
Toward Semantic XML Clustering

Andrea Tagarelli, Sergio Greco ∗

Abstract

The increasing availability of heterogeneous XML informa-

tive sources has raised a number of issues concerning how to

represent and manage semistructured data. Although XML

sources can exhibit proper structures and contents, differ-

ently annotated XML documents may in principle encode

related semantics due to subjective definitions of markup

tags. Discovering knowledge to infer semantic organization

of XML documents has become a major challenge in XML

data management. In this context, we address the problem

of clustering XML data according to structure as well as

content features enriched with lexical ontology knowledge.

We propose a framework for clustering semantically cohe-

sive XML structures based on a transactional representa-

tion model. Experiments on large real datasets give evidence

that the proposed approach is highly effective in detecting

groups of XML data that exhibit structure and/or content

affinities.

1 Introduction

XML is touted as the driving-force for representing and
exchanging data on the Web. Indeed, the semistruc-
tured and self-describing physiognomy of XML makes
it feasible to model a broad variety of data as XML
documents, in order to fulfill the promises of the next-
generation Web.

XML data sources exhibit different structures and
contents. Markup tags, which play a basic role to
impose the structure of a document, reflect subjective
factors that brand the authorship in coding information.
As a consequence, differently annotated XML data may
be “semantically related” at a certain degree.

In such a context, a challenge is inferring semantics
from XML documents according to the available syn-
tactic information, namely structure and content fea-
tures. This has several interesting application domains,
such as integration of data sources and query process-
ing, that can be seamlessly generalized to any kind of
semistructured data. For example, detecting structural
and content affinities among XML data can aid to con-
ceive techniques for indexing such data, thus narrow-

∗A. Tagarelli and S. Greco are with the DEIS Dept. of

University of Calabria, Via Bucci 41c, 87036 Rende (CS) – Italy.

E-mail addresses: {tagarelli,greco}@deis.unical.it

ing the search space and improving the design of query
plans.

As a fundamental exploratory data mining task,
clustering represents the natural solution to discover
common characteristics and specific facets exhibited by
XML documents. However, the complexity intrinsic to
semistructured data requires nontrivial effort to define
an effective clustering framework. Extracting significant
features, modeling document structures and contents,
defining an appropriate notion of homogeneity between
documents are only some of the issues to be addressed.

Contribution. In this paper we investigate how to
cluster semantically related XML data through an in-
depth analysis of content and structural specifics in the
data. A major novelty of our proposal for mining XML
data is the introduction of the notion of tree tuple in the
definition of an XML representation model that allows
for mapping XML document trees into transactional
data. The notion of tree tuple lends itself particularly
well to identify semantically cohesive substructures from
XML documents; moreover, it enables a flat, relational-
like XML representation that is well-suited to meet
the requirements for clustering XML data according to
structure and content information. Our contributions
can be summarized as follows:

1. We devise suitable features for XML data, focus-
ing on content information extracted from textual
elements and structure information derived from
tag paths. Both kinds of syntactic information are
enriched with knowledge provided by a lexical on-
tology. In particular, for the structure case, we pro-
pose a novel word sense disambiguation method to
select the most appropriate sense for each tag name
in the context of an XML tree path. XML features
are conveyed by XML tree tuple items.

2. We conceive a transactional model for representing
the XML tree tuples extracted from a collection of
XML documents. Such a model is at the basis of
a semantic XML clustering framework. We adopt
an effective partitional approach based on an algo-
rithm designed for the XML transactional domain,
although the proposed framework is conceived to
be parametric w.r.t. any method of clustering.

188

3. We conduct on large real datasets several experi-
ments aimed at assessing the ability of the frame-
work in performing structure- or content-driven
clustering, as well as discovering clusters of “hy-
brid” type. Empirical evidence argues that the
proposed framework is highly effective and shows
a good scalability.

Related work. Several approaches to mining XML
data have been recently devised, mostly focusing on
clustering XML documents by structure. This is mainly
motivated by several applications in the management
of semistructured data, especially in the Web environ-
ment [1, 17], which have raised the demand for effec-
tive and efficient solutions to the problem of identify-
ing structural similarities among semistructured data.
In this context, [12] proposes an XML-aware edit dis-
tance to measure structural similarity among XML doc-
uments, and applies a standard hierarchical clustering
algorithm to evaluate how closely cluster documents
correspond to their respective DTDs. However, in gen-
eral, computing tree edit distances turns out to be un-
practical, as it requires a quadratic number of compar-
isons between document elements.

An important insight into the task of supervised
classification of XML data from the structure viewpoint
is provided in [19]. The authors propose a machine
learning technique that exploits mining of substructures
frequently occurring in XML documents in order to
define classification rules.

More recently, it has been raised the importance
of summarizing XML data, mainly for the purpose of
defining syntheses for clusters of structurally similar
XML data. Approaches exploiting graph-based rep-
resentation models [11] as well as tree matching [5]
have been proposed. XSketch [13] is a refined synop-
sis model that addresses the problem of approximat-
ing path-expression selectivities in the general setting of
graph-structured XML data with element values. The
construction of an accurate synopsis is based on some
statistical assumptions that compensate for the lack of
detailed path and value information in the synopsis.
However, building an effective XSketch has been demon-
strated to be an NP-hard problem, thus a heuristic syn-
opsis refinement strategy must be used.

The need for organizing XML data according to
both their content and structural features has become
challenging, due to the increase of heterogeneity of
XML sources. However, mining XML data from a
content/structure combination viewpoint is still in a
preliminary stage, and no existing approach provides
effective capabilities for semantic XML clustering. A
first attempt is given in [6], which proposes to apply

a partitional clustering technique to XML documents
represented in a vector-space model by textual and tag-
based features.

An alternative representation, called BitCube, is
presented in [18] as a 3-dimensional bitmap index
of triplets 〈document, XML-element path, word〉.
BitCube indexes can be manipulated to partition docu-
ments into clusters, by exploiting bit-wise distance and
popularity measures. In order to speed up query an-
swering, slice/dice/project operations are performed to
sub-cubes resulting from the clustering phase. However,
no critical discussion is provided by the authors about
possible improvements of document clustering. In gen-
eral, the approach suffers from typical disadvantages of
boolean representation models, such as the lack of par-
tial matching criteria and natural measures of document
ranking.

Generation of features for XML data is more deeply
investigated in [16], where annotations, structure and
ontological information are combined together. How-
ever, the focus here is on building appropriate features
for purposes of supervised classification of XML data.

Plan of the paper. The rest of the paper is orga-
nized as follows. Section 2 provides terminology and
notations useful for our purposes, and necessary back-
ground on the notions of tree tuple, item, and transac-
tion for the domain of XML data. Section 3 describes
how to generate XML features by semantically enrich-
ing syntactic information in XML tree tuple items with
lexical ontology knowledge. Particular emphasis in this
section is posed on a novel method for tag sense dis-
ambiguation. Section 4 presents a framework for clus-
tering XML transactions. Section 5 reports experimen-
tal evaluation stating the effectiveness of the clustering
framework. Section 6 presents concluding remarks and
promising points for future research.

2 Background

2.1 XML trees and paths. A tree T is a tuple
T = 〈rT , NT , ET , λT 〉, where NT ⊆ N denotes the set
of nodes, rT ∈ NT is the distinguished root of T ,
ET ⊆ NT × NT denotes the (acyclic) set of edges, and
λT : NT 7→ Σ is a function associating a node with
a label in the alphabet Σ. Let Tag, Att, and Str be
alphabets of tag names, attribute names and strings,
respectively. An XML tree XT is a pair XT = 〈T, δ〉,
such that: 1) T is a tree defined on the alphabet
Σ = Tag ∪ Att ∪ {S}, where symbol S /∈ Tag ∪ Att
is used to denote the #PCDATA content model; 2) given
n ∈ NT , λT (n) ∈ Att ∪ {S} ⇔ n ∈ Leaves(T); 3)
δ : Leaves(T) 7→ Str is a function associating a string to
a leaf node of T .

189

An XML path p is a sequence p = s1.s2. . . .sm of
symbols in Tag ∪ Att ∪ {S}. Symbol s1 corresponds to
the tag name of the document root element. An XML
path can be of two types: tag path, if sm ∈ Tag, or
complete path, if sm ∈ Att ∪ {S}. We denote as PXT

the set of complete paths in XT .
Let XT = 〈T, δ〉 be an XML tree, and p =

s1.s2. . . .sm be an XML path. The application of p
to XT identifies a set of nodes p(XT) = {n1, . . . , nh}
such that, for each i ∈ [1..h], there exists a sequence
of nodes, or node path, npp

i = [ni1 , . . . , nim] with the
following properties: 1) ni1 = rT and nim

= ni; 2) nij+1

is a child of nij
, for each j ∈ [1..m-1]; 3) λ(nij

) = sj ,
for each j ∈ [1..m].

Moreover, we say that the application of a path
to an XML tree yields an answer, which is defined
depending on the type of path. In case of a tag path
p, the answer of p on XT is exactly the set of node
identifiers p(XT), that is AXT (p) ≡ p(XT). For a
complete path p, the answer of p on XT is defined as the
set of string values associated to the leaf nodes identified
by p, that is AXT (p) = {δT (n) | n ∈ p(XT)}.

2.2 XML tree tuples. Tree tuples resemble the
notion of tuples in relational databases and have been
proposed to extend functional dependencies to the XML
setting [2, 8]. In a relational database, a tuple is a
function assigning each attribute with a value from the
corresponding domain. According to [8], we provide the
following definition.1

Definition 2.1. Given an XML tree XT , a tree tuple
τ is a maximal subtree of XT such that, for each (tag
or complete) path p in XT , the answer Aτ (p) contains
at most one element.
We denote as T XT the set of tree tuples from XT .

Intuitively, a tree tuple is a (sub)tree representation
of a complete set of distinct concepts that are correlated
according to the structure semantics of the original
tree. Moreover, tree tuples extracted from the same
tree maintain identical structure while reflect different
ways of associating content with structure as they can
be naturally inferred from the original tree.

Example 1. Consider the XML tree shown in Fig. 1,
which represents two journal articles from the DBLP
archive. Any internal node has a unique label denoting
a tag name, whereas each leaf node is labeled with
either name and value of an attribute, or symbol S and

1In [8], an XML document is assumed to conform to a

predefined DTD. However, in our context, the presence of an XML
schema is not necessary to extract tree tuples.

a string corresponding to the #PCDATA content model.
Path answers can be easily computed: for example, path
dblp.article.title yields the set of node identifiers
{n8, n22}, whereas path dblp.article.author.S yields
the set of strings {‘Hartmut Liefke’, ‘Dan Suciu’}.

Three tree tuples can be extracted from the example
tree (Fig. 2). One tree tuple is extracted starting from
the right subtree rooted in the dblp element. Two tree
tuples are instead extracted starting from the left subtree
rooted in dblp, as in this subtree there are two paths
dblp.article.author, each of which yields a distinct
path answer corresponding to a paper author.

2.3 A transactional model for XML tree tuples.
In the huge amount of available structured data, a rel-

evant portion is represented by transactional data, i.e.
variable-length sequences of objects with categorical at-
tributes. The interest in analyzing this particular do-
main arises from many challenging application problems
(e.g. analysis of Web access logs) that can be formalized
using transactional data. Given a set I = {e1, . . . , em}
of distinct categorical values, or items, a transactional
database is a multi-set of transactions tr ⊆ I.

In our setting, the item domain is built over all
the leaf elements in a collection of XML tree tuples,
that is the set of distinct answers of complete paths
applied to the tree tuples. A transaction is modeled
with the set of items associated to the leaf elements
of a specific tree tuple. The intuition behind such a
model lies mainly on the definition of tree tuples itself:
each path applied to a tree tuple yields a unique answer,
thus each item in a transaction indicates information on
a concept which is distinct from that of other items in
the same transaction.

Definition 2.2. Let τ be a tree tuple and p ∈ Pτ be a
complete path in τ . The pair e =

(
p,Aτ (p)

)
defines a

tree tuple item in τ .

Let Iτ = {
(
p,Aτ (p)

)
| p ∈ Pτ} denote the set

of items of a tree tuple τ . Given an XML tree XT ,
the associated set of items is defined as IXT =⋃

τ Iτ , with τ ∈ T XT . Analogously, given a collection
XT = {XT1, . . . , XTn} of XML trees, the associated
set of items, or item domain, is defined as IXT =⋃

XT∈XT IXT .
The set Iτ of tree tuple items in τ is referred

to as the XML transaction associated to τ . Given
a collection XT = {XT1, . . . , XTn} of XML trees,
the XML transaction dataset S is defined as S =⋃

XT∈XT SXT , where SXT = {Iτ | τ ∈ T XT }.
Some remarks can be highlighted regarding the im-

pact of XML transactions on critical aspects such as

190

<dblp>
<article key="journals/sigmod/LiefkeS00">

<author>Hartmut Liefke</author>
<author>Dan Suciu</author>
<title>An Extensible Compressor

for XML Data
</title>
<year>2000</year>
<journal>SIGMOD Record</journal>
<volume>29</volume>
<pages>57-62</pages>

</article>
<article key="journals/sigmod/Suciu01">

<author>Dan Suciu</author>
<title>On Database Theory

and XML</title>
<year>2001</year>
<journal>SIGMOD Record</journal>
<volume>30</volume>
<number>3</number>
<pages>39-45</pages>

</article>
</dblp>

(a)

S

article

author

author

title

pages

journal

@key

journals/sigmod/LiefkeS00

Hartmut Liefke

Dan Suciu

SIGMOD Record

2000

An Extensible Compressor
for XML Data

n1

n2

n3

n4

n5

n6

n7
n8

n9

n11

n12

n13

n16

n17

S

S

S

S

S

dblp

year n10

volume

29

n14

n15S

57-62

S

article

author

title
number

journal

@key

journals/sigmod/Suciu01

Dan Suciu

SIGMOD Record

2001

On Database Theory
and XML

n18

n19

n20

n21
n22

n23

n25

n26

n27

n30

n31

S

S

S

S

year n24

volume

30

n28

n29S 3

S

pages n32

n33

39-45

(b)

Figure 1: Example DBLP XML document and its tree

article

author

title

pages

journal

@key

journals/sigmod/LiefkeS00

Hartmut Liefke

SIGMOD Record

2000

An Extensible Compressor
for XML Data

n1

n2

n3

n4

n5

n8

n9

n11

n12

n13

n16

n17

S
S

S

S

dblp

year n10

volume

29

n14

n15S

57-62

S

article

author

title

pages

journal

@key

journals/sigmod/LiefkeS00

Dan Suciu

SIGMOD Record

2000

An Extensible Compressor
for XML Data

n1

n2

n3

n6

n7

n8

n9

n11

n12

n13

n16

n17

S
S

S

S

dblp

year n10

volume

29

n14

n15S

57-62

S

S

39-45

S

article

author

title

number
journal

@key

Dan Suciu

SIGMOD Record

2001

On Database Theory
and XML

n18

n19

n20

n21
n22

n23

n25

n26

n27

n30

n31

S

S

S

S

n24

volume

30

n28

n29S

3

pages n32

n33

n1dblp

journals/sigmod/Suciu01
year

(a) (b) (c)

Figure 2: The tree tuples extracted from the XML tree of Fig. 1(b)

missing elements and fragmentation. High heterogene-
ity of relational schemes, which can be derived from
XML schemes under some mapping criteria, generally
brings about many missing values; transactions over-
come this traditional drawback since items always re-
fer to non-null values. Concerning fragmentation, this
may be a negative outcome of excessive decomposition
of original XML documents, and cause serious overhead
in query evaluation; however, XML tree tuples sub-
stantially act as “features” for clustering semistructured
data, whereas further query processing can be carried
out on original XML documents.

Example 2. In order to model tree tuples as transac-
tions, each tuple can be decomposed into distinct paths
and respective answers, as shown in Fig. 3(a). For
example, the application of dblp.article.@key yields
the attribute value ‘journals/sigmod/LiefkeS00’ corre-
sponding to node n3 of τ1; item e1 is then associ-
ated to this pair path-answer. Yet, the answer of
dblp.article.journal.S is the string ‘SIGMOD Record’
corresponding to nodes n27 of τ3 and n13 of τ1 and τ2.

Once the item domain has been completely defined,
a transaction is assigned with each tree tuple by mapping
its pairs path-answer into the corresponding items. A
transactional representation of the tree tuples of Fig. 2
is shown in Fig. 3(c).

3 Extracting XML Features

3.1 Structure features. Tag paths represent the
natural basis for extracting structural features from
XML data. However, although important information
can be inferred from XML tags, subjective factors reflect
the style of document authors in coding information
to XML, thus informative consistency among XML
data is not usually guaranteed. The key idea lies in
going beyond a context-free use of mere terms, i.e.
tag names, by mapping them into semantically related
concepts. Each concept belongs to an ontological space
and is represented by a lexical meaning, or sense, to be
associated to a tag name. Lexical ontology knowledge
can be hence exploited to semantically enrich features
to be extracted from XML tag names.

191

path (p) Aτ1(p) node ID

dblp.article.@key ‘journals/sigmod/LiefkeS00’ n3

dblp.article.author.S ‘Hartmut Liefke’ n5

dblp.article.title.S ‘An Extensible Compressor ...’ n9

dblp.article.year.S ‘2000’ n11

dblp.article.journal.S ‘SIGMOD Record’ n13

dblp.article.volume.S ‘29’ n15

dblp.article.pages.S ‘57-62’ n17

path (p) Aτ2(p) node ID

dblp.article.@key ‘journals/sigmod/LiefkeS00’ n3

dblp.article.author.S ‘Dan Suciu’ n7

dblp.article.title.S ‘An Extensible Compressor ...’ n9

dblp.article.year.S ‘2000’ n11

dblp.article.journal.S ‘SIGMOD Record’ n13

dblp.article.volume.S ‘29’ n15

dblp.article.pages.S ‘57-62’ n17

path (p) Aτ3(p) node ID

dblp.article.@key ‘journals/sigmod/Suciu01’ n19

dblp.article.author.S ‘Dan Suciu’ n21

dblp.article.title.S ‘On Database Theory ...’ n23

dblp.article.year.S ‘2001’ n25

dblp.article.journal.S ‘SIGMOD Record’ n27

dblp.article.volume.S ‘30’ n29

dblp.article.number.S ‘3’ n31

dblp.article.pages.S ‘39-45’ n33

(a)

item ID associated

node IDs

e1 n3

e2 n5

e3 n9

e4 n11

e5 n13, n27

e6 n15

e7 n17

e8 n7, n21

e9 n19

e10 n23

e11 n25

e12 n29

e13 n31

e14 n33

(b)

tr1 e1 e2 e3 e4 e5 e6 e7

tr2 e1 e8 e3 e4 e5 e6 e7

tr3 e9 e8 e10 e11 e5 e12 e13 e14

(c)

Figure 3: Transactional representation of the tree tuples of Fig. 2: (a) tree tuples with paths and answers, (b)
item domain, and (c) transaction set

Due to its increasing scope and public availability,
the lexical database WordNet [7] is used in this work
as ontology knowledge base. WordNet groups words
with the same meaning into equivalence classes, called
synsets (sets of synonyms). Each synset represents a
concept and is described by a short textual description,
called gloss. Synsets are explicitly connected through
predefined relations. In particular, noun synsets are
connected through is-a (hypernymy/hyponymy) and
part-of relations (meronymy/holonymy). We expect to
use mainly the noun portion of WordNet, since nouns
are much more heavily used to annotate XML data.

Tag sense disambiguation. Mapping tag names
into an ontological concept space needs to address the
issue of deciding the most appropriate sense for each tag
name. This can be accomplished by performing word
sense disambiguation (WSD), that is assigning a word
with a sense based on the context in which the word
appears.

The proposed approach to the disambiguation of

senses for tag names consists in selecting the most
appropriate senses w.r.t. a path-context. A path-
context is represented by a semantic network built on all
the possible senses associated to the tags of a specific
path. For each tag path p = t1.t2. . . .tn, a directed
weighted graph SG(p), called synset graph of p, is used
to disambiguate the senses of the tags in p. SG(p) is
defined as follows:

• Nodes are pairs 〈ti, σ〉, with i ∈ [1..n] and σ ∈
senses(ti), where senses(ti) denotes the set of
senses for word (tag) ti; moreover, additional nodes
source and sink are given for purposes of conve-
nient visits through the graph.

• Edges are connections between nodes of contiguous
tags (〈ti, σ〉, 〈ti+1, ρ〉), with i ∈ [1..n-1]; moreover,
edges (source, 〈t1, σ〉) and (〈tn, ρ〉, sink) hold, for
each σ ∈ senses(t1), ρ ∈ senses(tn).

• Edge weights are computed to reflect the semantic
relatedness between the concepts associated to any

192

two nodes 〈ti, σ〉, 〈ti+1, ρ〉; weights on edges involv-
ing either source or sink are set to 0.

Once SG(p) has been built, the disambiguation of
the tag names in p is accomplished by finding the
maximum-weight path in SG(p), so that the most ap-
propriate senses are those corresponding to this graph
path. In case of multiple maximum-weight graph paths,
the preferred one can be computed by exploiting the
dictionary-supplied linear order of synsets based on the
lexicographer identifiers for senses. It is easy to observe
that computing a maximum-weight path is linear in the
number of edges, due to the layered form of the synset
graph.

The crucial aspect in the construction of the synset
graph is how to compute the edge weights, that is how to
compute the semantic relatedness between senses. We
now investigate this aspect in detail.

In dictionary-based WSD the assumption is that the
most plausible sense to assign to multiple co-occurring
words is the one that maximizes the relatedness among
the chosen senses. Within this view, the pioneer Lesk
method [10] disambiguates a target word by choosing
the meaning whose gloss shares the largest number of
words with the glosses associated to neighboring words.

The use of a lexical ontology, like WordNet, allows
for capturing the semantic relationships lying on con-
cepts by exploiting also hierarchies of concepts besides
dictionary glosses. The basic Lesk algorithm can be
hence enhanced in order to take advantage of the net-
work of relations provided in WordNet. This idea has
been formalized in a measure of semantic relatedness
between word senses based on the notion of extended
gloss overlap [4], which has the merit of considering
phrasal matches and weighting them more heavily than
single word matches. The extended gloss overlap mea-
sure takes as input two concepts (i.e. two WordNet
synsets) and computes a gloss overlap score, hereinafter
denoted with score, as the sum of the squared sizes of
the distinct overlaps between the glosses. An overlap is
detected whenever a shared maximal sequence of words
occurs. To finally measure the semantic relatedness be-
tween two synsets a and b, the gloss overlap scoring
function is used to compare not only a’s gloss with b’s
gloss but also pairs of glosses of those synsets to which a
and b are directly connected through a certain WordNet
relation. More precisely, comparisons include combina-
tion of a’s hypernym with b’s hypernym, a’s hyponym
with b’s hyponym, a’s hypernym with b, and a with b’s
hypernym. Further details can be found in [4].

Following on this direction, we maintain the above
mechanism of scoring of gloss overlaps, while we differ-
ently exploit the WordNet concept taxonomy to deter-
mine the relatedness between synsets. On one hand, we

consider different combinations of relations over synsets.
Indeed, tag names in an XML path are related by an or-
der that allows for inferring concept hierarchies, or even
lattices. On the other hand, we do not take into account
only direct connections but also indirect connections to
a target synset.

Let WSR denote a selected set of WordNet synset
relations. We assume that WSR consists of the follow-
ing relations: hypernymy, hyponymy, meronymy, and
holonymy. Given a relation r ∈ WSR and a synset a,
we define a function ω such that, applied to r and a,
yields the set ω(r, a) of synsets directly connected to a
through the WordNet relation r.

Function ω can be extended to include synsets that
are indirectly connected to a target synset at a given
distance in the WordNet taxonomy. Given two synsets
a and a′ and fixed a WordNet relation, there exists a
unique path in the WordNet taxonomy that leads from
a to a′. Given a relation r ∈ WSR, a synset a and
an integer value d, the set of pairs (a′, d) such that a′

is a synset connected to a, through r, across a path of
length d ≤ d is defined as

ω∗(r, a, d) =
{ ⋃

a′∈ω(r,a) ω∗(r, a′, d− 1) if d > 1
ω(r, a) if d = 1

.

Let a = 〈ti, σ〉 and b = 〈ti+1, ρ〉 be two synsets
corresponding to nodes in a synset graph, and let d be
an integer value. The weight on the edge between a and
b is computed as:

weight(a, b, d) = score(a, b)

+
∑

(b′,d)∈ω∗(hype,b,d) ∨ (b′,d)∈ω∗(holo,b,d) score(a, b′)× f(d)

+
∑

(a′,d)∈ω∗(hypo,a,d) ∨ (a′,d)∈ω∗(mero,a,d) score(a′, b)× f(d),

where f(d) is a function monotonically decreasing for
increasing values of d. In our experimental setting,
we fix f(d) to an inverse exponential function, while
the maximum distance value d is set to 3. Notice
that weight(a, b) is not the same as weight(b, a). This
asymmetry is justified in the context of XML path —
a corresponds to a tag name that typically represents a
hypernym or holonym of the tag name associated to b.

3.2 Content features. Content features are gener-
ated by discovering patterns from text elements. We re-
fer to textual content unit (for short, TCU) as the text
extracted from any leaf node of an XML tree (i.e. a
#PCDATA element content or an attribute value). TCUs
can be represented by adopting a conventional bag-of-
words model, and are subject to both lexical and se-
mantic analysis. The former aims at selecting syntac-
tically significant features (index terms), by means of
language-specific text preprocessing operations, such as

193

removal of stopwords and word stemming [3]. In addi-
tion, semantic analysis can be applied to leverage the
lexical ambiguity problem by examining the degree of
polysemy of terms.

The above two tasks of text analysis determine the
relevance weighting for index terms. Indeed, we can con-
sider syntactic relevance and semantic relevance. The
former is typically weighed according to information on
the frequency of occurrence of a term, w.r.t. a content
context. On the other hand, syntactic information can
be “semantically enriched” by resorting to the notion of
semantic rarity of terms. We shall address this point in
the next section.

4 XML Transactional Clustering

4.1 XML tree tuple item similarity. In our
setting XML features are embedded in tree tuple items.
The notion of similarity between tree tuple items is
hence function of the similarity between their respective
structure and content features.

Definition 4.1. Let ei and ej be two tree tuple items.
The tree tuple item similarity function is defined as

sim(ei, ej) = f × simS(ei, ej) + (1− f)× simC(ei, ej),

where simS (resp. simC) denotes the structural (resp.
content) similarity between the items, and f ∈ [0..1] is
a factor that tunes the influence of the structural part
to the overall similarity.

Moreover, let γ ∈ [0..1] be a similarity threshold.
We say that two tree tuple items ei and ej are γ-matched
if and only if they have a “match” at a degree greater
than or equal to γ, that is sim(ei, ej) ≥ γ.

Notice that tree tuple item similarity is defined as
a linear function since intuitively it enables us to eas-
ily control and understand the different contributions
coming from structure and content features. In the fol-
lowing we gain an insight into the notions of structural
and content similarity between tree tuple items.

Similarity by structure. Structural similarity be-
tween two tree tuple items ei and ej is evaluated by
comparing their respective tag paths and computing the
average similarity between the senses of the respective
best matching tags. Given two paths pi, pj and a tag
t ∈ pi, we denote as bm(pj , t) = {t′ ∈ pj | @t′′ ∈ pj , t′′ 6=
t′, sim(t.σ, t′′.σ) > sim(t.σ, t′.σ)} the set of tags of pj

with which t has the best match. We assume that each
tag t is associated with the most appropriate sense t.σ
that has been selected by performing a process of tag
sense disambiguation, as described in Sect. 3.1.

Definition 4.2. Let ei and ej be two tree tuple items,
and pi = ti1 .ti2tin , pj = tj1 .tj2tjm be their

respective tag paths. The structural similarity between
ei and ej is defined as

simS(ei, ej) =
1

n + m

(∑
t∈pi

∑
t′∈bm(pj ,t)

sim
(
t.σ, t′.σ

)
|bm(pj , t)|

+
∑
t∈pj

∑
t′∈bm(pi,t)

sim
(
t.σ, t′.σ

)
|bm(pi, t)|

)
,

where sim(t.σ, t′.σ) computes the similarity between the
senses respectively assigned to tags t and t′.

In order to define a suitable measure of similarity
between tag name senses, we exploit both lengths of
paths in the concept taxonomy and co-occurrences of
senses. This approach lies on two main observations.

In a hierarchy of concepts, path-based measures al-
low for determining the degree to which two concepts
are related. However, path lengths should be inter-
preted differently depending on where the concepts are
located in the hierarchy, since the higher a concept in a
hierarchy the more general itself. A suitable path-based
measure is defined in [14], which focuses on the notion
of lowest common subsumer (lcs) to compute the most
specific sense shared by two senses.

Besides the semantic relatedness among word
senses, we are also interested in estimating the sense
specificity. More precisely, we estimate the specificity
of a sense σ through the occurrences of every tag name
associated with σ in a given corpus.

Faced with the above observations, the similarity
between tag senses σ1 and σ2 is computed by combining
path-based and co-occurrence measures.

Definition 4.3. Let S be a set of XML transactions,
and σ1, σ2 be two tag senses. The sense similarity
between σ1 and σ2 w.r.t. S is defined as:

sim(σ1, σ2) =
2× depth(lcs(σ1, σ2))

depth(σ1) + depth(σ2)

× freq(σ1, σ2,S)

freq(σ1,S) + freq(σ2,S)− freq(σ1, σ2,S)
,

where depth(σ) is the distance from the concept node for
σ to the root of the hierarchy, freq(σi,S) is the number
of XML transactions in S containing a tag ti such that
ti.σ = σi, and freq(σ1, σ2,S) denotes the number of
XML transactions in S containing both a tag ti and a
tag tj such that ti.σ = σ1 and tj .σ = σ2.

Similarity by content. Index terms extracted from
TCUs can be weighted according to both syntactic and
semantic relevance. From the syntactic viewpoint, we
consider two statistical criteria: term density in a text
and term rarity in the text collection. The common

194

tf .idf weighting function is just defined to take both
criteria into account [3]. In our setting, given any term
wj and any TCU ui, the tf .idf weight is computed as

tf .idf (wj , ui) = freq(wj , ui)× log
(

N

nj

)
,

where freq(wj , ui) denotes the number of occurrences of
wj in ui, N is the total number of TCUs counted over
the collection of tree tuples, and nj is the number of
TCUs containing wj .

Conventional term weighting functions take into
account only lexical information to assess the relevance
of a term. Our idea is to enrich the tf .idf function by
exploiting the semantic rarity of a term. We define this
notion by resorting to the degree of polysemy of a term,
in such a way that the relevance of a term is reduced as
many meanings as the term has. Formally, the semantic
rarity of a term w is evaluated as

s-rarity(w) = log
(Max Polysemy

|senses(w)|
)
,

where senses(w) denotes the set of meanings of w and
Max Polysemy is a constant denoting the number of
meanings of the most polysemous word in WordNet.
The logarithmic function incorporates the effect of
favoring terms with typical lower polysemy. Moreover,
we assume that any term has at least one meaning, even
if that term is not present in the reference dictionary.

The semantic rarity function is invariant w.r.t. the
term location in the collection of textual content units.
Therefore, for each term wj , the same value s-rarity(wj)
can be combined with the tf .idf value associated to any
pair (wj , ui).

Definition 4.4. The relevance weight of a term wj

w.r.t. a textual content unit ui is computed as

relevance(wj , ui) = tf .idf (wj , ui)× s-rarity(wj).

A measure particularly suitable for assessing simi-
larity between documents is the cosine similarity [3]: it
computes proximity in terms of the cosine of the angle
that two generic documents form in a multidimensional
space. In our context, any TCU ui can be associated
with a term vector ~ui whose j-th component contains
the value relevance(wj , ui). Given two XML elements
ei and eh, the content similarity between ei and eh is
computed by measuring the cosine similarity between
the term vectors associated with their respective TCUs:
simC(ei, eh) = ~ui·~uh

‖~ui‖×‖~uh‖ .

4.2 The XTrK-means algorithm. XML tree tu-
ples modeled as transactions can be efficiently clustered
by applying a partitional algorithm devised for the XML
transactional domain.

A partitional clustering problem consists in parti-
tioning a set {x1, . . . , xn} of objects in k non-empty
groups each containing a homogeneous subset of ob-
jects. An important class of partitional approaches is
based on the notion of cluster centroid, or representa-
tive: each object xi is assigned to a cluster Cj according
to its distance from a value cj , called centroid of Cj .

A simple but effective partitional algorithm for
clustering generic transactional data is TrK-means [9].
This algorithm consists of two main phases. In the first
phase, it works as a traditional centroid-based method
to compute k + 1 clusters: starts choosing k objects as
the initial cluster centroids, then iteratively reassigns
each remaining object to the closest cluster until all
cluster centroids do not change. The (k + 1)-th cluster,
called trash cluster, is created to contain unclustered
objects, i.e. objects having an empty intersection with
each cluster centroid and so are not assigned to any
of the first k clusters. The second phase is in charge
of recursively splitting the trash cluster into a small
number of clusters.

The TrK-means algorithm provides a suitable no-
tion of cluster centroid exploiting a compact represen-
tation model based on a refinement of the intersection
of transactions within a cluster. Indeed, when we com-
pare two transactions we are searching for the “shared”
items. Intuitively, we could evaluate the similarity be-
tween two transactions as directly proportional to the
number of common items and inversely proportional to
the number of different items. The basic TrK-means ex-
ploits the Jaccard coefficient to compute the similarity
between two sets as the ratio of the cardinality of their
intersection to the cardinality of their union.

However, computing exact intersection between
transactions of tree tuple items may turn out to be not
effective. Indeed, two items may share relevant struc-
tural or content information even though they are not
identical. For this purpose, we enhance the notion of
standard intersection between sets of items with one
able to capture even minimal similarities from content
and structure features of XML elements.

Definition 4.5. Let tr1 and tr2 be two XML transac-
tions, and γ ∈ [0..1] be a similarity threshold. The set
of γ-shared items between tr1 and tr2 is defined as

matchγ(tr1, tr2)=matchγ(tr1 → tr2) ∪ matchγ(tr2 → tr1),

where

matchγ(tr i → tr j) = {e∈ tr i | ∃eh∈ tr j , sim(e, eh) ≥ γ,

@e′∈ tr i, sim(e′, eh) > sim(e, eh)}.

The set of γ-shared items resembles the intersection
between transactions at a degree greater than or equal

195

Input:
A set S = {tr1, . . . , trn} of XML transactions,

the desired number k of clusters, a similarity threshold γ.
Output:

A partition C of S in k + l clusters, where l ≥ 0.

Method:
C := ∅;
select Seeds = {tri1 , . . . , trik

} from distinct original trees;

for each tri∈Seeds do /* initializes partition of clusters*/

Ci := {tri}; ci := tri;

C := C ∪ Ci;

repeat

Cj := {tri|simγ
J (tri, cj)>simγ

J (tri, ch), h∈ [1..k]}, ∀j∈ [1..k];

Ck+1 := {tri|simγ
J (tri, cj) = 0, ∀j ∈ [1..k]};

cj := computeRepresentative(Cj), ∀j ∈ [1..k];

until Q(C) is maximized;

/* partitions trash cluster */

apply previous steps (except one for further trash clustering)

to partition Ck+1 into l=
√

k clusters;

C := {C1, . . . , Ck, Ck+1,1, . . . , Ck+1,l};
return C;

Function computeRepresentative(C) : rep;

R := ∅;
for each tri∈C do

ri :=
⋃

trj∈C matchγ(tri, trj); R := R ∪ {ri};
IC := {e | e∈r, r∈R};
rank items in IC by decreasing frequency;

let I′C ⊆ IC be the set of items in IC with the highest freq.;

rep := conflateItems(I′C);

/* refines representative */

s0 :=
∑

tr∈C simγ
J (tr, rep); rep′ := rep;

while (IC − I′C 6= ∅) do

add the next item e ∈ IC − I′C to rep′;

rep′ := conflateItems(rep′);

s′ :=
∑

tr∈C simγ
J (tr, rep′);

if (s′ ≥ s0) then

I′C := I′C − {e};
s0 := s′;

else

IC − I′C := ∅;
rep := rep′ − {e};

return rep;

Figure 4: The XTrK-means algorithm

to a similarity threshold γ. This notion of (enhanced)
intersection is also at the basis of the following similarity
function.

Definition 4.6. Let tr1 and tr2 be two XML transac-
tions, and γ∈ [0..1] be a similarity threshold. The XML
transaction similarity function between tr1 and tr2 is
defined as

simγ
J(tr1, tr2) =

|matchγ(tr1, tr2)|
|tr1 ∪ tr2|

.

We have adapted the TrK-means algorithm focus-
ing our effort mainly on conceiving suitable notions of
proximity among XML transactions and cluster repre-
sentative. Fig. 4 sketches the main phases of the result-
ing algorithm, called XTrK-means, whose salient char-
acteristics are discussed in the following.

Firstly, the XML transaction similarity function
replaces the traditional Jaccard coefficient as a measure
of proximity among transactions.

Secondly, the representative of any cluster C is com-
puted by starting from the set of γ-shared items among
all the transactions within C. More precisely, for each
transaction in C, the union of the γ-shared item sets
w.r.t. all the other transactions in C is obtained; this
guarantees no dependence of the order of examination
of transactions. Then, a raw representative is computed
by selecting from these union sets the items with the
highest frequency. The raw representative, however,
may not have the form of a tree tuple, as some items
therein may refer to the same path but with different
answers. Function conflateItems is applied to a set
of items and, for each subset I of items sharing the
same path p, yields one item that has p as path and
the concatenation of contents of the items in I as its
content. Finally, a greedy heuristic refines the current
representative by iteratively adding the remaining most
frequent items until the sum of pair-wise similarities be-
tween transactions and representative cannot be further
maximized. Again, any refinement must guarantee that
the resulting representative is a tree tuple.

Moreover, in XTrK-means tree tuples selected as
initial cluster centroids are constrained to come from
different XML documents. This simple strategy aims
to favor the construction of clusters with low inter-
similarity.

Finally, the exit criterion in XTrK-means requires
the quality of the resulting cluster partition is maxi-
mized. As usual in a clustering task, this means that
overall cluster cohesiveness is maximized while similar-
ity between clusters is minimized. By exploiting pair-
wise similarities between transactions, which compose
or represent a cluster, intra- and inter-similarity (for a
partition C of k clusters) are respectively defined as fol-
lows:

IntraSim(C) =
1
k

k∑
i=1

1
|Ci|

∑
tr∈Ci

simγ
J(tr , ci)

InterSim(C) =

∑k−1
i=1

∑k
j=i+1 simγ

J(ci, cj)
1
2k(k − 1)

.

The quality of a clustering C is defined as Q(C) =
IntraSim(C) − InterSim(C). If we assume that both
intra-similarity and inter-similarity have values within
[0..1] and that IntraSim(C) ≥ InterSim(C) holds for
good clusterings, then Q(C) also ranges within [0..1].

Clearly, an alternative, less expensive exit criterion
consists in checking whether clusters are stable, that
is checking whether cluster centroids in the current
iteration are not changed w.r.t. the previous iteration.

196

However, the use of an internal cluster validity criterion
allows us to both evaluate and drive a clustering task.

5 Experimental Evaluation

Data description. To evaluate the proposed cluster-
ing framework, we considered real XML datasets having
different characteristics according to three main aspects:
dataset composition (single document or collection of
documents), structure complexity in terms of degree of
element nesting, and content impact w.r.t. size and
number of textual elements. The latter aspect is also
a crucial reason we had to leave synthetic datasets out
of consideration: indeed, they do not provide elements
containing coherent natural language texts, but at most
(e.g. XMark [15]) use an automatic generator that takes
frequently occurring words in a fixed prose text as feed
to mimic a real statistical text distribution.

Three real XML data sources were used to con-
duct experiments: the DBLP archive, the Reuters RSS
news channel, and PubMed. DBLP (http://dblp.uni-
trier.de/xml/) is a digital bibliography mainly con-
cerning journal articles, conference papers, books,
book chapters, and theses on computer science. The
XML version of this archive is represented by a
single huge document, which can be decomposed
(according to its DTD) in several thousands of
XML documents. The Reuters RSS news channel
(http://www.microsite.reuters.com/rss/) concerns top-
ics such as business, entertainment, technology, sci-
ence, sport. Any Reuters RSS news consists of a
list of items, each containing a headline, a descrip-
tion, and a link to access the full-text article. PubMed
(http://www.ncbi.nlm.nih.gov/entrez/) is a service of
the National Library of Medicine, and includes over
15 million citations for biomedical articles. These ci-
tations are from Medline and additional journals in the
fields of biology and medicine. We composed a collec-
tion by gathering the XML documents dynamically ob-
tained as results of the query ‘protein’ posed against
the site search engine and accessing all available fields
in PubMed.

The three collections propose different types of con-
tent and structure, as they reflect different informative
services delivered by their originating sources. Reuters
RSS is a good example of RSS (Really Simple Syndi-
cation) service, which is becoming popular for sharing
short Web content like news headlines. Documents in
Reuters RSS collection have a very regular structure,
with average depth close to the maximum depth. DBLP
and PubMed refer to scientific bibliographies. From
the structure perspective DBLP shows more variety, al-
though it is characterized by a small average depth and
offers quite short text descriptions limited to paper ti-

Table 1: Statistics on test sets
data size #docs #trans. #items #terms

DBLP 1444KB 3000 5140 6789 7329

Reuters RSS 3428KB 572 5653 7725 9251

PubMed 4247KB 1000 5331 6409 14380

Hybrid-Data 3229KB 1170 2893 6042 12935

tles, event topics (e.g. full name of conference), and
author names. PubMed is the hardest of the three col-
lections, as it exhibits deeply nested elements and in-
cludes elements containing long texts reporting journal
abstracts. Notice that molecular biology and medicine
subjects may be extremely complex: they typically con-
tain terms shared across related species, as well as sev-
eral terms used specifically for certain biological species,
and new connections may be discovered among previ-
ously unrelated subjects.

Experimental setting and results. Experiments
were performed in order to test the ability of the pro-
posed framework in achieving the following goals:

1. structure-driven clustering : distinguishing struc-
turally homogeneous classes of XML tree tuples;

2. content-driven clustering : identifying classes of
XML tree tuples that share the same contents;

3. structure/content-driven clustering : this is the
most general goal and encompasses many different
scenarios, ranging from detecting common struc-
tures across different topics, or vice versa, to identi-
fying classes of tree tuples that both cover common
topics and belong to the same structural category –
for example, DBLP tree tuples concerning works on
‘computational logics’ should be grouped in distinct
clusters depending on whether they correspond to
conference papers, journal articles, or books.

From each of the three collections previously de-
scribed, we selected one test set. Moreover, we assem-
bled a hybrid dataset by picking up documents from
the DBLP, Reuters RSS, and PubMed datasets. Ta-
ble 1 shows statistics about each test set, including in-
formation available from the tree tuple extraction phase:
number of transactions (i.e. tree tuples) derived from
the original documents in the collection, size of the item
domain, and number of index terms. Index terms are
content features for the TCUs within the extracted tree
tuples, which were subject to a preprocessing phase
involving lexical analysis,2 removal of stopwords, and
word stemming.

2We retained alphanumerical strings as they appeared in the
text, whereas we removed isolated strings of digits.

197

Table 2: Summary of key results of clustering
data type f γ #clust. quality

DBLP content 0.1-0.2 0.6 65 0.97

DBLP hybrid 0.5 0.6 83 0.955

DBLP structure 0.7-0.8 0.7 5 1.0

Reuters RSS content 0.1-0.2 0.55-0.65 144 0.968

Reuters RSS hybrid 0.4-0.5 0.65-0.7 177 0.97

PubMed content 0.1-0.2 0.65 11 0.91

PubMed hybrid 0.5 0.7 10 0.895

Hybrid-Data content 0.1-0.2 0.55 94 0.955

Hybrid-Data hybrid 0.4 0.65 58 0.953

Hybrid-Data structure 0.8-0.9 0.7 7 0.99

In the following we discuss the main experimental
results, which are summarized in Table 2. Structure-
driven clustering is obtained when factor f equals or
is above 0.7, whereas content-driven clustering requires
f equal to or below 0.3. Middle values of f cause
a structure/content-driven clustering behavior of the
framework. For the sake of brevity, Table 2 reports
only the most representative result for each type of
test. For instance, the first row of the table reports the
best result provided by XTrK-means when performed
content-driven clustering on DBLP: this result refers
to a specific setting (f ∈ [0.1..0.2], γ = 0.6); actually,
very similar quality results and comparable numbers of
computed clusters were achieved, for example, with γ
values close to 0.6.

On the DBLP test set, the framework perfectly rec-
ognized the five structural classes covered by the doc-
uments in the set, that is journal articles, conference
proceedings, papers in proceedings, books, and book
chapters. Tests of content type offered a more varie-
gate scenario, in which sixty-five main topics were cap-
tured to build differently sized clusters on. Looking at
the representatives of computed clusters, we found out
that terms appearing in the content of elements such
as title, booktitle, journal, series, and sometimes
author are particularly discriminative in raising the rele-
vant topics. Cluster labels concerned general topics, like
‘logic programming’, ‘Web databases’, ‘database trans-
action models’, or ‘nonmonotonic reasoning’, but also
more specific topics such as ‘concurrency in software
systems’, ‘tree automata and languages’, ‘evolutionary
algorithms’, ‘object-oriented modeling of multimedia
databases’. Even more interesting results were provided
with “hybrid” clustering tests. In some cases, transac-
tions sharing content features were grouped into sep-
arate clusters reflecting different structural categories.
For example, conference papers and book chapters on
‘multimedia database systems’ were clustered in two dis-

tinct clusters. In other cases, the partitioning effect
was due to the content specificity: conference papers on
‘adaptive systems and interfaces’ were grouped in dif-
ferent clusters depending on the specificity of the sub-
topics on ‘adaptive systems and interfaces’.

Tests on Reuters RSS offered results relevant mainly
from the content point of view. For this dataset, pure
structural clustering has no much sense, since document
structure conforms to one predefined template designed
for a general news article. Unlike in DBLP, there
are no tags that mark structural categories, although
these are implicitly specified as titles of RSS channels.
Documents in the selected test set are associated to a
dozen of RSS channels (e.g. ‘world’, ‘business’, ‘science’,
‘sports’, ‘politics’, ‘technology’). These channels can
be considered as large themes; however, some themes
are related and corresponding classes may overlap: for
instance, ‘domestic-news’ and ‘world-news’ may be also
contained in the ‘top-news’ channel, as well as the
‘science-news’ and ‘health-news’ channels may share
some news articles. Computed clusters were finally built
on subjects of topical interest ranging from ‘tsunami
aid’ to recent ‘NASA launches of space shuttle’, from
‘new services for mobile phones’ to ‘Live8 event’, from
‘Wimbledon 2005 tennis tournament’ to ‘North Korea’s
nuclear weapons ambitions’.

Concerning PubMed, we again focused on content-
driven clustering. Cluster labels were generated
according mainly to the content of AbstractText,
ArticleTitle, and other elements related to informa-
tion on cited Medline journals. Computed clusters
covered topics concerning, for example, ‘proteomic in-
vestigation’ into ‘neuroblastoma tumor’ or into ‘chro-
matographic selection’, ‘molecular cancer’, and sev-
eral subfields of ‘physiology’ (e.g. ‘endocrinology and
metabolism’, ‘heart and circulatory physiology’, ‘lung
cellular and molecular physiology’). Despite the com-
plexity of PubMed topics, the clustering framework still
exhibited good effectiveness, as reported in Table 2.

The heterogeneity of Hybrid-Data set prompted us
to initially perform structure-driven tests. Specifically,
we expected seven classes, namely the five ones of
DBLP, one class for PubMed, and one for Reuters RSS.
Almost perfect quality results were provided by XTrK-
means. Content-driven and hybrid tests also revealed
high accuracy, following the major tendencies shown in
the tests on the distinct datasets.

Besides f , the type of clustering turned out to be
also functional to threshold γ. Indeed, high values of γ
(e.g. 0.7) are sufficient to effectively perform structural
clustering, especially when distinctions between struc-
tural categories are sharp; by contrast, more flexibility
of grouping (i.e. lower values of γ) is required for cap-

198

turing the several semantic facets of a dataset.
A final noteworthy observation is about dealing

with outliers in XTrK-means. Trash clusters were
generated at each test, and we found out an increase of
the size (number of clusters) of the resulting partition
from 10% (in PubMed and Reuters RSS) to 25% (in
DBLP and Hybrid-Data). Trash clustering always
improved the overall partition quality, although the
gained benefits may be small (2% in DBLP, 1% in
Hybrid-Data) or quite irrelevant (below 1% in PubMed
and Reuters RSS).

6 Conclusion and Future Work

We have presented a novel clustering framework for the
semantic organization of XML data. We have inves-
tigated features for suitably representing both struc-
tural and content information from XML documents.
Such features are enriched with the support of a lexi-
cal knowledge base, which plays a fundamental role in
inferring XML semantics. We have exploited the no-
tion of tree tuple to extract semantically cohesive struc-
tures from XML documents, and have shown that XML
tree tuples can be easily modeled as transactions. A
partitional clustering approach has been developed and
applied to the XML transactional domain. Clustering
evaluation has revealed very high effectiveness on large
real datasets, arguing that XML tree tuple items are
powerful features for effective semantic XML clustering.

There are some evident directions for future re-
search. Some of these regard the consolidation of cer-
tain aspects of the framework, such as the development
of a possibly novel clustering algorithm which is able to
best fit the XML transactional model while satisfying at
least the requirements of scalability, cluster discovery in
subspaces, and browsing-aware cluster labeling. More-
over, the role of ontological knowledge in supporting
the detection of semantic relatedness among XML data
needs better investigation. Therefore, we shall look at
incorporating application ontologies into our clustering
framework to benefit from extended conceptual models
describing not only objects represented in XML, and
their relationships and constraints, but also “rules” re-
garding how objects may appear in an XML source.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: from relations to semistructured data and XML.
Morgan Kaufmann Publishers, 1999.

[2] M. Arenas and L. Libkin. A Normal Form for
XML Documents. ACM Trans. Database Systems,
29(1):195–232, 2004.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-

mation Retrieval. ACM Press Books. Addison-Wesley,
1999.

[4] S. Banerjee and T. Pedersen. Extended Gloss Overlaps
as a Measure of Semantic Relatedness. In Proc. IJCAI,
pages 805–810, 2003.

[5] G. Costa, G. Manco, R. Ortale, and A. Tagarelli. A
Tree-based Approach to Clustering XML Documents
by Structure. In Proc. PKDD, pages 137–148, 2004.

[6] A. Doucet and H. A. Myka. Naive Clustering of a Large
XML Document Collection. In Proc. INEX Annual
ERCIM Workshop, pages 81–88, 2002.

[7] C. Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[8] S. Flesca, F. Furfaro, S. Greco, and E. Zumpano.
Repairs and Consistent Answers for XML Data with
Functional Dependencies. In Proc. Int. XML Database
Symposium (XSym), pages 238–253, 2003.

[9] F. Giannotti, C. Gozzi, and G. Manco. Clustering
Transactional Data. In Proc. PKDD, pages 175–187,
2002.

[10] M. Lesk. Automatic Sense Disambiguation Using
Machine Readable Dictionaries: How to tell a pine cone
from a ice cream cone. In Proc. ACM SIGDOC Int.
Conf. on Systems Documentation, pages 24–26, 1986.

[11] W. Lian, D. W. Cheung, N. Mamoulis, and S.-M.
Yiu. An Efficient and Scalable Algorithm for Clus-
tering XML Documents by Structure. IEEE Trans.
Knowledge Data Engineering, 16(1):82–96, 2004.

[12] A. Nierman and H. V. Jagadish. Evaluating Struc-
tural Similarity in XML Documents. In Proc. ACM
SIGMOD WebDB Workshop, pages 61–66, 2002.

[13] N. Polyzotis and M. Garofalakis. Structure and Value
Synopses for XML Data Graphs. In Proc. VLDB, pages
466–477, 2002.

[14] P. Resnik. Semantic Similarity in a Taxonomy: An
Information-based Measure and its Application to
Problems of Ambiguity in Natural Language. Journal
of Artificial Intelligence Research, 11:95–130, 1999.

[15] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical report, INS-R0103,
CWI, Amsterdam, The Netherlands, 2001.

[16] M. Theobald, R. Schenkel, and G. Weikum. Exploiting
Structure, Annotation, and Ontological Knowledge for
Automatic Classification of XML Data. In Proc. ACM
SIGMOD WebDB Workshop, pages 1–6, 2003.

[17] J. Widom. Data Management for XML: Research
Directions. IEEE Data Engineering Bulletin, 22(3):44–
52, 1999.

[18] J. P. Yoon, V. Raghavan, V. Chakilam, and L. Ker-
schberg. BitCube: A Three-Dimensional Bitmap In-
dexing for XML Documents. Journal of Intelligent In-
formation Systems, 17(1):241–252, 2001.

[19] M. J. Zaki and C. C. Aggarwal. XRules: An Effective
Structural Classifier for XML Data. In Proc. ACM
SIGKDD, pages 316–325, 2003.

199

