

http://snap.stanford.edu/
http://snap.stanford.edu/
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Fig. 7 The average Jaccard similarity measurements between different methods, calculated over
100 runs (10 runs on 10 different networks). Lighter squares denote greater similarity between a
pair of algorithms. Note that HIM’s selection of nodes is fairly close to OIM’s optimal selection

• WikiVote The network contains all the Wikipedia voting data from the inception
of Wikipedia until January 2008. Nodes in the network represent Wikipedia users,
and a directed edge from node i to node j indicates that user i voted on user j .

• SlashDots is a technology-related news website known for its user community.
The website features user-submitted technology-oriented news. In 2002 Slashdot
introduced the Slashdot Zoo feature which allows users to tag each other as friends
or foes. This network contains friend/foe links between Slashdot users, obtained
in February 2009.

• Epinions This is a network extracted from the consumer review site Epinions.com.
Nodes are members of the site who have reviewed products. A directed edge from
i to j indicates j trusts i’s reviews (and thus i has influence over j).

In all the experiments on real-world social media, we have preprocessed the networks
to eliminate isolated nodes and boundary nodes (nodes with a degree of one).
Table 4a, b summarize the statistics of these real-world networks before and after
the preprocessing stages, respectively. We used the same experimental parameters
(presented in Sect. 4.1). The only differences are the number of products and the
advertising budget which are equal to 10 and 50, respectively.

We benchmarked our optimization methods against two state of the art influence
maximization methods, Prefix-excluding Maximum Influence Arborescence (PMIA)
[25] and DegreeDiscount [9], in addition to the centrality measures.

• PMIA: This heuristic algorithm, [25], examines the local neighborhood of each
node to find the influence pattern in each local arborescence in order to estimate the
influence propagation across the network. To our knowledge, the PMIA algorithm
is the best scalable solution to the influence maximization problem under the
Independent Cascade Model.

• DegreeDiscount: This heuristic algorithm presented by Chen et al. [9], refined
the degree method by discounting the degree of nodes whenever a neighbor has
already been selected as an influential node.
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Table 4 Statistics of the real-world networks

Dataset WikiVote SlashDot Epinion

(a) Before pre-processing

#Nodes 7 K 82 K 76 K

#Edges 100 K 950 K 509 K

Average Degree 14.6 13.4 6.7

Maximal Degree 1,167 3,079 3,079

Diameter 7 11 14

(b) After pre-processing

#Nodes 2 K 72 K 20 K

#Edges 38 K 840 K 3700

Average Degree 31.1 10.5 28.9

Maximal Degree 714 5,059 256

Diameter 7 13 12

Although using a hierarchical approach reduces the problem of dealing with huge
interaction matrices, it is still possible for network partitions to be quite large if they
are centered on a high degree node that is connected to a large portion of the network.
In addition to creating huge interaction matrices, these nodes will create star-shape
subgraphs which result in an infeasible solution for the optimization process. There
are a couple of solutions for dealing with these very high degree nodes: (1) ignore
them when we partition the network and assume that their high connectivity guar-
antees that they will appear within the network neighborhood of other nodes or (2)
ignore some of the low-degree neighbors of the node. In the following experiments,
we adopted the first approach in dealing with these large partitions. Therefore, in
all networks we only centered partitions around nodes with a degree less than 100.
Examining the average degree of nodes in all datasets presented in Table 4b shows
that this selection not only prevents huge matrices and star-shaped subgraphs but
still gives us a high percentage of nodes to process. The following results have been
generated for the WikiVote and Epinion datasets.

4.4.1 Marketing Effectiveness

Figure 8 gives the average expected desire value for all the agents over time for
300 K iterations of the simulated market. In this result, the OIM algorithm has the
highest value while HIM algorithm follows it closely. The performance of the HIM
algorithm approaches the global optimization method (OIM). The performance of
the DegreeDiscount heuristic, PMIA, and PageRank algorithms are very close to
each other with no significant differences.

While our algorithms outperform the other benchmarks on the WikiVote dataset,
on the Epinion dataset the degree-based algorithms perform better. Figure 9 shows the
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Fig. 8 The average of agents’ expected desire versus number of iterations for the WikiVote dataset,
calculated across all products over 100 runs. The dataset was preprocessed by eliminating isolated
and boundary nodes, yielding 2 K nodes, and the simulation was run for 300 K iterations. The
optimization methods have the highest average in comparison to the rest of benchmarks. As the
HIM algorithm is a sub-optimal method, its performance is less than the global optimization method
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Fig. 9 The average of agents’ expected desire versus number of iterations for the Epinion dataset,
calculated across all products, over 100 runs. The dataset was preprocessed by eliminating iso-
lated and boundary nodes, yielding 20 K nodes, and the simulation was run for 300 K iterations.
HIM outperforms PMIA and PageRank, but it beaten by the degree-based algorithms, Degree and
DegreeDiscount. The OIM algorithm could not be run on this dataset, due to the size of the network
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methods and datasets. The OIM algorithm could not be run on the Epinion dataset, due to the size
of the network

results for all the benchmarks and the HIM algorithm. Although the HIM performance
is better than PMIA and PageRank, it does not beat the degree-based algorithms,
Degree and DegreeDiscount.

Figure 10 summarizes the final expected desire value of agents for different
algorithms and for different datasets. The low value of desire vector is a consequence
of having a low number of advertisers within huge networks; during influence prop-
agation, the agent’s desire vectors are repeatedly multiplied by ε and α.

4.4.2 Analysis of Dataset Degree Distributions

To understand the poor performance of HIM on the Epinion dataset, we examined the
network structure to see how the networks different from one another. Table 5 shows
the quantile analysis of the node degree for the pre-processed datasets. Based on this
analysis we see that the WikiVote network is a very small network compared to other
two datasets, yet the max degree of the lower quartiles is higher the other networks.
This indicates that the WikiVote network has a more uniform degree distribution,
where node degree is not likely to be a highly discriminating feature of influence
propagation potential.

This can be verified by looking at the degree distributions of the datasets (Figs. 11,
12, and 13). In the Epinion and SlashDot datasets we have a small number of nodes

Table 5 Quantile analysis of node degree in preprocessed datasets

Dataset 0 % 25 % 50 % 75 % 100 %

WikiVote 3 25 44 79.25 714

Epinion 0 6 11 33 2,684

SlashDot 3 4 7 17 5,061
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Fig. 11 The degree histogram of the WikiVote dataset. The x-axis shows the logarithmic scale of
degree, and the curve shows the kernel density estimation. In this dataset the majority of nodes lie
in the middle range and have a degree between 50 and 100

Fig. 12 The degree histogram of the Epinion dataset. The x-axis shows the logarithmic scale of
degree, and the curve shows the kernel density estimation. In this dataset the network has a sparse
structure, with the majority of nodes possessing a degree less than 10
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Fig. 13 The degree histogram of the SlashDot dataset. The x-axis shows the logarithmic scale of
degree, and the curve shows the kernel density estimation. In this dataset, the same as Epinion
dataset, the network has a sparse structure, with the majority of nodes possessing a degree less
than 10

with very high degrees while most of the nodes in the network possess a degree less
than 10. In these networks, a few nodes serve as hubs and are highly connected,
whereas the other nodes have few connections that, in the worst case, aren’t even
connected to the high degree node. Hence our heuristic of not centering the partitions
on high degree nodes sabotages the performance of HIM’s optimization procedure.
On the other hand the degree-based algorithms can effectively target these high degree
nodes. In contrast, in the networks such as WikiVote or the synthetic networks where
the node degree is more uniform, HIM works well as the nodes in the middle bins
are more numerous and better connected to the entire network. In this case, the
degree-based algorithms perform poorly since degree is not as discriminative.

4.4.3 Optimization with Degree-Based Heuristic

Based on these results, we modified our preprocessing procedure to use a
degree-based heuristic to select the nodes considered by our optimization technique.
Here, we selected the top 5 % of high degree nodes in the Epinion dataset and created
a single-level abstracted network based on the shortest path among these nodes. Then
we ran our optimization technique (OIM) on the single network. Figure 14 shows the
result of OIM and other benchmarks on this preprocessed network. The result shows
that applying optimization to the abstracted network conclusively outperforms the
other benchmarks.
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Fig. 14 The average of agents’ expected desire versus number of iterations for the Epinion dataset,
calculated across all products and over 10 different runs, for 300 K iterations. The dataset was
preprocessed by selecting the 1 % top degree nodes and building a subgraph based on the shortest
path between these nodes, rendering the graph small enough to be directly processed with OIM.
OIM outperforms the degree-based methods

5 Conclusion and Future Work

In this chapter, we address the problem of influence maximization in social networks
for the purpose of advertising. In an advertising domain, our goal is to identify
the influential nodes in a social network as advertiser targets based on the network
structure, the interactions among the agents in the network, and the limited advertising
budget. We adopted agent-based modeling to model such a social system as it is
a powerful tool for the study of phenomena that are difficult to study within the
confines of the laboratory. We also attempted to model the market, the interactions and
propagation of influence, and the product adoption more realistically by incorporating
factors such as product correlation and group membership of agents.

Here we present a general hierarchical approach for applying optimization
techniques to influence maximization. The advantage our method has over network-
only seed selection techniques is that it can account for item correlations and com-
munity effects on the product adoption rate. Our method comes close to the optimal
node selection, at substantially lower runtime costs. However, prior analysis of the
network degree distribution of the network is essential for identifying the correct
preprocessing and abstraction procedure. The HIM algorithm can be used to improve
the scalability of influence maximization on networks with a semi-uniform degree
distribution. In networks with a high centralization, we recommend applying our
optimization technique to an abstracted version of the network created from the high
degree nodes. In this chapter, we have proposed one approach to partitioning the
network into overlapping sections and performing influence maximization on the
partitions. Another alternative would be to leverage preexisting network divisions
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computed with community detection algorithms for the first level of the hierarchy.
Furthermore, working with dynamic networks where the agents can enter and leave
the network would be useful for practical applications in which the pool of customers
is constantly changing.

An important potential extension of this work would be to generalize the market
simulation to explicitly model the adversarial effects between competing advertisers
as a Stackelberg competition, in which one advertiser places ads and subsequent
competitors have knowledge of existing ad placement. In this chapter we assumed that
the probability of interaction and influence between two agents is small, compared
to the size of the network, which results in the agents sticking to a decision for a
reasonable period of time. However if the network is smaller or the probability of
interaction increases, there can be large fluctuations in the agents’ desire vector.
Applying a parameter to the model which forces the agents to retain their decisions
for a minimum period, regardless of external interactions, would ameliorate this
issue [20]. A more general framework for modeling and simulating customer product
adoption within social networks would be of great practical importance; our model
represents initial steps towards this ambitious goal.
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