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A B S T R A C T

The failure probability (reliability index) and evaluation of safety of structures is a subject of interest in structural 
engineering. In order to calculate the reliability index, moment methods require an explicit mathematical form of 
the limit state function and gradient of this function, and simulation methods are dependent on a large number of 
evaluations of this function. In this study, in order to reduce computational efforts, the optimization problem is 
formulated so it can calculate the reliability index for structural problems with an implicit limit-state function. 
For this purpose, the objective function is formulated based on the Hasofer and Lind method, and the limit state 
function is defined based the first mode frequency. The random variables consist of modulus of elasticity, ma-
terial density, non-structural mass, and cross-sectional area. To evaluate accuracy of the proposed approach in 
estimating the reliability index, four truss structures are selected and their reliability index is calculated by using 
six meta-heuristic algorithms including WEO, AWEO, CBO, ECBO, VPS, and EVPS. Compared with the Monte 
Carlo simulation method, the proposed approach shows acceptable performance.   

1. Introduction

The analysis and design of structures based on reliability theory is a
topic that has recently been seriously considered. This attention is 
associated with the random nature of the structural parameters, such as 
material properties, external loads, geometric characteristics of the cross 
section of members, geometric dimensions of structures, and so on. 
Using reliability theory in structural systems, the uncertainties caused 
by the statistical nature of the structural parameters can be introduced 
as mathematical equations, while the safety and performance consid-
erations are applied quantitatively in the design process [1,2]. Assess-
ment of the probability of failure or calculation of reliability index is a 
fundamental issue in the reliability analysis of structures. One of the 
simplest and most basic first-order estimation methods for the calcula-
tion of reliability index was proposed by Cornell in 1969 [3]. In 1974, 
Hasofer and Lind defined the new reliability index as the minimum 
geometric distance between the origin and the reduced limit state 
function [4]. In the past decades, researchers have provided many 
different methods to calculate the probability of failure or reliability 
index that can be categorized as follows: 

Moment methods: These methods are based on various moments of 
the random variables such as mean value, variance, and other higher 

order moments. Using gradient methods, the shortest distance of the 
limit state function is defined from the center of the standard normal 
coordinate system, called the reliability index. Then, the probability of 
failure is achieved by having this index [5–8]. 

Simulation methods: In these methods, like the Monte Carlo 
simulation, random samples are generated based on the sampling 
probability density function for random variables. Then the limit state 
function is calculated for each sample. The probability of failure is ob-
tained by dividing the number of times that the limit state function has 
become negative by the total number of simulations [9–13]. Since the 
Monte Carlo simulation method requires a large number of simulations 
and results in a high volume evaluations of limit state function, re-
searchers are moving towards new efficient simulation methods such as: 
Asymptotic Sampling (AS) [14], Weighted Simulation (WS) [15], 
Asymptotic Weighted Simulation (AWS) [16]. 

Meta-heuristic methods: These methods transform the reliability 
index calculation problem into a constrained optimization problem. In 
these methods, the shortest distance of the limit state function from the 
origin of the standard normal coordinate system is considered as the 
objective function and constraints is also introduced as the limit state 
function. Population-based meta-heuristic methods are used to find the 
reliability index [17–23]. These methods have the following advantages: 
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� Despite moment methods, there is no need to the explicit mathe-
matical form of limit state function and the calculations can be 
performed with merely having access to the implicit form.  
� In moment methods, it is necessary to calculate first-order (such as 

FORM method) and second-order (such as SORM method) de-
rivatives for the limit state function. However, this method does not 
require derivatives of the limit state function.  
� FORM and SORM methods, respectively, consider the limit state 

function with first-order and second-order approximations, which 
would have errors themselves; therefore, none of the FORM and 
SORM methods is a powerful method for complex limit state func-
tions such as nonlinear limit state functions, functions having several 
points of failure, or a combination of limit state functions. 
� Simulation methods require a large number of simulations (espe-

cially for low probability of failure), and as a result, a high volume of 
evaluation of limit state function. Moreover, the point with the most 
probability of failure, i.e. the point with the smallest distance from 
the origin in the standard normal space, which leads to a zero limit 
state function, is not calculated in simulation methods, while it is 
calculated in meta-heuristic methods. 
� Despite the simplicity of moment methods, the answer to the prob-

lem is highly dependent on the starting point of the search, and in 
problems with multiple design points, it may converge to the optimal 
local response, which is not desirable. However, meta-heuristic 
methods are capable of leaving the local optimum and can be inde-
pendent of the initial values of the search points. 

Previous researchers have applied meta-heuristic algorithms to 
calculate the reliability index of mathematical problems, but fewer 
studies have been performed on structural problems whose limit state 
functions are not available in the form of explicit mathematical 
formulas. 

Therefore, in this paper, population-based meta-heuristic algorithms 
are used to calculate the reliability index of the structures. These algo-
rithms include WEO, AWEO, CBO, ECBO, VPS and EVPS which is used 
for various optimization problem [24–27]. In this paper, four truss 
structures are expressed with frequency probabilistic constraints. Each 
problem is presented with 6 meta-heuristic algorithms for each of which 
100 runs are performed and finally, the results are compared with each 
other. 

The rest of this article is organized as follows: Part 2 provides a brief 
overview of the concept of reliability assessment. In Part 3, optimization 
algorithms are briefly presented. Four numerical problems of truss 
structures with 10, 72, 52, and 120 members are presented in Part 4. All 
of them are set to frequency constraint and finally, Part 5 is devoted to 
the conclusion of the study. 

2. Reliability assessment

Assessment of Probability of Failure (Pf) is a fundamental issue in
reliability analysis of structures. In this section, different classical 
methods of this theory are expressed. In these methods, probabilistic 
uncertainties are considered as random variables in the design model. 
The performance of each structure can be expressed by the function of 
the basic random variables of the structure, called the Limit State 
Function (LSF), so that the positive value of the limit state function 
denotes the safety and the negative value of the state limit function in-
dicates the failure. In analysis of a system, the failure area is defined by 
the function g(R, Q) ¼ [(R-Q � 0)] in which R and Q represent the values 
of resistance and the load effects on the structure, respectively. The 
probability of structural failure can be expressed by considering the joint 
probability density function, fR,Q, for the random variables of R and Q as 
follows: 

Pf ¼PfgðR;QÞ� 0g¼
Z

g�0
fR;Q dR dQ (1) 

Obtaining a direct answer to this integral is difficult due to the 
complexity of the joint probability density function (especially for var-
iables with non-normal distribution), and in most cases, it is done using 
simplifying assumptions. These assumptions are presented in two 
approximation and simulation methods. Approximation methods based 
on the reliability index use the first and second-order Taylor expansion 
of limit state function. Simulation-based methods calculate the proba-
bility of failure directly and using sampling. 

One of the simplest and most basic first-order estimation methods for 
reliability is provided by Cornell [3] in 1967. This method is based on 
the separation of the health area (g > 0) and the failure area (g � 0), and 
the linear expansion of the limit state function around the mean point. 
Finally, the definition of the reliability index, β, is expressed as follows: 

β¼
E½g�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½g�

p ¼
E½R� � E½Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½R� � Var½Q�

p or β¼
μg

σg
¼

μR � μQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

R � σ2
Q

q (2)  

where g indicates the limit state function and is calculated according to 
Eq. (3). 

g¼ gðR;QÞ ¼ R � Q (3)  

In this equation, E[g] ¼ μg, Var[g] ¼ σg
2, and σg indicate the mean value, 

variance, and standard deviation of g function. 
Cornell method is not very efficient in solving reliability problems 

due to non-consideration of the probability distribution function of 
random variables, and also because of obtaining different answers when 
the expression of limit state function is changed. 

In 1974, Hasofer and Lind [4] provided a new reliability index based 
on Cornell’s idea and using the linear form of the limit state function in 
combination with a map to transfer random variables from the design 
space to the standard normal space (with mean zero and standard de-
viation of unit). This index is defined as the minimum geometric dis-
tance between the origin and the reduced limit state function. According 
to the definition given by Hasofer and Lind, the design point is a point on 
the limit state function (g ¼ 0) that has the least distance from the origin 
in the standard normal space; this point is also known as the point with 
the most probable failure (Most Probable Point-MPP). The distance from 
this point to the origin is considered as a reliability index, which enables 
estimation of the probability of structural failure by the equation Pf ¼Φ 
(-β) where Φ is the standard normal cumulative distribution function. 
Therefore, an optimization problem needs to be applied according to Eq. 
(4) in order to calculate the design point. 

Find                 U¼fu1;u2;u3; :::;ung

Min                 β¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ui

2

s

¼
ffiffiffiffiffiffiffi
utu
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1þu2

2þu2
3þ ::::::::þu2

n

q

Subject  to        gðUÞ¼ 0
(4) 

In this equation, ui indicates the value of the ith random variable in 
the standard normal space and n represents the number of random 
variables. This parameter is calculated for random variables with normal 
distribution through the following equation: 

ui ¼
xi � μxi

σxi

(5)  

In which μxi 
and σxi are the mean and standard deviation of xi random 

variable, respectively. 
The idea presented by Hadofer and Lind is not applied in the case of 

random variables with non-normal distribution. In 1976, Rackwitz and 
Fiessler resolved this limitation by using an equivalent two-parameter 
normal transfer method [28]. The most commonly used method to 
transfer the state of a non-normal variable into an equivalent standard 
normal variable is indicated by Eq. (6). 
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σe
x ¼

1
fxðx*Þ

ϕ
�
Φ� 1ðFxðx*ÞÞ

�

μe
x ¼ x* � σe

x

�
Φ� 1ðFxðx*ÞÞ

�

U ¼
x* � μe

x

σe
x

(6)  

In this equation, μx
e, σx

e, fx, and Fx indicate equivalent normal mean, 
equivalent normal standard deviation, probability density function 
(PDF), and cumulative distribution function (CDF) of x* variable, 
respectively, while parameters ϕ and Φ represent PDF for the standard 
normal distribution and CDF for the standard normal distribution, 

respectively. If a variable has a non-normal probability distribution 
function, the above method transfers the variable into a standard normal 
space using the map; this causes a significant increase in the degree of 
non-linearity of the limit state function and subsequently reduces the 
accuracy of the calculation. 

In this paper, in order to apply the type of variables distribution, the 
search space of the optimization problem for n samples of each variable 
is created according to Fig. 1. Optimization algorithm for the search of 
optimal solution generates a vector whose dimension is the total number 
of random variables (NRV) of integers in the interval [1, n]. According to 
the values of this vector and Eq. (5), the vector U in Eq. (4) is generated 
from the search space of the problem (SearchSpace matrix). To 

Fig. 1. Flowchart of generating the search space.  

Fig. 2. Pseudo-code for constructing the MDEP matrix [31].  

Fig. 3. Schematic of the planar 10-bar truss.  

Table 1 
Random variables for the 10-bar truss problem.  

Random Variable, unit Mean COV 

E (Modulus of 
elasticity), N/m2 

6.98 � 1010 5% 

ρ (Material density), 
kg/m3 

2770 5% 

Added mass, kg 454.0 5% 
A (element cross- 

section), cm2 
A1 ¼ 42.893, A2 ¼ 19.020, A3 ¼ 45.926, 
A4 ¼ 18.729, A5 ¼ 0.661, A6 ¼ 5.714, 
A7 ¼ 30.599, A8 ¼ 30.019, A9 ¼ 15.320, 
A10 ¼ 15.883 

5%  
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investigate the efficiency of the proposed approach for calculating the 
reliability index, the frequency limit of the first mode of the structure is 
selected as the probabilistic constraint. Accordingly, in Eq. (3), R is the 
value of the allowable frequency, ωall in rad/s (fall in Hz), which is 
mentioned in each problem separately. Also, Q indicate the value of the 
available frequency, ω in rad/s (f in Hz), in the truss structure. This 
parameter is obtained from modal analysis. 

Avoiding the noise is impossible in real dynamic tests, and therefore 
the robustness of the proposed approach should be discussed. This issue 
is dealt with generating small deviation in experimental dynamic pa-
rameters (Eq. (7)) and the robustness of this approach has also been 
investigated for all problems. 

ωnoise¼ω� ð1þ α�NoiseÞ (7)  

In Eq. (7), α is a random number in interval [-1, 1] and Noise is the 
deviations of the natural frequencies; ωnoise implies a frequency with 
noisy value. 

3. Meta-heuristic optimization algorithms 

3.1. Water evaporation optimization 

The water evaporation optimization (WEO) algorithm has been 
proposed by Kaveh and Bakhshpouri [29] inspired by the process of 
evaporation of water molecules from the surface of solid objects at a 
microscopic scale and based on the equations presented by Wang et al. 
[30]. The WEO algorithm is consist of two distinct phases named 
monolayer evaporation and droplet. 

Fig. 4. Comparison of performance of algorithms in 100 independent runes for the 10-bar truss.  
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The monolayer evaporation phase is performed in the first half of the 
optimization iterations (t � tmax/2). In this phase, the amount of sub-
strate energy for the ith water molecule in the tth iteration (Esub (i)t) is 
calculated based on the value of the objective function (Fitit) according to 
Eq. (8). 

EsubðiÞt ¼
ðEmax � EminÞ �

�
Fitt

i � MinðFitÞ
�

ðMaxðFitÞ � MinðFitÞÞ
þ Emin (8)  

In Eq. (8), Emax and Emin are respectively -0.5 and -3.5. Max(Fit) and Min 
(Fit) are the maximum and minimum values of the objective function of 
water molecules, respectively. After calculation of Esub (i), monolayer 
evaporation probability (MEP) obtains according to Eq. (9). 

MEPt
ij¼

�
1 if randij < expðEsubðiÞtÞ
0 if randij � expðEsubðiÞtÞ

   (9)  

In this equation, MEPij
t is the probability of updating the jth variable of 

ith water molecule in tth iteration. 
The second phase is the droplet evaporation phase which is per-

formed in the second half of optimization iterations (t > tmax/2). In this 
phase, the angle contact of ith water molecule in the tth iteration (θsub 
(i)t) is defined based on the value of its objective function (Fitit) according 
to Eq. (10). 

θðiÞt ¼
ðθmax � θminÞ �

�
Fitt

i � MinðFitÞ
�

ðMaxðFitÞ � MinðFitÞÞ
þ θmin (10) 

Fig. 5. Comparison of the convergence curves for the best run obtained by the algorithms for the 10-bar truss.  

Fig. 6. Comparison of the convergence curves for the average runs obtained by the algorithms for the 10-bar truss.  

Table 2 
Statistical optimization results obtained by algorithms for the 10-bar truss problem.   

CBO ECBO WEO AWEO VPS EVPS MCS 

Best β 3.0693 3.3110 3.2941 3.4335 3.2021 3.0067 - 
Best βa 3.0754 3.3454 3.3278 3.4627 3.2118 3.0083 - 
Worst β 5.2835 6.8397 4.7583 5.1457 4.8325 3.3376 - 
Worst βa 5.5920 6.9753 4.9933 5.1828 4.8752 3.4185 - 
Average β 4.0146 4.7317 3.9226 4.1588 3.5763 3.0790 2.9633 
Average βa 4.2088 4.7622 3.9865 4.1902 3.5830 3.0958 - 
Std β 0.5610 0.5346 0.2930 0.3720 0.3359 0.0641 0.0197 
Std βa 0.5828 0.5464 0.3069 0.4193 0.3537 0.0883 - 
Processing time (Sec.) 3.66 3.60 3.37 3.46 4.58 3.83 15.30 
Total number of limit state function evaluations 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 2 � 105  

a with considering noise. 
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In Eq. (10), θmax and θmin are -20� and -50�, respectively. Droplet 
evaporation probability (DEP) calculates according to Eq. (11). 

DEPt
ij¼

(
1 if randij < J

�
θðtÞi
�

0 if randij � J
�
θðtÞi
�  (11)  

In this equation, DEPij
t is updating the probability of the jth variable from 

ith water molecule in tth iteration; J is evaporation flow which is 
calculated according to Eq. (12) and its maximum and minimum values 
are 1.0 and 0.6, respectively. 

Fig. 7. Schematic of the 52-bar dome-like truss.  
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JðθÞ¼ J0P0

�
2
3
þ

cos3 θ
3
� cos θ

�� 2=3

ð1 � cos θÞ;     J0P0¼
1

2:6
(12) 

In both phases, random permutation is generated according to Eq. 
(13). 

S¼ rand:ðWMðtÞ½permute1ðiÞðjÞ� � WMðtÞ½permute2ðiÞðjÞ�Þ (13)  

In Eq. (13), permute1 and permute2 are two different rows of permutation 
functions; i indicates the number of water molecule and j is the number 
of the variable. WM(t) is matrix of the position of input water molecules 
in tth iteration. 

The position of the evaporated molecules (WM(tþ1)) based on the 
current position of the water molecules (WM(t)) and evaporation prob-
ability matrices, is calculated according to Eq. (14). The sign ‘‘�’’ denotes 
an element-by-element multiplication. 

WMðtþ1Þ ¼WMðtÞ þ S∘
�

MEPðtÞ
DEPðtÞ

  t � tmax=2
t > tmax=2 (14)  

If the value of the objective function of each evaporated molecule 
(WM(tþ1)) is better than the objective function of the current water 
molecule (WM(t)), the current water molecule is replaced by the evap-
orated molecule. Otherwise, there is no change in the current water 
molecule. The best water molecule found so far has been stored and 
reported. 

3.2. Accelerated water evaporation optimization 

Accelerated water evaporation optimization (AWEO) algorithm is a 
version of WEO presented by Kaveh and Bakhshpouri [31]. As noted, 
WEO algorithm process takes place in two distinct phases; in other 
words, half of the optimization process is performed according to the 
monolayer evaporation phase and the other half according to droplet 
evaporation phase. However, in the process of AWEO algorithm, these 
two phases are used simultaneously in each iteration. 

In each iteration of this algorithm, first, the vector of the distance 
between all the molecules and the worst current molecule (dist) is 
calculated according to Eq. (15). 

disti¼ jworstWM � WMij          ði¼ 1;  2;  :::;  nWMÞ (15) 

All molecules are sorted in an ascending order according to dist. 
Then, the MEP and DEP matrices are produced according to Eqs. (9) and 
(11) in order to update the first and second halves of the sorted mole-
cules. MDEP matrix is formed by the combination of MEP and DEP 
matrices based on the pseudo-code shown in Fig. 2. After generating 

random permutations according to Eq. (13), the position of evaporated 
molecules (WM(tþ1)) is calculated based on the current position of water 
molecules (WM(t)) and MDEP matrix according to Eq. (16). 

WMðtþ1Þ ¼WMðtÞ þ S∘MDEPðtÞ (16)  

If the value of the objective function of each evaporated molecule 
(WM(tþ1)) is better than the objective function of the current water 
molecule (WM(t)), the current water molecule is replaced by the evap-
orated molecule. Otherwise, there is no change in the current water 
molecule. 

3.3. Colliding bodies optimization 

Colliding bodies optimization (CBO) algorithm was proposed by 
Kaveh and Mahdavi inspired by the physical laws governing colliding 
bodies [32]. In each iteration of this algorithm, mass is first defined for 
all population (CBs) according to Eq. (17). 

mk ¼

�
1

fitðkÞ

�, 
XnCB

i¼1

1
fitðiÞ

!

(17) 

In this equation, fit(i) is the objective function of the ith colliding 
body (CB), and nCB is the number of algorithm population. After 
ascending sorting of the population based on the value of the objective 
function, the sorted population is divided into two equal groups: the first 
half of the population consists of stationary CBs and the second half 
includes moving CBs. The moving CBs move toward the stationary CBs 
and collide with them. The velocities before collision (v) and after 
collision of these two groups (v’) calculate according to Eqs. (18) and 
(19): 

vi¼

8
>><

>>:

0 ;

�

i ¼ 1; 2; : : : ;
nCB

2

�

xi � xi� ðnCB=2Þ ;

�

i ¼
nCB

2
þ 1;

nCB
2
þ 2; : : : ; nCB

� (18)  

v’i¼

8
>>><

>>>:

�
miþðnCB=2Þ þ εmiþðnCB=2Þ

miþmiþðnCB=2Þ

�

viþðnCB=2Þ ;

�

i¼ 1; 2; : : : ;
nCB

2

�

�
mi � εmi� ðnCB=2Þ

miþmi� ðnCB=2Þ

�

vi ;

�

i¼
nCB

2
þ1;

nCB
2
þ2; : : : ; nCB

�

(19) 

In this equations, vi, vi’, xi and mi are respectively the velocities 
before and after collision, the position of the ith CB, and its mass. 
Parameter ε indicates the coefficient of restitution which is calculated by 
the following equation: 

ε¼ 1 �
t

tmax
(20)  

where t is the number of iteration and tmax is the total number of algo-
rithm iterations. 

The new position of the stationary and moving CBs will be obtained 
according to Eqs. (21) and (22): 

xnew
i ¼ xi þ rand∘v’i ;

�

i¼ 1; 2; : : : ;
nCB

2

�

(21)  

xnew
i ¼ xi� ðnCB=2Þ þ rand∘v’i ;

�

i¼
nCB

2
þ 1;

nCB
2
þ 2; : : : ; nCB

�

(22)  

In this equations, xi is the current position of the ith CB, and rand rep-
resents a vector with a dimension of the number of problem variables 
(N) consisting of random numbers in the interval (-1, 1). 

Table 3 
Element grouping adopted in the 52-bar dome-like truss problem.  

Group number Elements Group number Elements 

1 1–4 5 21–28 
2 5–8 6 29–36 
3 9–16 7 37–44 
4 17–20 8 45–52  

Table 4 
Random variables for the 52-bar dome-like truss problem.  

Random Variable, unit Mean COV 

E (Modulus of 
elasticity), N/m2 

2.1 � 1011 5% 

ρ (Material density), kg/ 
m3 

7800 5% 

Added mass, kg 50.0 5% 
A (element group cross- 

section), cm2 
A1 ¼ 1.0464, A2 ¼ 1.7295, A3 ¼ 1.6507, 
A4 ¼ 1.5059, A5 ¼ 1.7210, A6 ¼ 1.0020, 
A7 ¼ 1.7415, A8 ¼ 1.2555 

5%  
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Fig. 8. Comparison of performance of algorithms in 100 independent runes for the 52-bar truss.  

Fig. 9. Comparison of the convergence curves for the best run obtained by the algorithms for the 52-bar truss.  
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3.4. Enhanced colliding bodies optimization 

Enhanced colliding bodies optimization (ECBO) algorithm was 
introduced by Kaveh and Ilchi Ghazaan in order to improve the CBO 
performance [33]. This algorithm uses memory to enhance the 
convergence rate of the CBO algorithm. Accordingly, in each iteration of 
the algorithm, n best answers found are saved in the colliding memory 
(CM). These answers are added to the population and n worst members 

Fig. 10. Comparison of the convergence curves for the average runs obtained by the algorithms for the 52-bar truss.  

Table 5 
Statistical optimization results obtained by algorithms for the 52-bar truss problem.   

CBO ECBO WEO AWEO VPS EVPS MCS 

Best β 3.3472 3.3335 3.4648 3.5046 3.2701 3.1635 - 
Best βa 3.3658 3.3582 3.4699 3.5667 3.3050 3.1654 - 
Worst β 5.4004 5.6919 4.9194 5.1142 5.0806 3.6287 - 
Worst βa 5.6611 5.9002 4.9285 5.2385 5.1260 3.7460 - 
Average β 4.6761 4.9533 4.0739 4.3435 3.7334 3.2652 3.1303 
Average βa 4.6929 4.9892 4.1025 4.3676 3.7715 3.2757 - 
Std β 0.4126 0.4127 0.3043 0.3966 0.4418 0.0927 0.0208 
Std βa 0.4888 0.4179 0.3116 0.4468 0.4578 0.1044 - 
Processing time (Sec.) 28.96 28.28 28.19 28.48 29.18 28.49 177.43 
Total number of limit state function evaluations 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 2 � 105  

a with considering noise. 

Fig. 11. Schematic of the 72-bar transmission truss.  

Table 6 
Element grouping and their sections in the 72-bar transmission truss problem.  

Group 
number 

Elements Cross- 
sectional 
areas (cm2) 

Group 
number 

Elements Cross- 
sectional 
areas (cm2) 

1 1–4 2.987 9 37–40 13.450 
2 5–12 7.849 10 41–48 8.073 
3 13–16 0.645 11 49–52 0.645 
4 17–18 0.645 12 53–54 0.645 
5 19–22 8.765 13 55–58 16.684 
6 23–30 8.153 14 59–66 8.159 
7 31–34 0.645 15 67–70 0.645 
8 35–36 0.645 16 71–72 0.645  

Table 7 
Random variables for the 72-bar transmission truss problem.  

Random Variable, unit Mean COV 

E (Modulus of elasticity), N/m2 6.98 � 1010 5% 
ρ (Material density), kg/m3 2770.0 5% 
Added mass, kg 2270.0 5% 
A (element group cross-section), cm2 Mentioned in Table 6 5%  
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of the current population are eliminated. Then the new population is 
sorted in an ascending order according to the values of their objective 
function. Finally, the new position of moving and stationary CBs is 
calculated similar to CBO algorithm. Also, a parameter called Pro is 
defined in the interval (0, 1) in order to accelerate escape from local 
optima. For each variable of every CB, the value of Pro is compared with 
rnj (j ¼ 1, 2, …, N) which is a random number in interval (0, 1). If rnj is 
smaller than Pro, the jth variable of the considered CB will be generated 
randomly. 

3.5. Vibrating particles system algorithm 

Vibrating particles system (VPS) algorithm was proposed by Kaveh 
and Ilchi Ghazaan based on the free vibration of freedom systems single 
degree with viscous damping [34]. In this algorithm, the position of each 
particle is updated according to the following three positions with 
different relative importance:  

- HB: The best position found for all particles;  
- GP: A good particle that is randomly selected from the first half of the 

population sorted based on increased value of the objective function 
in each iteration;  

- BP: A bad particle that is randomly selected from the second half of 
the population sorted based on increased value of the objective 
function in each iteration. 

The position of each particle is updated according to Eq. (23). 

xj
i ¼ω1:

�
D:A:rand1:HBj�þω2:

�
D:A:rand2:GPj�

þω3:
�
D:A:rand3:BPj� A¼

�
ω1:
�
HBj � xj

i
��
þ
�
ω2:
�
GPj � xj

i
��

þ
�
ω3:
�
BPj � xj

i
��

ω1þω2þω3¼ 1

(23)  

In Eq. (22), xi 
j is the value of the jth variable of the ith particle; rand1, 

rand2, and rand3 are random numbers in interval [0, 1]; ω1, ω2 and ω3 
are parameters which define the relative importance of HB, GP, and BP, 

Fig. 12. Comparison of performance of algorithms in 100 independent runes for the 72-bar truss.  
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respectively; and D is parameter of damping surface modeling in vi-
bration, which is defined according to Eq. (24). 

D¼
�

t
tmax

�α

(24)  

In this equation, t is the current iteration; tmax is the maximum iteration 
of optimization process; and α is a constant value. 

Also, parameter p is defined for each particle in interval (0, 1) in 
order to accelerate convergence process. If p is smaller than a random 
number in the interval [0, 1], ω3 will be considered to be zero. 

3.6. Enhanced Vibrating Particles System 

Enhanced Vibrating Particles System (EVPS) algorithm was pre-
sented by Kaveh et al. in order to improve VPS performance [35]. In this 
algorithm, OHB replaces HB by enhancing the memory which stores NB 
best total positions. OHB is one of memory positions which is selected 
randomly (OHB, GP, and BP are obtained independently for each par-
ticle). Moreover, the particle position is updated according to one of the 
equations (a), (b), or (c) in Eq. (25) with probability of ω1, ω2 and ω3, 
respectively. In this equation, rand is a random number in the interval 
[0, 1]. 

Fig. 13. Comparison of the convergence curves for the best run obtained by the algorithms for the 72-bar truss.  

Fig. 14. Comparison of the convergence curves for the average runs obtained by the algorithms for the 72-bar truss.  

Table 8 
Statistical optimization results obtained by algorithms for the 72-bar truss problem.   

CBO ECBO WEO AWEO VPS EVPS MCS 

Best β 0.2511 0.6147 0.1898 0.2489 1.2434 0.1856 - 
Best βa 0.2669 0.8146 0.1914 0.2539 1.2448 0.1958 - 
Worst β 1.1271 2.6767 0.5177 0.5565 2.2151 1.4904 - 
Worst βa 1.2763 2.7008 0.5521 0.5786 2.2422 1.6689 - 
Average β 0.6100 1.5122 0.2653 0.3803 1.7480 0.5165 0.1452 
Average βa 0.6105 1.6110 0.2662 0.3806 1.7583 0.5339 - 
Std β 0.2027 0.3974 0.0545 0.0773 0.1894 0.2749 0.0027 
Std βa 0.2395 0.4018 0.0557 0.0795 0.1903 0.2768 - 
Processing time (Sec.) 37.02 36.64 36.07 36.49 36.35 36.09 220.49 
Total number of limit state function evaluations 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 2 � 105  

a with considering noise. 
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xj
i¼

8
<

:

�
D:A:rand1:OHBj�

�
D:A:rand2:GPj�

�
D:A:rand3:BPj�

A¼

8
>><

>>:

ð� 1ÞroundðrandÞ�OHBj � xj
i
�
ðaÞ

ð� 1ÞroundðrandÞ�GPj � xj
i
�
ðbÞ

ð� 1ÞroundðrandÞ� BPj � xj
i
�
ðcÞ

ω1þω2þω3¼1

(25)  

4. Numerical problems 

In this section, the reliability indices of four benchmark trusses 
optimized by other researchers has been calculated using the proposed 

meta-heuristic algorithms and the results are presented. The reliability 
index in all problems is for the frequency constraint of the first mode 
(ω1). Random variables considered in all problems include: modulus of 
elasticity (E), mass per unit volume (ρ), the value of non-structural mass, 
and cross-section of the elements or elements group. All random vari-
ables have a normal distribution with a coefficient of variation of 5%. To 
ensure algorithms performance, the reliability index for each of the 
problems (with and without noise) obtained in 100 independent runs by 
each of the algorithms. For all problems, the number of considered 
population and iterations of all algorithms are 30 and 1000, 

Fig. 15. Schematic of the 120-bar dome truss.  
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respectively. In all problems, number of considered samples (n) for each 
random variables and Noise are 106 and 0.05, respectively. In order to 
evaluate accuracy of the algorithms performance in calculating the 
reliability index, the MCS method with 2 � 105 samples is used for all 
problems. A system with a Core i7-6700 4.00 GHz CPU is employed for 
computer implementation, and the computational time is measured in 
terms of CPU time. 

4.1. A 10-bar planar truss 

The first considered problem is the 10-bar truss shown in Fig. 3. This 
truss is a well-known benchmark problem which has been studied by 
many researchers [36–39]. Non-structural mass of 454.0 kg has been 
added to free nodes. The cross-section of the elements is selected ac-
cording to the optimal design of V. Ho-Huu et al. [40]. Characteristics of 
this problem are shown in Table 1. There are 13 random variables in this 
problem. Probabilistic constraint considered for this truss is 
ω1 � 43.9823 rad/s (f1 � 7.0 Hz) which the reliability index calculated 
based on it. 

Fig. 4 shows the performance of algorithms relative to each other in 
100 independent runs. The charts indicate the ratio of the best overall 
solution to the solution of each run in an ascending order for each al-
gorithm. The higher the ratio, the lower the difference between the best 
solution and the solutions obtained from the runs and consequently, the 
better solution. According to the figure, EVPS algorithm has a more 
uniform performance than other algorithms. Figs. 5 and 6 show the 
convergence process of the best solution and average responses of each 
algorithm. Table 2 reports the results of algorithms for this problem (the 
best, the worst, and average solutions of each algorithm) and the reli-
ability index value calculated from the MCS method. This table shows 
that the EVPS algorithm has been able to find the best solution with an 
admissible difference with the value obtained from the MCS method. By 
comparing the amount of β and βa, the robustness of this approach to 
noisy values of frequency is approved. 

4.2. A 52-bar dome-like truss 

The 52-bar dome-like truss has been considered as the second 
problem. The geometry of this truss is shown in Fig. 7. This truss is 

studied in the optimization literature as a problem for optimizing the 
shape and size of cross-section of elements under the frequency 
constraint [41–43]. The elements of this truss are divided into 8 groups 
according to Table 3. The cross-section of the elements group is selected 
according to the optimal design of Kaveh and Zolghadr [44]. Charac-
teristics of materials and the amount of nonstructural mass added to all 
free nodes of the 52-bar truss are shown in Table 4. There are 11 random 
variables in this problem. Probabilistic constraint considered for this 
truss is ω1 � 100.2859 rad/s (f1 � 15.961 Hz). 

Fig. 8 shows the performance of algorithms relative to each other in 
100 independent runs. According to this figure, EVPS algorithm has a 
more uniform performance than other algorithms. Figs. 9 and 10 indi-
cate the convergence process of the best solution and average solutions 
of each algorithm. Table 5 reports the best, the worst, and average so-
lutions of each algorithm as well as the reliability index value obtained 
from the MCS method. This table shows that the ability of EVPS algo-
rithm to find the best optimal solution (calculation of reliability index) is 
higher than other algorithms for this problem, an answer with an 
acceptable difference with the answer of MCS method has been found. 
Also, the robustness of proposed approach to noisy values of frequency is 
verified by comparing the amount of β and βa. 

4.3. A 72-bar transmission truss 

The 72-bar transmission truss which is indicated in Fig. 11 is the 
third structure that its reliability index is calculated using meta-heuristic 
algorithms. The 72-bar truss is a famous problem in the field of opti-
mization [35,45–47]. The 72 elements of this truss are divided into 16 
groups whose cross-sectional area has been selected based on Gomes 
optimal design [48]. Grouping of the elements and their cross-sections 
are specified in Table 6. Nodes 1 to 4 have been assigned 2270 kg of 
non-structural mass. Structural characteristics and frequency constraint 
of the 72-bar truss are indicated in Table 7. There are 19 random vari-
ables in this problem. Probabilistic constraint considered for this truss is 
ω1 � 25.1327 rad/s (f1 � 4.0 Hz). 

The performance of algorithms relative to each other in 100 inde-
pendent runs is shown in Fig. 12. According to this figure, the perfor-
mance of WEO algorithm is more uniform and appropriate relative to 
other algorithms in this problem. The convergence process of the best 
solution and average solutions of each algorithm are shown in Figs. 13 
and 14, respectively. The best, the worst, average solutions of each al-
gorithm and the reliability index value calculated from the MCS method 
for this problem is reported in Table 8. This table shows that EVPS al-
gorithm has been able to find the best answer with an acceptable dif-
ference with the answer of MCS method. By comparing the amount of β 
and βa, the robustness of proposed approach to noisy values of frequency 
is confirmed. 

4.4. A 120-bar dome truss 

The last studied problem is 120-bar dome truss. Many researchers 

Table 9 
Random variables for the 120-bar dome truss problem.  

Random Variable, unit Mean COV 

E (Modulus of 
elasticity), N/m2 

2.1 � 1011 5% 

ρ (Material density), kg/ 
m3 

7971.810 5% 

Added mass, kg m1 ¼ 3000, m2 ¼ 500, m3 ¼ 100 5% 
A (element group cross- 

section), cm2 
A1 ¼ 19.523, A2 ¼ 97.161, A3 ¼ 30.368, 
A4 ¼ 20.000, A5 ¼ 54.922, A6 ¼ 23.832, 
A7 ¼ 16.148 

5%  

Table 10 
Statistical optimization results obtained by algorithms for the 120-bar truss problem.   

CBO ECBO WEO AWEO VPS EVPS MCS 

Best β 2.7453 2.7960 2.9963 3.0951 2.8245 2.6925 - 
Best βa 2.7470 2.8346 3.0142 3.1258 2.8882 2.6960 - 
Worst β 5.5608 6.8707 4.3238 4.9215 3.6531 3.8895 - 
Worst βa 5.8994 6.8965 4.4868 4.9987 3.8337 3.9843 - 
Average β 3.6679 4.4132 3.6879 3.7516 3.1780 2.8016 2.6436 
Average βa 3.8807 4.4561 3.6956 3.7779 3.1848 2.8186 - 
Std β 0.7926 0.9931 0.2996 0.3991 0.1612 0.1414 0.0114 
Std βa 0.8116 0.9947 0.3122 0.4211 0.1837 0.1503 - 
Processing time (Sec.) 71.80 72.64 71.31 71.42 72.36 71.69 462.78 
Total number of limit state function evaluations 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 3 � 104 2 � 105  

a with considering noise. 
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have optimized this truss [49–51]. The elements of this truss have been 
divided into 7 groups. Fig. 15 indicates the elements grouping and the 
geometry of the truss. Non-structural masses attached to Node 1 is 
m1 ¼ 3000 kg, nodes 2 to 13 are m2 ¼ 500 kg, and rest of the nodes are 
m3 ¼ 100 kg. Structural characteristics of this truss and the cross-section 
assigned to each elements group according to the optimal design of 
Kaveh et al. [52] are summarized in Table 9. There are 10 random 
variables in this problem. Reliability index considered for this truss is 
ω1 � 56.54867 rad/s (f1 � 9.0 Hz). 

The performance of the algorithms is compared to each other in 100 
independent runs in Fig. 16. According to Fig. 16, the performance of 
EVPS algorithm in this problem is more uniform than other algorithms. 
Furthermore, the convergence process of the best solution and average 
solutions of each algorithm are shown in Figs. 17 and 18, respectively. 

Table 10 reports the best, the worst, and average solutions of each al-
gorithm as well as the reliability index value obtained from the MCS 
method for this problem. This table shows that EVPS algorithm has been 
able to find the best solution with a suitable difference with the answer 
of MCS method. A comparison of the values of β and βa shows the 
robustness of the proposed approach to noisy frequency values. 

5. Conclusion 

Parameters such as properties of materials and cross-section of 
members are statistically non-deterministic. Reliability theory is used to 
evaluate the uncertainty of these parameters. There are various methods 
to calculate the reliability index. Calculation of this index can be defined 
as an optimization problem. Hence, the use of meta-heuristic algorithms 

Fig. 16. Comparison of performance of algorithms in 100 independent runes for the 120-bar truss.  
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can be used for calculating the reliability index. In structural reliability 
problems whose limit state function is not available in the form of 
explicit mathematical form, meta-heuristic algorithms less used. In this 
article, the reliability index of such problems is calculated using meta- 
heuristic algorithms. Accordingly, the reliability index calculation 
defined as the optimization problem. Then, to evaluate the ability of 
algorithms in structural reliability assessment, the reliability index of 
four truss structures with probabilistic constraint on first mode fre-
quency was calculated and reported using WEO, AWEO, CBO, ECBO, 
VPS, and EVPS algorithms. The difference in the best solution of the 
algorithms for problems one through four with the value of reliability 
index calculated by the MCS method for each of the problems are 
respectively as follows: 0.043, 0.033, 0.040, and 0.049. These values 
and comparison of other results from the algorithms with the results of 
the MCS method show that the reliability index of the structures can be 
calculated with an acceptable accuracy and a lower processing time 
using the meta-heuristic algorithms. Also, by generating a small devia-
tion in experimental dynamic parameters, the robustness of the pro-
posed approach has been investigated and verified. Comparing the 
performance of algorithms demonstrates the proper and uniform 

performance of EVPS and WEO algorithms in calculation of the reli-
ability index of the structures. 
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