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Abstract

This paper presents a design process for viscoelastic dampers and experimental test results of a 5-storey single bay steel structure
with added viscoelastic dampers. The mechanical properties of viscoelastic dampers and the dynamic characteristics of the model
structure were obtained from experiments using harmonic excitation, and the results were used in the design process. The additional
damping ratios required to reduce the maximum response of the structure to a desired level were obtained first. Then the size of
dampers to realize the required damping ratio was determined using the modal strain energy method by observing the change in
modal damping ratio due to the change in damper stiffness. The designed viscoelastic dampers were installed in the first and the
second stories of the model structure. The results from experiments using harmonic and band limited random noise indicated that
after the dampers were installed the dynamic response of the full-scale model structure reduced as desired in the design process.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Viscoelastic dampers (VED) are highly effective in

mitigating the dynamic responses of building structures

due to wind or seismic excitation, and practically were

used in the twin towers of the World Trade Center in

New York for the reduction of wind-induced vibra-

tions. Many researches have been conducted to derive

analytical models for VED and to verify the effect on

structural control through experiments [1–4]. Previous

studies showed that VED can increase structural damp-

ing significantly, which brings the decrease of structural

responses, such as displacement and absolute acceler-

ation. The results of these studies also indicated that

the performance of VED depends on factors such as

excitation frequency and environmental temperature,

and so the effects of VED should be evaluated by con-

sidering these factors. However, in most experiments,

small-scale model structures with scaled VED were
used, and only few experimental researches were con-
ducted which verified the effectiveness of VED in a full-
scale model structure.
Another issue related to practical applications of

VED is the development of the design procedure for
VED to achieve a prescribed structural response level.
For this purpose, a systematical decision of such design

factors as number, size, optimal location, and instal-
lation method is required. In many studies, however,
VED of arbitrary sizes were installed and their

vibration control effect was observed. Zhang et al. pro-
posed a sequential procedure for optimally placing
VED based on the concept of degree of controllability

[5]. Lee et al. determined the location and the size of
VED by using pole assignment method [6]. These stu-
dies showed that placing VED at the position with the

largest inter-storey displacement is most effective.
Chang et al. presented a design guideline for steel
frame structures with VED, based on the results of

previous studies, and verified the effectiveness of
the design procedure by conducting a experiment for
2/5-scale structural model [7]. Although this design

procedure provides detailed prescription and its effec-
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tiveness is verified through experimental study, further
experimental studies are required for practical appli-
cation. Especially, through full-scale experiment, many
design considerations can be provided and the results
will be a basis for structural application of VED.
In this study, based on the results of cyclic tests of

damper elements and on the results of system identifi-
cation tests of a 5-storey full-scale model structure
vibrated using the hybrid mass driver (HMD) located
on the fifth floor, VED were designed to satisfy a given
target response. The additional damping ratios
required to reduce the maximum dynamic response of
the structure to a given level were obtained first by
convex model [8]. The size of dampers was determined
using the modal strain energy method which uses the
required modal damping ratio [7]. The stiffness of the
supporting braces was also considered in the determi-
nation of the modal properties. Then the structure with
the VED installed in the lower two stories which have
the largest inter-storey displacement was tested to vali-
date their vibration control effect. The structure was
excited by the HMD which generates sinusoidal and
band-limited excitation forces. Only linear-elastic
response was considered and soil-structure interaction
and torsional response were neglected.
2. Properties of viscoelastic materials

The design of VED requires the knowledge of the
mechanical properties of viscoelastic material. The
properties of the viscoelastic material depend on vari-
ables such as temperature, excitation frequency, and
strain, and therefore, the effect of these variables on the
mechanical properties of VED were investigated by
experiments. Test specimens shown in Fig. 1 were made
of two layers of viscoelastic materials, each layer 10
mm in thickness and 150 cm2 in area. Ten cyclic tests
were conducted on the specimens by using sinusoidal
excitation with 0.5 Hz at the temperature of 24

v
C with

various maximum strains of 20, 25, 50, 75, and 100%.
Table 1 presents the test results for storage stiffness and
loss factor obtained for different strains, and shows that
the loss factor was not sensitive to the maximum strain.
In addition, ten cyclic tests were also conducted by
using sinusoidal excitation at 24

v
C with various forc-

ing frequencies and maximum strains. Test results
shown in Table 2 indicate that storage stiffness and loss
factor significantly depend on excitation frequency.
Finally temperature-dependent behavior was investi-
gated by a series of tests at various temperatures with
excitation frequency of 0.5 Hz and strains of 20 and
50%. Table 3 shows that the loss factor is very sensitive
to temperature. Fig. 2 shows that the shear storage
modulus increases with increasing excitation frequency.
3. Experimental setup

3.1. Model structure for experiment

The experimental model, which is shown in Fig. 3, is
a full-scale five-storey steel structure with storey height
T

S

in

H

0

0

0

0

1

t

Fig. 1. Test specimens of viscoelastic materials.
able 1

torage stiffness and loss factors for viscoelastic test specimen shown

Fig. 1 for different displacements (0.5 Hz harmonic test)
orizontal displacement S
torage stiffness (kN/m)
 Loss factor
.20 t (2.0 mm) 1
260
 0.66
.25 t (2.5 mm) 1
203
 0.67
.50 t (5.0 mm) 1
080
 0.70
.75 t (7.5 mm)
 966
 0.72
.00 t (10.0 mm)
 926
 0.69
is thickness at 10 mm.
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of 6 m, plan of 6� 6 m, and storey mass of 20 ton.

Each floor is composed of four identical wide-flange

type steel columns. A HMD shown in Fig. 4, is
F

F

installed on the fifth floor to excite the model structure.
Fig. 5 shows the location of VED and accelerometers.
3.2. System identification

The fundamental frequency was found experimen-
tally to be 0.50Hz by investigating the free vibration
response after the excitation by the HMD stops. Since
each storey mass was known and storey stiffness was
uniformly distributed, the storey stiffness could be esti-
mated, which was 2440 kN/m. Then, eigenvalue analy-
sis was performed for the full-scale structure. For the
analysis, the structure was assumed to be a shear build-
ing with 5 DOF, and that the weight of each storey
was concentrated on the floor. Five natural frequencies
were identified from eigenvalue analysis: 0.51, 1.46,
ig. 2. Shear storage modulus of viscoelastic materials shown in

ig. 1 with 50% strain.
ig. 3. Full-scale model structure for experiment.
F
Table 2

Storage stiffness and loss factors for viscoelastic test specimen shown

in Fig. 1 for different frequencies
Horizontal

displacement

E

fr
xcitation

equency

S

(

torage stiffness

kN/m)

L

fa
oss

ctor
0.20 t (2.0 mm) 0
v

.01 Hz 4
92 0
.27
(24 C) 0
.1 Hz 7
09 0
.41
0
.2 Hz 8
47 0
.48
0
.3 Hz 9
32 0
.54
0
.5 Hz 1
102 0
.67
1
.0 Hz 1
502 0
.73
2
.0 Hz 1
718 0
.90
3
.0 Hz 1
760 1
.08
4
.0 Hz 2
158 1
.02
5
.0 Hz 2
364 1
.04
6
.0 Hz 2
248 1
.15
0.50 t (5.0 mm) 0
v

.01 Hz 4
72 0
.28
(24 C) 0
.1 Hz 7
18 0
.46
0
.2 Hz 8
56 0
.55
0
.3 Hz 9
40 0
.61
0
.5 Hz 1
121 0
.68
1
.0 Hz 1
370 0
.80
2
.0 Hz 1
539 1
.01
3
.0 Hz 1
878 1
.01
4
.0 Hz 1
930 1
.13
5
.0 Hz 2
286 1
.19
6
.0 Hz 2
204 1
.30
1.00 t (10.0 mm) 0
v

.01 Hz 4
70 0
.32
(24 C) 0
.1 Hz 6
74 0
.52
0
.2 Hz 7
71 0
.60
0
.3 Hz 8
86 0
.61
0
.5 Hz 9
68 0
.70
1
.0 Hz 1
085 0
.81
2
.0 Hz 1
327 0
.85
t is thickness at 10 mm.
Table 3

Storage stiffness and loss factors for viscoelastic test specimen shown

in Fig. 1 for different temperatures (0.5 Hz harmonic test)
Horizontal

displacement

T

(
v

emperature

C)
Storage stiffness

(kN/m)

L

f

oss

actor
0.20 t (2.0 mm) +
40
 637 0
.39
+
30
 833 0
.47
+
24
 1260 0
.66
+
10
 2411 0
.97
0
 4478 0
.97
�
5
 10,069 0
.79
�
10
 20,466 0
.47
0.50 t (5.0 mm) +
40
 553 0
.40
+
30
 696 0
.53
+
24
 1080 0
.70
+
10
 2032 0
.94
0
 3711 1
.04
�
5
 6471 1
.06
�
10
 14,619 0
.58
t is thickness at 10 mm.
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2.30, 2.95, and 3.37 Hz. To obtain the modal damping
ratio experimentally, sinusoidal loadings with fre-
quency ranges from 0.4 to 0.8 Hz were applied to the
structure at the increment of 0.05 Hz. Near the pre-
dicted natural frequency the increment was further
reduced. Fig. 6 plots the transfer function for the accel-
eration of the top storey, from which the fundamental
natural frequency of 0.50 Hz was observed again and
the corresponding damping ratio of 1.98% was
obtained by using half power bandwidth method. In
the case of seismic analysis, modal mass participation
factors in terms of percentage of the 100 metric ton
total mass for first to fifth mode are, respectively,
87.95, 8.72, 2.42, 0.75, and 0.16%, which indicates that
the first mode predominates over other modes.
4. Determination of required damping ratio

To design the VED to be used in experiment, we first
identified the fundamental vibration mode and the
modal damping ratio, assuming that the structural
response is dominated by the fundamental mode. Then
the damping ratio of the structure required to achieve a
given target response was computed using the convex
model, which is one of the methods of predicting
maximum responses for non-stationary earthquake
loads. The convex model is known to be useful
especially when only limited amount of information
about load exists, although the solution of the model
tends to be conservative. Many variables can be used
to represent the uncertainty of earthquake loads in
convex model, and in this study the global energy-
bound (GEB) convex model that utilizes the earth-
quake energy as the main variable was used [8]. The
maximum displacement of a SDOF system under
earthquake loads is given as follows:

SyðT ;nÞ ¼
ffiffiffiffi
E

p
T3=2

4p
ffiffiffiffiffiffiffiffi
2pn

p ð1Þ

where E is the limiting value of the input energy and T
and n are the natural period and damping ratio,
respectively.
If the assumption that the installation of VED does

not affect the natural frequency significantly and it only
change the damping ratio into nVED, the rate of change
in response quantities can be simplified. Accordingly,
with given response reduction ratio, R, the required
damping ratio can be obtained as follows

nVED ¼ nR�2 ð2Þ

In this study, the VED were designed so that the
maximum response of the structure is reduced to half
of the responses of the bare structure with n ¼ 1:98%
when subjected to the same level of dynamic load.
From Eq. (2), the required modal damping ratio is
Fig. 4. Photograph of the HMD used in the experiment experiment.
Fig. 5. Locations of VED and accelerometers.
Fig. 6. Transfer function from the acceleration of HMD to the

acceleration of the roof storey for the uncontrolled structure.
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7.92%, and therefore 5.94% of the modal damping

ratio needs to be added to the structure to reduce the

response to half.
5. Design of viscoelastic dampers

With the required damping ratio at hand, the modal

strain energy method was used to determine the size of

VED to provide the structure with the desired amount

of modal damping ratio. Modal strain energy method

was first developed by Johnson and Kienholz [9], and

successfully was applied to evaluate equivalent damp-

ing ratio of VED by Chang et al. [7].
The equivalent damping ratio for the ith mode of the

structure with VED is expressed as [10].

niVED ¼ Ei
d

4pEi
¼ 2pgiE

i

4pEi
¼ gi

2
ð3Þ

in which Ei
d and Ei denote, respectively, the energy dis-

sipated in one cycle by the dampers and strain energy

of the structure for the ith vibration mode, and gi

denotes an ith modal loss factor, which is expressed as

follows

gi ¼
/T

i KI/i

/T
i KR/i

ð4Þ

in which /i is the ith mode of the structure with VED,

and KR and KI , respectively, denote the real part and

imaginary part of complex stiffness matrix of the struc-

ture with VED. Thus

KR ¼ K þ KVED ð5Þ
KI ¼ gKVED ð6Þ

where K is the stiffness matrix of the bare structure,

KVED is the stiffness matrix due to damper contribution

alone, g is the loss factor of viscoelastic material. It is

noticed that both the KVED and g are functions of

modal frequency and operating temperature. Substitut-

ing Eq. (4) into Eq. (3), and using Eqs. (5) and (6), we

can obtain following formula for equivalent damping
ratio

niVED ¼ g
2

1� /T
i K/i

/T
i K þ KVEDð Þ/i

" #
ð7Þ

The size of VED was computed assuming that a
pair of VED were installed symmetrically in the first
and the second stories where the inter-storey drift
computed from numerical analysis was found to be
largest. To maximize the relative shear deformation in
the dampers, the VED were connected to the struc-
ture by Chevron-type supporting braces as shown in
Fig. 7.
As the VED and the braces were connected in series,

the complex stiffness of the brace-VED system, k�, is
obtained as follows:

1

k� ¼ 1

kVED þ igkVED
þ 1

kb
ð8Þ

where kVED is VED storage stiffness and kb is brace
stiffness. Then, k� can be expressed as follows:

k� ¼ akVED þ igakVED

a þ 1þ ig
¼ a2kVED þ ð1þ gÞakVED

a2 þ 2a þ 1þ g2

þ i
gkVEDa2

a2 þ 2a þ 1þ g2
ð9Þ

where a is the stiffness ratio of the brace and the VED,
kb/kVED, and the first and the second term in the right-
hand-side of Eq. (9) correspond to the storage stiffness
and the loss stiffness, respectively. The property of the
VED storage stiffness is shown in Tables 1–3. As a
increases, i.e. as the stiffness of brace increases for
given VED, the complex stiffness of the combined
brace-VED system approaches that of the VED:

lim
a!1

k� ¼ kVED þ igkVED ð10Þ

Fig. 8 plots the variation of the storage stiffness and
loss factor as a function of a when kVED ¼ 1; g ¼ 0:7.
The storage stiffness of the combined system approa-
ches the stiffness of VED very rapidly, while the loss
factor gradually approaches that of VED.
The dimension and stiffness of the supporting

steel brace installed in the test model are as follows:
length, 5.6 m; cross-sectional dimension (H) 200 �
Fig. 7. VED with supporting chevron braces.
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100� 4:5� 7 mm; cross-sectional area, 23.18 cm2;

Young’s modulus, 210 GPa, and the slope h, 57.6
v
.

With this information, the stiffness of a brace mem-
ber was computed to be 24.9 MN/m. Because two
brace members are used in a Chevron-type brace, the
stiffness of the Chevron brace is twice that of the sin-
gle brace, which is 49.8 MN/m.
With the given modal damping ratio required to be

supplied by VED, the first step of VED design is to

determine VED stiffness to achieve a given target
damping ratio. Then the size of VED can be determ-
ined from the stiffness. The required stiffness is com-
puted using the modal strain energy method by
observing the change in modal damping ratio for vari-

ous VED stiffness. The stiffness of the brace was not
considered in the design process, but was considered
later to check the significance of its effect.
Modal properties of the model structure with vari-

ous size and stiffness of VED were obtained through
modal strain energy method. Fig. 9 presents the

change in modal damping ratios as a function of the
stiffness ratio, kVED/ki, where ki is the ith storey stiff-
ness before VED are installed. The equation for the
modal strain energy method, Eq. (7), was used for the
computation.
An upper bound in the increment of the fundamental

damping ratio is shown in the Fig. 9. When VED are

placed only in the first storey, the upper bound is 3.3%,
while it is 7.58% when they are installed both in the
first and the second stories. When the inherent viscous
damping ratio of 1.98% is considered, the added damp-
ing ratio of 7.58% was found to exceed the total damp-

ing ratio required to reduce the response to half, which
was computed to be 7.92% by convex model. There-
fore, if the stiffness of the designed VED, when they
are installed both in the first and the second storey,
provides the additional damping ratio of 7.58%, then
the test structure with VED can be expected to satisfy
the given target performance. In this study, the VED
were designed so that the maximum stiffness ratio
became 1.5 accounting for the error between the theor-
etical prediction and the test, even though the modal
damping ratio reaches the upper bound at the ratio of
1.0. With the storey stiffness ki ¼ 2400 kN=m and
two VED installed symmetrically in a storey, the
required stiffness of a single VED was computed to be
1830 kN/m.
If two layers of viscoelastic materials are used in a

single damper, the required area for a layer is obtained
as follows:

A ¼ kVEDt

2G
ð11Þ
Fig. 9. Change in modal damping ratios as a function of stiffness

ratios: (a) VED installed in the first storey; (b) VED installed in the

first and second storeys.
Fig. 8. Storage stiffness and loss factor versus a: (a) storage stiffness,
(b) loss factor.
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where G is the shear storage modulus of the viscoelas-

tic material and t is the thickness. The shear storage

modulus G is usually a function of frequency and tem-

perature. Since the frequency at which VED operate is

approximately the fundamental structural modal fre-

quency of 0.51 Hz, the design excitation frequency was

assumed to be 0.5 Hz and G is 0.72 Mpa based on the

test results at the temperature of 24
v
C, as shown in

Fig. 2. In the case of broad-band earthquake excita-

tions, the response of general building such as model

structure is governed by fundamental mode, and the

design of VED could be performed without much error

assuming that VED have properties corresponding to

fundamental frequency. The thickness t needs to be

decided considering the allowable shear deformation to

finalize the area. In this study, the allowable drift of

the first storey and the maximum allowable shear strain

were set to be 1.2 cm and 0.6, respectively, then the

required thickness became 1:2=0:6 ¼ 2 cm. Finally the

area of the layer was computed to be 254 cm2. Fig. 10

depicts the VED designed in accordance with the above

process.
The ratio of brace stiffness to VED stiffness, a, is

about 27, and from Eq. (9) the storage and loss stiff-

ness of the brace-VED system become close to those of

VED, respectively. Therefore it can be noticed that the

storage stiffness of the brace-VED system is almost

identical to that of the VED alone and that the loss
stiffness decreases slightly from 0.7. The modal damp-
ing ratio of the structure with such properties can be
computed to be n1¼ 4:98% when VED are installed in
the first storey, and n1¼ 8:97% when they are installed
in both first and second stories, which is larger than the
target value of 7.92% by the convex model.
6. Experimental results

Experiments were carried out with three different
cases of VED location and temperature: In case 1,
VED were installed in the first storey and the experi-
ments were carried out at 30

v
C. In case 2, the dampers

were installed in the first and the second storey at the
same temperature, and in case 3, at 24

v
C, VED were

located both in the first and the second storey. The
structure was vibrated harmonically for 60 s by the
HMD with the same forcing frequency scheme as
applied in the system identification tests described
before.
Fig. 11 plots the transfer functions from sinusoidal

HMD force to the fifth floor acceleration of the struc-
ture for each case of VED installation. The amplitude
of the transfer function decreased significantly with the
installation of the VED, and that the amount of the
decreased amplitude is larger for the case 3 at lower
temperature. The natural frequency, at which the peak
occurs, increased as the number of added VED increa-
ses. This trend indicates that the stiffness of the struc-
ture increases with the installation of VED. The modal
damping ratio of the model structure with the added
VED, obtained from the half power bandwidth
method, were found to be 3.2 and 4.5% for cases 1 and
2, respectively. At the temperature of 24

v
C (case 3),
F

t

Fig. 10. Viscoelastic dampers used in the experiment: (a) Dimension

of the designed VED; (b) Photograph of the VED.
ig. 11. Transfer functions from sinusoidal HMD acceleration to

he fifth floor acceleration.
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the modal damping ratio of the structure further
increased to 6.6%. These values for the modal damping
ratio were much higher than 1.98% of the bare frame,
but lower than the target damping ratio 7.84% com-
puted by the modal strain energy method to reduce the
structural response to half.
This difference may be attributed from the inaccur-

acy inherent to the modal strain energy method. Modal
strain energy method is based on the assumption that
the structure with VED has proportional damping.
However, the structure with VED is non-proportional
damping system. Accordingly, the violation of this
assumption brings the difference between the analytical
and experimental results. Another source of error is
inaccurate modeling of stiffness matrix. Modal strain
energy method indicates that the effect of VED
depends on the storey stiffness. Therefore, an accurate
knowledge of storey stiffness is essential for accurately
estimating the effects of VED. Since, in this study, the
stiffness matrix is simply composed to fit the first
modal frequency based on the assumptions that accu-
rate mass matrix is given and each storey has identical
storey stiffness, the difference may be amplified.
Fig. 12 plots the transfer functions of the structure

subjected to band-limited white noise exciting force for
cases 1 and 2 of VED installation. Similar to the results
for sinusoidal force, the amplitude of the transfer func-
tion decreased with the installation of the VED. It also
can be observed that as expected the natural frequency,
at which the peak occurs, increased as the number of
added VED increases. Compared with the results
shown in Fig. 11, the effects of VED on response
reduction under white noise are not as significant as
those under harmonic excitation. This is because har-
monic load causes resonant response, and it brings the
significantly increased uncontrolled response.
7. Summary

In this study, VED were designed, tested, and
installed in a five-storey full-scale model structure to
validate their vibration reduction effect. The material
properties of the dampers were obtained from cyclic
tests and were used in the design process. An excitation
scheme using a hybrid mass driver was developed and
applied to the model structure. The additional damping
ratio required to reduce the maximum response of the
structure to a given level was obtained first by convex
model. The size of dampers was determined using the
modal strain energy method by observing the change in
modal damping ratio due to the change in damper stiff-
ness.
Based on the analytical and experimental results, the

VED, designed following the procedure mentioned pre-
viously, were found to be effective in vibration control
of the full-scale structure. From experiments, as expec-
ted, the modal damping ratios generally increased as
the number of VED increased. In the transfer func-
tions, the acceleration response reduced significantly as
a result of VED installation. The response reduction
effect of VED was more significant at the temperature
of 24

v
C than at 30

v
C.
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