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a b s t r a c t

This paper addresses a hybrid flow shop scheduling problem with real-world constraints, and proposes a
novel algorithm for its solution. We first discuss the distinguishing characteristics of nighttime and
simultaneous work in the transformer manufacturing process. To solve the problem within a reasonable
time, we propose a hybrid genetic algorithm. This algorithm combines the Nawaz–Enscore–Ham (NEH)
heuristic, a local search algorithm, and a machine allocation rule with the aim of minimizing the total
tardiness. Our experimental results show that the proposed algorithm outperforms the NEH algorithm,
a simple genetic algorithm, and five existing dispatching rules in terms of average total tardiness perfor-
mance and relative deviation index. The proposed algorithm is also shown to be competitive with respect
to its efficiency and robustness.

� 2015 Published by Elsevier Ltd.
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1. Introduction

The flow shop scheduling problem is common in many produc-
tion systems. In certain environments, parallel machines are made
up of multiple copies and grouped into stages. For these production
environments, the traditional flow shop scheduling model is inap-
propriate, because some stages utilize parallel machines. This type
of problem can be defined as a hybrid flow shop scheduling prob-
lem (HFSP).

The hybrid flow shop is an extension of the production system
in a traditional flow shop. It consists of two or more stages in series
and one or more parallel machines at each stage to increase pro-
ductivity and flexibility. Examples of hybrid flow shop problems
are floor covering production, glass-bottle industry, and so on
(Lopez & Roubellat, 2008).

In this type of shop, the major issues are the allocation of jobs to
machines at each stage, and the sequence of jobs assigned to each
machine. HFSPs have been extensively studied; however, most
examples are NP-hard (Linn & Zhang, 1999).

This paper focuses on the scheduling problem in hybrid flow
shops with two distinguishing constraints: the consideration of
daytime and nighttime work teams and simultaneous work of
specific order types. Our research is motivated by an industrial
transformer manufacturing system with a number of availability
conditions between various product types and machines. In this
case, a feasible solution that minimizes the total tardiness (that
is, the total time by which order processing is delayed) is vitally
important, because the penalty cost of tardy jobs has a detrimental
effect on a company.

In addition to the characteristics of the general HFSP, there are
constraints on the waiting times between successive stages of a
job, as well the consideration of nighttime work and simultaneous
work at each stage.

This paper is organized as follows. In the next section, previous
research into hybrid flow shop scheduling is reviewed. The prob-
lem and constraints of a transformer manufacturing system are
defined in Section 3, and a hybrid genetic algorithm to solve this
problem is then proposed in Section 4. Section 5 summarizes the
results of experiments to verify our approach. Finally, our conclu-
sions and areas for further research are discussed in Section 6.
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2. Literature review

Arthanari and Ramamurthy (1971) considered the HFSP, and
proposed the first Branch and Bound method. Kochhar and
Morris (1987) developed heuristic algorithms to minimize the
mean flow time for the flexible flow line problem with finite buf-
fers. They divided the problem into two sub problems: entry point
sequencing and dispatching. The two-stage HFSP was shown to be
rk and
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NP-hard by Gupta (1988). Gupta, Hariri, and Potts (1997) then
showed that a non-preemptive two-stage HFSP is NP-hard in the
strong sense.

Exact approaches based on mathematical modeling can ensure
higher performance than heuristic methods in finding optimal solu-
tions of HFSP. Fattahi, Hosseini, Jolai, and Tavakkoli-Moghaddam
(2014) developed a branch-and-bound algorithm that considered
the setup time and assembly operations to minimize the makespan
for HFSP. Sun and Yu (2015) deal with a two-stage HFSP with batch
constraints and the variable processing times through a Lagrangian
relaxation approach. However, because of their NP-hard nature,
exact approaches are only applicable to small-scale problems.
Thus, heuristic algorithms are widely used to obtain good approx-
imations within a reasonable time (Ribas, Leisten, & Framiñan,
2010). Examples of such heuristic algorithms are the neighborhood
search, simulated annealing, and genetic algorithms (GAs).

Heuristic approaches have been devised for solving the HFSP
constraints that arise in actual applications. Holland (1975) first
proposed the GA concept in his book ‘‘Adaptation in Natural and
Artificial Systems’’. In traditional GAs, mutation is used to produce
small changes to chromosomes, resulting in a varied population.
Unlike traditional GAs, Tsujimura and Gen (1999) proposed a
mutation operator with a neighborhood search technique to deter-
mine near-optimal solutions. Botta-Genoulaz (2000) proposed a
heuristic algorithm based on the earliest due date (EDD) sequenc-
ing method with First Available Machine and Last Busy Machine
allocation rules for the HFSP. Engin, Ceran, and Yilmaz (2011) pro-
posed an efficient GA for hybrid flow shop scheduling with
multiprocessor tasks. Liao, Tjandradjaja, and Chung (2012) pro-
posed a particle swarm optimization (PSO) algorithm for the
HFSP with a minimum makespan objective. They developed a
hybridizing PSO with a bottleneck heuristic and simulated anneal-
ing to help escape from local optima. Bo _zejko, Pempera, and
Smutnicki (2013) designed a parallel tabu search algorithm for
an HFSP derived from automated manufacturing lines. Costa,
Cappadonna, and Fichera (2014) considered a GA for the HFSP with
parallel batching and eligibility constraints. Li, Pan, and Wang
(2014) combined a neighborhood search algorithm with both
chemical-reaction optimization and an estimation of distribution
to minimize the HFSP makespan. Rossi, Pandolfi, and Lanzetta
(2014) developed dynamic set-up rules for HFSP with parallel
batching machines. They introduced heuristics based on the criti-
cal ratio between the setup and processing times to minimize
makespan and the number of tardy jobs.

There are still two issues relevant to the majority of flow shop
scheduling research. The first issue is the great complexity of
real-world problem sizes. Unfortunately, although exact
approaches such as MILP and dynamic programming can find an
optimal solution, they are often impractical because of the extre-
mely long calculation time for large problems. On the other hand,
heuristic approaches such as GAs can be applied to more complex
problems. However, the execution time and solution quality vary
with the design of the algorithm. Thus, there is a significant need
for efficient heuristic or meta-heuristic methods.

The second issue is the determination of various constraints in
industry and their consideration in an algorithm. In real-world
problems, a typical flow shop with a single machine at each stage
rarely exists. Generally, there will be a variety of machines with
different abilities placed in parallel at stages to increase capacity
and balance the workload (Naderi, Gohari, & Yazdani, 2014).
Although there have been a number of previous research articles
on HFSPs in manufacturing systems, the assumptions made when
developing their algorithms mean they have limited applicability
(Ruiz & Vázquez-Rodríguez, 2010). Thus, consideration of other
constraints, such as unrelated parallel machines and eligibility, is
Please cite this article in press as: Jun, S., & Park, J. A hybrid genetic algorithm
simultaneous work constraints: A case study from the transformer indus
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a significant step towards increasing the possibility of application
in the field, and is thus worthy of further research.

The limitations of previous research with regard to these two
issues make the study of a hybrid approach to HFSP more interest-
ing. In this paper, Section 3 broaches the second issue by present-
ing the distinguishing constraints in a transformer production
factory. Section 4 then deals with the first issue by describing a
hybrid algorithm that efficiently incorporates a GA into heuristic
methods.
3. Problem definition

In consideration of increasing market competition and the need
to present a range of voltages and capacities, several types of trans-
former should be included in the scheduling process. In addition,
there are a number of parallel machines (workbenches and drying
furnaces) at each stage of the process, each with their distinguish-
ing constraints. The entire process of transformer production is
summarized in Fig. 1.

The problem is to schedule a hybrid flow shop (HFS) with m
stages. Each stage has several machines operating in parallel, but
the flow of jobs through stages is unidirectional. Some stages
may have only one machine, but at least one stage must have mul-
tiple machines. The type of parallel machines can be identical, uni-
form, or unrelated. An operation refers to a specific period of
processing by the selected machine.

Using the well-known three-field notation (Pinedo, 2008), the
transformer production problem can be denoted by

FH2; RMðkÞ
� �2

k¼1

� �
jrjj
P

Tj (Ruiz & Vázquez-Rodríguez, 2010).

The type of parallel machines is the unrelated parallel machine
that the processing time depends on the allocated machine. In cer-
tain practical applications with continuous job processing, such as
in the plastics industry, there is limited intermediate storage space
between stages (Moradinasab, Shafaei, Rabiee, & Ramezani, 2013).
In this case, the number of jobs in intermediate storage should be
minimized to reduce inventory costs. This implies that the waiting
queue between two successive stages operates under the FIFO
principle.

The following assumptions are also considered in this paper.

1. The number of stages and number of machines at each stage are
known in advance. The number of jobs and their processing
times are also known in advance.

2. Each machine can process only one job at a time. Pre-emption is
not allowed.

3. All the machines are available for the entire period of schedul-
ing, and there are no machine breakdowns.

4. The objective is to minimize the total tardiness. The total tardi-
ness is defined as:

Total Tardiness ¼
Xn

i¼1

maxð0;Ci � diÞ

where Ci is the completion time of job i, di is the due date of job i,
and n is the number of jobs.

3.1. Distinguishing constraints

3.1.1. Nighttime work
Work teams can be divided into three subteams: two daytime

teams and one nighttime team, as in Fig. 2. In a transformer pro-
duction plant, a dividable work team generally has two work-
benches to process their Stage 1 operations, i.e., each daytime
for the hybrid flow shop scheduling problem with nighttime work and
try. Expert Systems with Applications (2015), http://dx.doi.org/10.1016/
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Fig. 2. Example of nighttime work.

Fig. 1. Transformer manufacturing process.
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team has their own workbench. However, the nighttime team can
be assigned to either workbench. In the transformer production
process, each nighttime team is assigned to the first available
workbench. The allocation of teams to workbenches is important
to ensure orders are completed on time. Process times can vary
according to the assigned daytime/nighttime teams, because the
processing time of a transformer is calculated based on production
man-hours. This nighttime work system allows a flexible response
to meet the due date by allocating workers to imminent jobs. This
flexible allocation system is very important in the field because of
the huge penalty cost of tardy orders and the problems of an unbal-
anced workload.
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3.1.2. Simultaneous work
In the transformer production process, workers should deter-

mine an available drying furnace by measuring the length, width,
and height of the transformer. Some transformers in a waiting
queue are small enough to fit into a particular machine, so some
machines can process two orders simultaneously, as shown in
Fig. 3. In this case, the orders should be processed simultaneously
to increase the utilization of drying furnaces and shorten the total
process time. Furthermore, this will decrease the overall cost of
electricity and labor, and would allow for processing more orders.
Please cite this article in press as: Jun, S., & Park, J. A hybrid genetic algorithm
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3.2. An illustrative example

We now present a small example problem to illustrate the con-
cepts described in Fig. 4. The first stage includes a nighttime work
constraint, and the second stage considers simultaneous working.

Stage 1 consists of three parallel workbenches and two work
teams. Every work team must be assigned a workbench to process
an order at Stage 1. Team 1 can be divided into Daytime 1, Daytime
2, and Nighttime teams. Team 2 cannot be divided. Table 1 lists the
machines’ order availability conditions and Table 2 shows the due
date, man-hours required at Stage 1, and the release time of each
order. Table 3 represents the worker allocation of each team.

Stage 2 is composed of two parallel machines. These can process
two orders simultaneously, so long as they have the same voltage
and capacity, and are small enough to fit into the machine. From
Table 1, Orders 1 and 2 can be processed as a simultaneous work
by Furnaces 1 and 2. The simultaneous work availability is
expressed as in Table 1. Table 2 shows the process time of each
order in Stage 2.

As regards the total tardiness, the second schedule, which
allows simultaneous work in Stage 2, is better than the first sched-
ule (see Figs. 5 and 6). Furthermore, the second schedule can
decrease the operating cost of furnace 2 because two different
orders are processed simultaneously. Thus, we should consider
for the hybrid flow shop scheduling problem with nighttime work and
try. Expert Systems with Applications (2015), http://dx.doi.org/10.1016/
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Fig. 3. Example of simultaneous work.

Fig. 4. Illustration of the hybrid flow-shop in the two-stage example problem.
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Table 1
Order-machine availability condition matrix.

Order Stage 1 Stage 2

Workbench 1 Workbench 2 Workbench 3 Furnace 1 Furnace 2

1 � � X
2 � � X
3 � � X X �
4 X X � X �
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the precise distinguishing constraints of the problem to develop an
efficient scheduling algorithm that can be employed in a real
environment. The proposed heuristic algorithm will be discussed
in the next section.

4. Proposed algorithm

We now present the proposed hybrid genetic algorithm (HGA)
methodology. The entire HGA framework is first described, and
then the detailed procedure for an HFS is explained. The proposed
algorithm can be summarized as follows (see Fig. 7).

When considering the HFSP in the real world, the most impor-
tant issue is to determine a list of jobs at the entry point, and allo-
cate these jobs to the available machines. The list of jobs is
determined in the GA phase and local search phase. In the HGA
algorithm, we incorporate a neighborhood search (a type of local
search technique) into the mutation, crossover, and selection loops
of the GA. If the best solution in the population shows no improve-
ment within N_Threshold steps, the GA phase is stopped, and we
return to the local search phase. Our HGA applies the GA as a global
exploration of the selected population, whereas the neighborhood
search performs a local exploitation of each chromosome.

The actual allocation of these jobs to available machines is con-
ducted in the chromosome decoding phase. The detailed schedule
and fitness value is calculated by the machine allocation rule. The
previous three phases aim to compute the objective function,
whereas the function in the decoding chromosome phase describes
the real schedule.

4.1. NEH algorithm phase

The Nawaz–Enscore–Ham (NEH) heuristic gives the optimal
solution to the permutation flow shop scheduling problem with
the makespan minimization (Ruiz & Maroto, 2005). If due dates
are taken into consideration, there are several ways of sorting
the jobs. If jobs are sorted according to the earliest due date
(EDD), this method is known as NEHedd (Vallada, Ruiz, & Minella,
2008). In this phase, the initial solution for the next GA is gener-
ated by NEHedd.

NEH algorithm

Step 1: Order the job list by non-increasing due date.
Step 2: Take the first two jobs, and schedule them so as to mini-
mize the total tardiness.
Step 3: For k = 3 to n, do Step 4.
339

Table 2
Order information matrix.

Order Release
time

Due
date

Required man-hour at
stage 1

Process time at stage
2

1 4 15 580 5
2 3 15 580 5
3 5 18 720 6
4 7 24 1400 7

Please cite this article in press as: Jun, S., & Park, J. A hybrid genetic algorithm
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Step 4: Insert the kth job into the schedule so as to minimize the
partial total tardiness among the k possible values.

4.2. Genetic algorithm phase

4.2.1. Chromosome representation
A chromosome denotes the sequence of jobs to be considered

for scheduling in the first stage. This job-permutation-based repre-
sentation has been widely applied in the literature for scheduling
problems.

4.2.2. Initial population
Each initial chromosome is randomly generated from the muta-

tion and crossover operators based on five dispatching rules (EDD,
Slack, Critical Ratio, COVERT and MDD). These rules are commonly
used in practice and as the initial sequence of heuristic algorithms
(Tari & Olfat, 2013). The job sequence is determined according to
the non-decreasing order of each rule’s index.

Mutation and crossover operations can maintain diversity in a
population, and allow the hybrid algorithm to avoid local minima
by preventing solutions from becoming too similar.

4.2.3. Crossover
A two-point crossover method is applied in the proposed algo-

rithm, because this ensures that at least three genes are swapped
between each pair of chromosomes (Korytkowski, Wiśniewski, &
Rymaszewski, 2013). A brief example is illustrated in Fig. 8.

4.2.4. Mutation
We use the swap mutation method in the proposed algorithm,

because this produces more variations than other mutation opera-
tors (Feng, Lu, & Li, 2009). In swap mutation, two genes are
selected at random and their positions exchanged. An example of
how to implement swap mutation is depicted in Fig. 9.

4.3. Local search phase

The main benefit of hybridizing GAs with a local search algo-
rithm is the improvement in convergence to local optima. The local
search is also applied to elite solutions inherited from previous
populations. In this phase, the applied local search procedure can
be written as follows:

Local search procedure

Step 1: Specify a seed solution s.
Step 2: Generate a neighborhood set N. This is obtained from s
by interchanging all adjacent pairs of jobs.
Step 3: Select a schedule n in the neighborhood set N generated
by the seed solution s, and compute its fitness value.
Step 4: If all neighborhood solutions of s have been already
examined, check the neighborhood solution with the minimum
fitness value and improvement ratio. If there is no neighbor-
hood solution that improves the overall solution, terminate this
procedure. Otherwise, replace the seed solution with the neigh-
borhood solution with the minimum fitness value and return to
Step 3.
Table 3
Worker allocation of Teams 1 and 2 at Stage 1.

Team 1 Team 2

Daytime (1) Daytime (2) Nighttime Daytime Only

Workbench 1 Workbench 2 Workbench 1, 2 Workbench 3

Number of
workers

10 10 8 14

Total 28 14

for the hybrid flow shop scheduling problem with nighttime work and
try. Expert Systems with Applications (2015), http://dx.doi.org/10.1016/
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Fig. 5. First possible schedule for the example problem.

Fig. 6. Second possible schedule for the example problem.
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4.4. Chromosome decoding phase

Based on the list of jobs at the entry point, the detailed job
schedule, with start and finish times, is determined by the machine
allocation rule.
357
358

360360
4.4.1. Machine allocation rule
The proposed algorithm generates a sequence of jobs, but gives

no information on the allocation of jobs to machines. Therefore, a
machine allocation rule is needed to generate the detailed schedule
from a chromosome representation. In this paper, we propose a
machine score rule.
Please cite this article in press as: Jun, S., & Park, J. A hybrid genetic algorithm
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If the machines are not unrelated, i.e., jobs have processing
times that depend on the machine used, each job should be
assigned to the machine that will complete its process soonest.
In this sense, the machine score rule tends to minimize the total
tardiness and the number of tardy jobs, especially for an HFS with
nighttime work and simultaneous work (Jun & Park, 2013). The
machine score index is calculated as follows:

Machine Scorek;s ¼ a� Uniquenessk;s þ ð1� aÞ � Usefulnessk;s

Uniquenessk;s ¼
P

t ak:s;t �
Q

l – kð1� al;s;tÞ
� �

P
tak;s;t

Usefulnessk;s ¼
vk;s

maxgðvg;sÞ

for the hybrid flow shop scheduling problem with nighttime work and

try. Expert Systems with Applications (2015), http://dx.doi.org/10.1016/
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Fig. 9. Swap mutation operator.
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In this rule, available machines are allocated according to the
non-increasing order of the machine score index. At first, identical
machines at the same stage are bracketed into a group. The
machine score index is composed of the weighted sum of group
k’s uniqueness and usefulness in stage s. a is the uniqueness
weight of a machine group, and t denotes the order type in terms
of voltage and capacity. vk;s is the relative speed of machine group
k in stage s. If machine group k can process order type t in stage s,
ak;s;t ¼ 1; otherwise, ak;s;t ¼ 0.

4.4.2. Fitness function
The evaluation of a chromosome is determined by the fitness

function. The fitness function plays an important role in selecting
survivor genes for the next generation. In this study, the fitness
function is defined as the total tardiness of the schedule.

4.4.3. Selection
The next survivor chromosomes are selected using the roulette

wheel method (Gen & Cheng, 1997).

4.4.4. Stopping criterion
A maximum computation time is employed as a stopping

criterion.
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Table 4
Detailed experimental parameters.

Parameters Small size Medium size Large size

Number of jobs 100 250 500
Number of machines 30 (Stage 1), 12 (Stage 2)
Number of experiments 30 30 30
Maximum CPU time (s) 2000 6,000 50,000
Due date tightness 0.3 1.0 1.0
Population 100
Genetic algorithm parameters Mutation rate (0.3), Crossover rate (0.4)
N_Threshold 8
5. Experimental results

5.1. Experiment design

In the simulation experiment, we considered 30 machines in
Stage 1, and 12 machines in Stage 2. There were seven different
machine types. The processing time of each job on each machine
was specified based on previous production data. The due date of
each job was specified as follows:

dj¼ rj�DTþrandom LBðVoltagej;CapacityjÞ;UBðVoltagej;CapacityjÞ
� 	

where DT denotes the due date tightness parameter and rj is the
previous release time of job type j. LB (Voltagej, Capacityj) and

UB (Voltagej, Capacityj) denote the lower and upper bounds, respec-

tively, of job type j based on previous production data. All algo-
rithms were coded in VB.Net and run on an Intel Core 2 Quad
2.4 GHz processor with 4 GB RAM.
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Several pilot experimental tests were conducted to choose the
best parameter values for the GA. The population size was set to
100, and the crossover rate and mutation ratio were set to 0.4
and 0.3. The test problems (N = 100, 250, 500) were generated from
the distribution of previous orders to allow the practical evaluation
of the algorithms. The detailed experimental parameters are sum-
marized in Table 4.

The relative deviation index (RDI) is applied to compare the
results (Akhshabi, Tavakkoli-Moghaddam, & Rahnamay-
Roodposhti, 2014). RPD is calculated as follows:

RDIk ¼
Fk �Mink

Maxk �Mink
� 100

Fk is the total tardiness value obtained for the kth experiment, and
Maxk and Mink are the best and worst solutions in the kth
experiment.

5.2. Experimental results

To evaluate the performance of probabilistic search methods,
we repeated the simulation experiments 30 times. The average
performance and relative deviation index of all algorithms over
the 30 trials is compared in Tables 5–7. The average CPU time of
each algorithm is also shown in Tables 5–7. The CPU time of
HGA and a simple GA are the same, because these two algorithms
used the same stopping condition. The performance of all algo-
rithms is analyzed in terms of RDI using a one-way ANOVA and
95% confidence interval plots.

To compare the average performance of the algorithms sta-
tistically, we conducted a one-way ANOVA analysis of the RDIs
(Rabiee, Rad, Mazinani, & Shafaei, 2014). The results of this
ANOVA analysis for small-, medium-, and large-size problems are
presented in Table 8. The results show that the P-value is close
to zero in each case. Thus, the RDI of at least one algorithm is sig-
nificantly different.

Additionally, to evaluate the significance of the results, the 95%
confidence intervals are shown in Figs. 10–12. These figures indi-
cate that there is a significant difference between the average
for the hybrid flow shop scheduling problem with nighttime work and
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Fig. 10. Confidence interval 95% for RDI of algorithms (Small size).

Table 5
Result summary (Small size).

Algorithm Average objective
function

Average
RDI

Average computation
time (s)

Genetic algorithm 1410.3 30.71377 2000
Proposed algorithm 1396.533 0.10929 2000
NEH algorithm 1396.8 1.039641 58.43179
EDD 1431.933 76.09123 0.304879
SLK 1428.933 68.64578 0.249955
CR 1428.6 65.62185 0.293273
COVERT 1427.033 68.87144 0.481561
MDD 1430.333 73.43126 0.503761

Table 8
ANOVA table for RDI in small, medium, and large size problems.

Size Source df SS MS F P value

Small Factor 6 200114.97 33352.495 65.132 0.000
Error 203 103950.901 512.073
Total 209 304065.871

Medium Factor 6 231130.823 38521.804 128.3 0.000
Error 203 60950.116 300.247
Total 209 292080.939

Large Factor 6 237214.294 39535.716 660.103 0.000
Error 203 12158.334 59.893
Total 209 249372.628

Table 7
Result summary (Large size).

Algorithm Average objective
function

Average
RDI

Average computation
time (s)

Genetic algorithm 28120.6 37.55309 50000
Proposed algorithm 27637.8 0 50000
NEH algorithm 28603.3 75.0182 42333.95
EDD 28820.6 92.26373 13.78962
SLK 28895.73 98.11295 16.4751
CR 28780.73 89.57702 13.19096
COVERT 28201 44.208 19.51381
MDD 28302.63 51.76036 14.16533

Table 6
Result summary (Medium size).

Algorithm Average objective
function

Average
RDI

Average computation
time (s)

Genetic algorithm 2076.7 4.968086 6000
Proposed algorithm 2073.133 2.732215 6000
NEH algorithm 2125.167 32.21516 3027.462
EDD 2204.433 76.75813 0.557202
SLK 2206.367 77.64346 0.827727
CR 2229.933 88.46668 0.611689
COVERT 2177.133 62.98672 1.018642
MDD 2200 74.86941 1.160462

Fig. 11. Confidence interval 95% for RDI of algorithms (Medium size).

Fig. 12. Confidence interval 95% for RDI of algorithms (Large size).
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performance of the algorithms in terms of RDI. It is clear that the
proposed algorithm outperforms the others, because the HGA pro-
duces a much smaller average RDI value, and the confidence inter-
val of the proposed algorithm rarely overlaps with those of the
other algorithms. On the contrary, NEH and SGA obtained inferior
solutions to our algorithm for the large- and small-sized problems,
respectively. Hence, the proposed HGA is superior to the other
algorithms under the same parameters and computation time for
all problem sizes.
Please cite this article in press as: Jun, S., & Park, J. A hybrid genetic algorithm for the hybrid flow shop scheduling problem with nighttime work and
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6. Conclusion and future work

In this paper, we defined the HFSP with distinguishing real-
world constraints of nighttime work and simultaneous work. To
improve the exploration ability of the proposed algorithm, we
incorporate heuristic algorithms to explore possible solutions
effectively. We also developed a machine allocation rule that
selects and assigns operations to machines. The objective of the
proposed algorithm is to minimize the total tardiness performance
measure. We presented a case study of a transformer production
factory to evaluate the performance of the proposed algorithm.
Simulation results demonstrate that the proposed algorithm out-
performs the NEH algorithm, a simple GA, and various dispatching
rules in terms of the total tardiness and robustness.

The main contribution of this paper is the development of a
hybrid GA to effectively solve the HFSP. Because of the increased
complexity of a hybrid flow shop with industry-specific con-
straints, an efficient and robust algorithm is of particular impor-
tance. In this context, the HFSP with nighttime work and
simultaneous work constraints has a number of applications in
various manufacturing and service systems. Furthermore, the pro-
posed approach could be extended to other industries that employ
skilled craft workers, machine operators, and assemblers.

Nevertheless, the proposed approach has some limitations.
First, the initial solution plays an important role in determining
the eventual outcome, because the performance of the proposed
algorithm depends on the quality of the initial population.
Additionally, mathematical algorithms for the HFSP are not consid-
ered in this paper. An implicit enumeration technique such as the
branch-and-bound algorithm, integer programming, and a lower
bound can be used to find the optimal solution.

Future work could take one of several directions. First, the pro-
posed algorithm could be adapted to other scheduling problems
and environments. For example, the proposed algorithm could
handle a multi-objective optimization problem, such as an objec-
tive function that combines the total tardiness with the makespan.
Consideration of other constraints, such as the learning ability of
workers or the balance of the workload, are also interesting and
worthy of future investigation.

Furthermore, data mining techniques such as support vector
machines or decision tree algorithms could be applied to deter-
mine more sophisticated parameter values by analyzing the char-
acteristics of resources, jobs, and orders. Further research based
on data mining techniques and constraints may offer opportunities
to develop an automated scheduling system to solve more complex
scheduling problems as an alternative to a well-trained ’scheduler.’
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