
IoT-MAP: IoT Mashup Application Platform for the Flexible IoT Ecosystem

Sehyeon Heo, Sungpil Woo, Janggwan Im, Daeyoung Kim

Department of Computer Science,
Korea Advanced Institute of Science and Technology

Daejeon, South Korea
crux042, woosungpil, limg00n, kimd@kaist.ac.kr

Abstract—Recent mobile environment has various types of
smart things which are opportunistically adjacent to the sur-
rounding areas of mobile phones. However most of applications
in the market are just statically bound to specific model of
designated manufacturer which were chosen in development
phase, so they are not interoperable with heterogeneous things
even though they have similar functionalities. To optimize
utilization of smart things residing in each user’s personal per-
vasive environment, IoT mashup application is required which
dynamically discovers heterogeneous things, downloads needed
software module at runtime, and provides mash-up application
to the user. In this paper, we designed and implemented
IoT Mashup Application Platform that supports smartphone-
centric discovery, identification, installation, mashup and com-
position of the pervasive smart things. Furthermore, by decou-
pling the roles of actors in IoT ecosystem utilizing functionally
abstracted thing interfaces, the platform provides benefits to
each actor - thing manufacturers can maximize compatibility
of their products, application developers can concentrate on
their own business logic, and the end-users can select which
smart things would be actually used for the composition.

Keywords-Internet of Things; Service Composition; Mashup;
Interoperability; EPCglobal

I. INTRODUCTION

Numerous types of smart devices are coming into the

IoT ecosystem these days, and some of them are even

becoming integral parts of our everyday life. In this situation,

if the flexible interaction between such smart things and

personal mobile device become feasible, they can provide

better user experiences and novel services compared to the

stock applications that only interacts with specific devices.

For example, we can think of a simple service that visualizes

body temperature or heart rate measured with body-attached

sensors, by controlling brightness or color of a smart bulb. In

conventional mobile development environment, applications

that provide such services are usually bound to particular

model of things which was chosen by developer at im-

plementation time. Such applications could interact with

only the smart things whose binding has been defined at

implementation time. So, current mobile applications cannot

easily adapt to the surrounding environment.

In this paper, we propose IoT-MAP, a mobile application

platform aiding flexible interoperability between mobile

devices and surrounding smart things - and we name those

Figure 1: High-level Concept Diagram

applications developed based on the platform library as IoT-

App. The IoT-MAP platform provides various improvements

of actors in current IoT ecosystem as shown in Figure 1.

For the mobile application developers, IoT-MAP provides

a set of intuitive APIs to build an IoT-App easily, such

as thing discovery, connection and retrieval of abstracted

service object which can be directly used as if it is actual

thing. With those support of IoT-MAP platform, they can

write their own business logic in POJO (plain old java

object) style without consideration of actual connectivity and

implementation of smart things. For the thing manufacturers,

they can easily participate in the ID resolution procedure

of the platform by preparing their own name server based

on ONS and driver bundle repository. Because the ONS

is designed based on DNS technology, the manufacturer’s

name server can be integrated to other distributed ONS

servers, therefore the end-users can find driver bundle of

their things directly provided by the manufacturer without

any knowledge (e.g. manufacturer name, thing name, serial

number, etc.) of the thing. And finally for the end-users,

they can choose which thing would be actually participate

in the desired service by selecting the discovered things at

run-time. Moreover, in case of there is no IoT-App matches

user’s requirement in the market, end-users can utilize the

GUI authoring tool provided by IoT-MAP platform. The

users can assemble application using their finger at run-time

with discovered things and logic modules that make each

2015 5th International Conference on the Internet of Things (IoT)

/15/$31.00 ©2015 IEEE 163

things interoperable, then those modules are dynamically

downloaded and composed to form an application of user’s

purpose.

The contribution of this paper is summarized as follows.

First, we propose the IoT-MAP, a novel IoT mashup ap-

plication platform that provides flexible interaction with

surrounding things. Second, we designed an international

standard based Thing ID resolution procedure utilizing well-

established name server implementation - Oliot-ONS (Ob-

ject Name Service) which is a component of IoT infrastruc-

ture platform Oliot(http://www.oliot.org). Third, we provide

two ways of development methods - IoT-App Library for

application developers to create IoT-App, and GUI author

tool for end-users to assemble application fit on their purpose

at run time intuitively. Finally, we report experimental results

on overhead evaluation of IoT-MAP and give two demo

scenarios utilizing the platform for verification.

The rest of this paper is organized as follows. In Section

2, we describe about high level concept and design con-

sideration of our IoT-MAP platform. Section 3 introduces

architecture of IoT-MAP to support development and opera-

tion of IoT-Apps, and Section 4 explain critical requirements

for dynamic deployment and service composition of smart

things and how they are handled by our platform. Then we

present implementation in Section 5, show evaluation and

demo application scenarios for verification In Section 6. We

introduce related work in Section 7 and finally conclude the

paper in section 8.

II. DESIGN CONSIDERATIONS

Many IoT devices are coming to the market nowadays,

but their capabilities are limited because they are equipped

with a mobile application which was specifically designed

for the devices. For example, smart bulbs such as Philips

Hue (http://meethue.com) provide a mobile application to

turn on/off or change colors. End-users cannot customize

use of smart bulbs according to other application logics,

sensors or actuators interactions.

The problem is that the role of device manufacturers is

not differentiated with that of application developers. Appli-

cation developers focus on how to use the functionalities of

heterogeneous devices with IoT-App API, regardless of un-

derlying connectivity protocols while device manufacturers

focus on providing the device functionalities correctly by im-

plementing underlying connectivity protocols. Furthermore,

due to variety of end-user preferences, end-users may want

to create or compose their own or versatile applications at

run-time using a graphical user interface (GUI). It means

that the role of application developers may be extended to

that of end-users. Therefore, a platform is necessary where

application developers and device manufacturers concentrate

on their role to satisfy variety of user requirements.

The concept of model driven architecture (MDA) [17]

can provide a layered architecture so that division of roles

among end-users, application developers, and device man-

ufacturers is achieved. The idea of MDA is to extract

platform-independent and domain-specific model (Platform

Independent Model, PIM) from platform-specific elements

such as programming languages, operating systems, or com-

munication protocols (Platform Specific Model, PSM) to

achieve an efficient development or interoperability between

different systems.

Code 1: Example of Abstracted Interfaces and Functional

Description of SensorTag

p u b l i c i n t e r f a c e T h i n g S e r v i c e {
S t r i n g g e t T h i n g I d () ;
S t r i n g getThingName () ;
void s e t E n d p o i n t (E n d p o i n t e n d p o i n t) ;
void c o n n e c t () ;
void d i s c o n n e c t () ;
boolean i s C o n n e c t e d () ;

}
p u b l i c i n t e r f a c e B u t t o n S e r v i c e

ex tends T h i n g S e r v i c e {
i n t g e t B u t t o n C o u n t () ;
boolean g e t B u t t o n S t a t e (i n t i n d e x) ;

}
p u b l i c i n t e r f a c e A c c e l S e r v i c e

ex tends T h i n g S e r v i c e {
S t r i n g ge tAcce lRa t eMeasu remen t () ;

}
p u b l i c i n t e r f a c e S e n s o r T a g S e r v i c e

ex tends B u t t o n S e r v i c e , A c c e l S e r v i c e ,
G y r o s c o p e S e r v i c e , . . . {

}
In PIM layer of the platform, application developers

access devices through well-defined interface regardless of

underlying connectivity protocols. The platform provides

generalized functional abstraction interfaces which is not

constrained by vendor-specific one, and can also be com-

posed to describe functionalities of specific things like Code

1. The ThingService describes base functions of physical

things such as retrieving identification, setting endpoint

and connect/disconnect. ButtonService and AccelService de-

scribes atomic functions to poll simple button data and accel-

erator data. And with these interfaces SensorTagService can

be written to describe functionalities of a specific model of

thing, TI SensorTag. With these abstractions of device func-

tionalities, potential of IoT-App can be drastically increased

because device manufacturers, application developers, and

end-users are all interoperable.

Due to the presence of PIM layer, it will be possible

for end-users to create their own or versatile applications

at run-time. In the layer above PIM layer, a GUI tool can

be deployed which provides a list of discovered devices and

available software components of application logics so that

end-users assemble them to create applications dynamically.

This is possible because PIM layer already abstracted device

and underlying communication protocols.

In PSM layer in the platform, the functionalities of devices

2015 5th International Conference on the Internet of Things (IoT)

164

Figure 2: IoT-MAP Platform Architecture

can be provided by device manufacturers implementing well-

defined interface and connectivity protocol. Note that the

same functionality of the device can be implemented with

different communication protocols. For example, smart bulb

interface such as turning on/off, and changing color can

be implemented either by Bluetooth or UPnP over WiFi.

This choice is totally dependent on device manufacturer’s

decision, but applications can still access the device func-

tionalities using the same interface.

For the run-time loading of platform-specific implemen-

tations, external repository is necessary. It should not only

provide retrieving function of implementation codes accord-

ing to the identifiers of the devices but also be distributed

so that scalable searching is possible. We exploited object

name service (ONS) infrastructure from GS1 EPCglobal

architecture. It uses the identification system called elec-

tronic product code (EPC) and leverages the hierarchical

structure of domain name service (DNS), so scalable global-

scale distribution and efficient retrieving of platform-specific

implementation codes is possible.

III. THE IOT MASHUP APPLICATION PLATFORM

We design IoT-MAP architecture that works on mobile

operating system and could be used for developer and user.

Developers could build the application that interact with

various smart things easily by using IoT-App API that

utilize thing’s functionalities in uniform way if you have

IoT-MAP abstract functionalities of various heterogeneous

smart things around user’s smartphone. For users, they could

simply use IoT-App implemented by developer by selecting

specific things discovered by the platform at runtime or they

could author IoT-App at run time by using Composition UI

(GUI tool for user). IoT-App can interact with various things

without static binding to specific vendor at implementation

time, where as Normal application can only interact with

things that are bounded at implementation time.

A. IoT-MAP Platform System Architecture

The platform abstracts basic functionalities of device OS

(e.g. connectivity, network, etc.) so that IoT-Apps can utilize

them. Figure 2 is the full stack diagram of the platform.

The bottom-most part of the platform, Connectivity Provider

provides various connectivities and protocols to be used for

discovering and communicating with smart things around.

And the Object Abstraction Layer is in charge of discovery,

identification, virtualized object management and bundle

management, and actual composition of smart thing services

and business logic. Composition Layer supports functional-

ities for Versatile App. This Layer actually carries out the

service composition by authoring the parsing information

that is defined by user at run-time on authoring tool and

retrieving the reference of bundles from the object abstrac-

tion layer. And finally, there is an IoT-APP API which

offers standard interfaces for smart-things’ group (e.g. bulbs,

sensors, cameras, etc.) and also offers API for the various

functions such as the things discovery, retrieve virtualized

object and etc.

1) Connectivity Provider: Connectivity Provider abstracts

and provide various connectivities and protocols to upper

layer of platform, like Bluetooth or Bluetooth Low Energy

(BLE) supported by Android, or other protocols such as

UPnP supported by external libraries. Developer could dis-

cover external things by using API for the things discovery.

Bluetooth CP (Connectivity Provider), UPnP CP, and other

CPs are implementing ConnectivityProvider interface, so

upper layer can utilize basic functionalities such as discovery

and retrieval of identification or profile of things that support

each CP in general way.

2015 5th International Conference on the Internet of Things (IoT)

165

Figure 3: Structure of Object Abstraction Layer

2) Object Abstraction Layer: Object Abstraction Layer

in Figure 3 is a core layer of IoT-MAP Platform, which

abstracts real-world devices into group of abstracted services

and enables composition of those services and business

logic of IoT-App. This layer includes Device Scanner which

discovers surrounding smart things, ID Resolution which

identify and locate the device information, Module Installer

which download and register device software module, and

Dynamic Module Engine which dynamically manages (in-

stall, start, stop, update, uninstall) devices as abstracted ser-

vice object with the aid of OSGi framework. The discovered

and available devices pass through these components and

stored to the Dynamic Module Engine to be used as exported

device service by upper layer of platform.

• Device Scanner
Device Scanner scans available devices around the

smartphone using discovery methods (e.g. SSDP for

UPnP) of Connectivity Provider. To support scanning

capabilities on heterogeneous connectivity and proto-

cols, each of them are implemented in strategy pattern
which defines several algorithm, encapsulates each one,

and makes them interchangeable with uniform interface

DeviceScanner. Each scanned device is described with

ScannedDevice object that includes connectivity, proto-

col, device id, name, and endpoint.

• ID Resolution
Smart things usually have identifiable ID such as

URN, MAC address, UUID, or GS1 ID. ID Resolution

component reads these identifiers from ScannedDevice
object and query it to external Object Name Service

server to locate device information and driver bundle

URL. The procedure of this is handled in section IV.

• Module Installer
Module Installer reads the location of driver bundle

from the result of ID Resolution, and dynamically

download it from bundle repository. Then it installs the

bundle to Dynamic Module Engine.

• Dynamic Module Engine
Dynamic Module Engine is a core engine of IoT-

Figure 4: Structure of Composition Layer

MAP Platform that is responsible of dynamically load

various device drivers and service logics, and those

modules are composed as parts of IoT-App. So this

engine is implemented utilizing OSGi Framework[11]

to consume its powerful implementations such as ex-

ecution environment, module management, lifecycle

management, and service management. The engine can

provide the instances of software modules as service,

and IoT-App can load these instances as if they are in

a single application. Most complex procedures of this

operations can be delegated to OSGi Framework.

B. Composition Layer

Composition layer is utilized by Versatile App, which is a

special type of IoT-App that can discover and connect device

by parsing the authoring information from User authoring

tool. General IoT-Apps integrates smart things based on

application developer’s business logic, but Versatile App

gathers devices from authoring information, and compose

each software module based on that information. The struc-

ture of this layer is illustrated in Figure 4. Composition UI

shows the list of service bundles as well as the available

application logic bundle list in the user authoring tool. This

plays the role of delivering the authoring information to

the composition layer. Service bundle is a software module

necessary to use the functions provided by the smart-things

while the application logic bundle is a software module used

to provide an application composed with the service bundle.

When the user creates composition assembly, it is parsed,

composed, and launched by this layer.

IV. DYNAMIC IDENTIFICATION AND DEPLOYMENT OF

SMART THINGS

To integrate heterogeneous devices in uniform way, IoT-

MAP Platform provides genuine identification and deploy-

ment mechanism utilizing EPCglobal[1] standard.

A. EPCglobal and Object Name Service

EPCglobal is set of standards for supply chain manage-

ment, which is published and maintained by international

standardization organization GS1. It defines ways to track

2015 5th International Conference on the Internet of Things (IoT)

166

(a) Identification procedure of the products with assigned
unique EPC

(b) Identification procedure of the device which supports BLE
GATT profile

Figure 5: Device identification procedure with ONS

and identify each of the products throughout the whole

factors of supply chain including production, distribution,

and consumption. The core of this standard is the unique

code EPC (Electronic Product Code) that is assigned to each

of the products and that code connects actual product and

virtual product data. Among the standards of EPCglobal,

IoT-MAP Platform utilizes Object Name Service[2], which

aid business stakeholders to retrieve information of that

product from the server maintained by manufacturer. ONS

is implemented based on Domain Name Service (DNS), so

it can locate the information from wide-spread distributed

servers maintained by each manufactures effectively.

Figure 5a illustrates the standard identification procedure

of ONS with EPC. First, the user scan and discover thing

with the scanner or smartphone(1, 2), read the EPC from

it (3), then create Application Unique String (AUS) which

contains user’s environment information such as country and

language code, and send it to ONS client(4). The ONS client

converts the AUS to Fully Qualified Domain Name (FQDN)

based on ONS standard, query it to local ONS server, then

that ONS server locates the other server that contains thing

information along the same lines as the DNS(5). The located

ONS server generates Name Authority Pointer (NAPTR)

record which is one of DNS response standards, then send

it to the ONS client of user(6). And finally, the ONS client

sends this information to user’s application(7). Because the

list of information is maintained by the manufacturer, it

can be a nice method to deliver the location of device

driver which resides in the manufacturer’s server. With this

environment, the IoT-MAP Platform can identify the smart

thing, find location of driver, then download and install to

deploy that thing into user’s smartphone.

The powerful benefit of utilizing EPCglobal is that it is

international standard for supply chain. As the GS1 barcode

have been the standard for international trading, all products

including various smart things can have unique EPC in the

future. And if those things have EPC, then we can easily

utilize that standard to identify and deploy the heterogeneous

smart things in uniform way.

B. Electronic Product Code and the Alternatives

As mentioned in previous subsection, EPCglobal standard

assigns unique code to each products. But obviously most of

smart things does not have EPC as its identifier and those

currently available in market usually have identifiers like

MAC address, UUID, or other proprietary serial numbers. So

we need some alternative of EPC or reasonable conversion or

mapping scheme to utilize ONS. In this platform, we devel-

oped identification and deployment scheme of BLE Generic

Attribute Profile (GATT). The GATT profile is predefined

generic profile containing specification of certain application

or behavior that can be used for structured communication

with BLE devices. Each GATT profile represents functional

class of device and can be distinguished with assigned

UUID, so we can utilize this for querying ONS to retrieve

device information except for some unique information

such as serial number of product name. As illustrated in

Figure 5b, the user can query with GATT profile service

id and retrieve corresponding compatible driver to utilize

functionalities of the BLE device.

V. IMPLEMENTATION

We have implemented the prototype of IoT-MAP platform

on the top of Android. The platform runs as a service on the

Android. The IoT-MAP platform is designed to run on any

operating system which supports JVM or compatible engine

(e.g. Dalvik), and we implement this on Android to verify

its capability.

A. Bridging OSGi Framework and Android Dalvik VM

The interfaces abstracting various functionalities of smart

things should be used as a bridge between OSGi Frame-

work and Android application. When the developer asks

service object to embedded OSGi Framework, it returns

Java Object type object. But the execution environment

2015 5th International Conference on the Internet of Things (IoT)

167

Figure 6: Dynamic Proxy of OSGi Service Object to be used

in Android Environment

of OSGi Framework and Android Dalvik VM are isolated

with different classloader, so ClassCastException is thrown

when the developer just try to cast the object from one

to another even though same interface is used to cast.

This problem that makes two environment cannot be truly

integrated is happened not only on Android/OSGi but also

on Tomcat/OSGi which has embedded OSGi Framework

in JVM. Usually this problem is conquered by registering

interfaces to use before execution of OSGi Framework, but

it is not an available option in IoT-MAP Platform because of

its dynamic aspect. Another option is to use libraries which

can modify the Java bytecode dynamically and cast it, but

those libraries cannot be used in Android Dalvik VM. So

in Dynamic Execution Engine of IoT-MAP Platform, we

utilized Reflection and Proxy to overcome this problem. As

illustrated in Figure 6, the platform encapsulates the service

object with dynamic proxy of Java API with the same inter-

face. With this improvement, the platform can successfully

integrate OSGi Framework and Android applications.

VI. DEMO APPLICATION AND EVALUATION

A. Bendi Call Scenario

This scenario shows integration of multiple smart things

and application developer’s business logic. As shown in

Figure 7c, the Philips Hue and the tactile interaction de-

vice Bendi[14] are integrated in single smartphone to pro-

vide composed interactive communication call service. To

demonstrate this scenario, we developed simple VoIP call

application as an IoT-App. It enables users to make a call

to each other, and it also provides additional tactile and

visual interaction over just voice. As shown in Figure 7, each

device discover, deploy, and integrate services provided by

Hue and Bendi, then make them send their input over VoIP

SMS service. These additional function are implemented in

drastically reduced line of code, because all implementation

details for discovery, connection, and controls are delegated

to the platform.

B. Versatile App Scenario

Versatile App[15] is implemented to provide more free-

dom to user for selecting and composing things around the

user’s smartphone. The GUI to integrate smart things is

implemented based on the open-source service composition

(a) Devices on Scenario
(b) Service Launching

(c) Scenario Outline

Figure 7: Bendi Call Scenario

framework Node-RED[12]. In Versatile App, the business

logic to integrated smart things is provided in the form of

Service Logic. This service logic is smaller atomic logic

compared to the business logic of general IoT-App, so user

can select on their intention. In this scenario, we used TI

SensorTag[13] which embeds acceleration sensor and smart

bulb Hue. As illustrated in Figure 8, the scanned devices are

service logics are shown in the GUI, user connect the devices

and logics with touch, and then the service is launched. The

values generated by SensorTag is translated to RGB value

by service logic, then it is consumed by Hue bulb, so the

composition flickers bulbs when user shakes the SensorTag.

C. Overhead Evaluation of IoT-MAP Platform

To evaluate overhead of IoT-MAP Platform, we used

virtual stub smart thing implementation and compared time

difference with and without IoT-MAP Platform support. This

stub full loads to the CPU of smartphone, and the IoT-App

runs this stub from 1 to 16 count. The test is run on Nexus

7 (2013) which has quad-core processor and the result is

shown in Figure 9.

In the graph, Android refers just running stub code in

Android Activity, OSGi Service refers the stub is directly

executed in OSGi Framework, and IoT-App refers the stub is

loaded and run on IoT-MAP Platform. The exact difference

of overhead can be calculated with the OSGi Service and

IoT-App. There is no significant difference when one or

two stubs are used, but when more are used, about 5% of

overhead is measured. This seems that the thread of IoT-

App makes small overhead when 4 or more stub threads

are already running. This result is critical condition that the

thing lays full load to smartphone, so the actual overhead

in normal use will be not significant. The Android showed

2015 5th International Conference on the Internet of Things (IoT)

168

(a) Smart Thing Discovery (b) Connecting Logics with Touch Input
(c) Service Launching

Figure 8: Versatile App Execution Procedure

Figure 9: Overhead Evaluation Graph of IoT-MAP Platform

lower performance than others, and it shows OSGi Frame-

work itself can run the stub more efficiently than that run

from Android activity thread.

VII. RELATED WORK

Combining available information and services from mul-

tiple sources to compose a new service is already popular

in World Wide Web technology under the name of Web

Mashup. Efforts to apply this concept to smart things re-

sulted studies such as mashup within the Web of Things[4]

or within various heterogeneous devices. Also, many sci-

entific studies(e.g. Cilia[7] or Dynamo[8]) and open-source

projects(e.g. Eclipse IoT[10] or OpenHAB[9]) are working

on how to compose services of smart things and provide new

values to users. However, most of these studies and projects

usually assume the existence of a certain home server or

gateway agent to manage underlying devices.

IoT Mashup as a Service [6] proposed a generalized

cloud-based service model which consists of software

model, thing model, and computing resource model, and it

designed a cloud-based architecture for end-users to create

a composed service by assembling software components of

application logics and proxies of heterogeneous devices.

While IoTMaas targeted cloud-based service model and

architecture, our work focused on mobile pervasive environ-

ment, so it has a chance to provide great user experience by

composing personal and surrounding devices dynamically.

Ambient Dynamix[16] provide a service composition

functionality for mobile applications using smart things.

It has advanced context sensing capabilities to support

community based composition function. However, It only

could discover registered devices on Dynamix plug-in server

for discovery while IoT-MAP could discover surround-

ing devices in general way with open-source based well-

established name server Oliot-ONS, and it performs ID

resolution procedure to retrieve the service list from object

name service. The object name service follows DNS hierar-

chical structure and distributed over the world. So by using

the ONS infrastructure, our external repository systems are

highly scalable.

VIII. CONCLUSION

In this paper, we introduced smartphone-centric smart

thing service composition platform IoT-MAP Platform that

dynamically discover devices, deploy drivers, and provide

them in uniform interface to IoT-App. For future work,

the method to derive abstracted general interface should

be studied with existing profile-based protocols to abstract

most of smart things available in market. And also, because

the abstracted interface cannot cover all functionalities of

each things, platform should provide generalized interface

to handle GUI dialog for additional interaction between user

and the driver of smart thing.

ACKNOWLEDGMENT

This work was supported by Institute for Information

and communications Technology Promotion(IITP) grant

funded by the Korea government(MSIP)(No. 10041313, UX-

oriented Mobile SW Platform)

REFERENCES

[1] Traub, Ken, et al. The GS1 EPCglobal Architecture Frame-
work, GS1, 2014.

[2] Dean, Kevin, et al. GS1 Object Name Service (ONS), GS1,
2013.

[3] Murugesan, San. Understanding Web 2.0, IT Professional,
2007, 9.4: 34-41.

2015 5th International Conference on the Internet of Things (IoT)

169

[4] Guinard, Dominique, et al. Towards physical mashups in the
web of things, In: Networked Sensing Systems (INSS), 2009
Sixth International Conference on. IEEE, 2009. p. 1-4.

[5] Bandyopadhyay, Debasis; Sen, Jaydip. Internet of things: Ap-
plications and challenges in technology and standardization,
Wireless Personal Communications, 2011, 58.1: 49-69.

[6] Im, Janggwan; Kim, Seonghoon; Kim, Daeyoung. IoT Mashup
as a Service: Cloud-Based Mashup Service for the Internet of
Things, In: Services Computing (SCC), 2013 IEEE Interna-
tional Conference on. IEEE, 2013. p. 462-469.

[7] Lalanda, Philippe; Escoffier, Clment; Hamon, Catherine. Cilia:
An autonomic service bus for pervasive environments, In: Ser-
vices Computing (SCC), 2014 IEEE International Conference
on. IEEE, 2014. p. 488-495.

[8] Avouac, P.-A.; Lalanda, Philippe; Nigay, Laurence. Adaptable
multimodal interfaces in pervasive environments, In: Consumer
Communications and Networking Conference (CCNC), 2012
IEEE. IEEE, 2012. p. 544-548.

[9] OpenHAB. Open HAB site.
http://www.openhab.org/index.html

[10] Eclipse IoT. Eclipse IoT site.
http://iot.eclipse.org/index.html

[11] OSGi Alliance, OSGi site
http://www.osgi.org/

[12] IBM Emerging Technology, Node-RED site
http://nodered.org/

[13] Texas Instrument, CC2541 SensorTag Development Kit site
http://www.ti.com/tool/cc2541dk-sensor

[14] Park, Young-Woo; Park, Joohee; Nam, Tek-Jin. Bendi: Shape-
Changing Mobile Device for a Tactile-Visual Phone Conver-
sation, In: Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing Systems.
ACM, 2015. p. 181-181.

[15] Sungpil Woo, Sehyeon Heo, Janggwan Im, and Daeyoung
Kim. Versatile Internet of Things Application on Mobile Dy-
namic Service Composition Framework, In: The 4th Interna-
tional Conference on Internet of Things (IoT 2014), MIT, USA,
Oct. 4-8, 2014

[16] Darren Carlson, Andreas Schrader Dynamix: An Open Plug-
and-Play Context Framework for Android, In: The 3rd Inter-
national Conference on Internet of Things (IoT 2012)

[17] OMG Architecture Board ORMSC. Model driven architecture
(MDA). OMG document number ormsc/2001-07-01, available
from www.omg.org, July 2001

2015 5th International Conference on the Internet of Things (IoT)

170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

