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a b s t r a c t

Weibull distribution has been one of the most widely used distribution to determine potential of wind
energy. Many different numerical methods can be used to estimate the parameters of the Weibull
distribution. The L-moment method (L-MoM), which has not been used extensively in the previous
literature about wind energy for the estimation of wind speed parameters relevant to the Weibull
distribution has been presented and this method has been compared to the Moment method (MoM) and
Maximum Likelihood (ML) method. Monte Carlo simulation has been used to compare the methods used
in the estimation of the shape (k) and scale (c) parameters for a Weibull distribution. Moreover, MoM,
L-MoM and ML parameter estimation methods have been used in analyzing an actual data set. Wind
power densities have also been calculated with the help of estimated parameter values. We showed that,
distribution is skewed to the right or is symmetrical and nZ100 the ML method is preferable in
comparison to other methods in the estimation of the shape (k) parameter. The L-MoM method which
we presented in this study may be beneficial for research using small sample sizes.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introductıon

Energy, which is a determining indicator of the level of
development of countries and one of the most important factors
not only in industry but also in the daily life of the public, is
obtained primarily from oil and natural gas. The sun, wind,
and water also provide renewable sources of energy [1]. Fossil
fuels play a significant role in meeting the demand for energy

worldwide. However, considering the daily diminishing sources of
fossil fuels and the environmental damage they cause, as well as
the increasing price of and demand for them, interest in renewable
energy resources continues to increase [2,3]. Energy obtained from
the wind, which is considered among renewable energy resources,
are an alternative to fossil-based fuels that has recently become
popular as a source of energy [4]. Three important reasons exist
for the increase in the generation of energy from wind. These
are i) climate change, concern regarding fuel emissions, and public
awareness regarding the relationship between energy sources and
environmental issues; ii) the decrease in fossil oil and gas reserves
and predictions regarding the inability to meet future demands

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rser

Renewable and Sustainable Energy Reviews

http://dx.doi.org/10.1016/j.rser.2014.08.009
1364-0321/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.:þ90 2222393750x2973.
E-mail address: mtarslan@ogu.edu.tr (T. Arslan).

Renewable and Sustainable Energy Reviews 40 (2014) 820–825



from these reserves; and iii) the decrease in the cost required for
windmills to produce wind energy, along with constant advances
in technology [5–7]. The overall wind energy produced worldwide
in 2011 was 237.660 MW. Of this established force, 96.606 MW is
attributed to the European continent. As for Turkey, the total
established force is only 1799 MW [8]. However, Turkey is in a
good position with its 83,000 MW of technical potential for wind
force [9]. In spite of this, more than half of Turkey's total energy
consumption is provided via import. This ratio is expected to
increase in the near future. The energy that will be required for
development in Turkey will be obtained from renewable energy
resources instead of fossil fuels. For this reason, wind force will
play a crucial role as a renewable energy alternative.

The probability density function related to wind speed is vital
information in wind energy implementations. Various probability
density functions have been proposed to describe the distribution
of wind speed. However, the two-parameter Weibull distribution
is widely utilized in wind energy calculations [2,5,10–15]. More-
over, according to the International Standard (International Stan-
dard IEC 614-00-12), the two-parameter Weibull distribution has
been deemed highly appropriate for wind speed data [16,17].

In the analysis of wind speed data, the distribution to which the
data fit statistically should first be determined, and the relevant
parameter estimations concerning this distribution should then be
made. For the distributional fitting of wind speed data Anderson
Darling, Chi-square and Kolmogorov–Smirnov tests can be per-
formed. When fitting the data according to the Weibull distribu-
tion, various methods to estimate the distribution parameters can
also be utilized [2,3,10,15,18,19]. The moment method, maximum
likelihood method and graphical method are the most widely used
methods. In the related literature, various methods have been
compared, and relevant proposals have been discussed. However,
the recommended methods and proposals vary based on the
sample size, and the results of distribution fitting tests [2].

To calculate the wind energy potential, long-term meteorological
observations will be required. When selecting an appropriate wind
energy transformation system and suitable area, sometimes we have
limitations (money, time, etc.) so we have to take short-term meteor-
ological observations. When we have small sample size (short-term
meteorological observations), L-moment method is more efficient
rather than Maximum likelihood method and Moment method which
arewidely use in the literature (please see Table 1). The purpose of this
particular study is to introduce the less widely known L-moment
estimation method, which is used in estimation of two-parameter
Weibull distribution parameters concerning wind speed, and to com-
pare it with other methods. For this purpose, the methods of concern
have been compared using a Monte Carlo simulation and an actual
sample data set. The data used in the study, which were collected from
Bilecik province in Turkey, were gauged at 10 meters on an hourly
basis in the summer of 2008, and were obtained from the Republic of
Turkey's Meteorology General Directorate. Used wind speed data in
this study are obtained from Turkish Republic General Directorate of
Meteorology which is the authorized official institution in the field of
monitoring and collecting meteorological events.

This study consists of six subsections. The first describes
the related general literature. The second and the third examine
the Weibull distribution and the parameter estimation methods.
The fourth presents the realized simulation and its results. The
fifth compares the parameter estimation methods used. The final
section summarizes and discusses the findings of the study.

2. The Weibull distribution

The two-parameter Weibull distribution has been widely used
in the modeling of wind speed data. The reasons to use Weibull

distribution are as follows: It fits the wind distribution very well; it
has a flexible structure, varying according to the shape parameter
of the distribution; it provides easy determination of parameters;
the number of parameters is few; and once the parameters
for a certain height are determined, the wind data for various
heights can be calculated using the already determined para-
meters [2,20,21]. The two-parameter Weibull distribution consists
of parameters with the same scale unit (c) as the wind speed and a
dimensionless shape (k). The probability density function of the
two-parameter Weibull distribution is as follows [22]:

f ðvÞ ¼ k
c

v
c

� �k�1
exp � v

c

� �k� �
; k40; v40; c40: ð1Þ

in this formula: v stands for observed wind speed data, f(v) is the
probability related to the observed wind speed data, k represents
the shape parameter, and c represents the scale parameter. The
shape parameter (k) is a parameter indicating the wind frequency.
This parameter is large when there is low variation in wind speed
in a particular field. The scale parameter (c) represents relative
cumulative wind speed frequency. In other words, the scale para-
meter changes according to the average speed. When the average
speed is high, the scale parameter (c) is large [20].

The cumulative function can be obtained by calculating the
integral of the probability density function presented in (1). The
cumulative function relevant to a two-parameter Weibull distribu-
tion can be represented as follows [4].

FðvÞ ¼ 1�exp � v
c

� �k� �
ð2Þ

3. Parameter estimation methods

In this section, the Moment, L-Moment, and Maximum like-
lihood parameter estimation methods are presented.

Table 1
Simulation results.

n k¼1.0 c ¼1.0

MoM L-MoM ML MoM L-MoM ML

30 0.036763 0.027055 0.028081 0.037784 0.036634 0.036687
100 0.010455 0.007429 0.007036 0.012117 0.011579 0.011435
500 0.002296 0.001758 0.001627 0.002657 0.002653 0.002640
1000 0.001011 0.000841 0.000717 0.001394 0.001395 0.001328
5000 0.000230 0.000131 0.000111 0.000177 0.000162 0.000154
10000 0.000081 0.000028 0.000028 0.000108 0.000107 0.000112

k ¼2.0 c ¼1.0
30 0.110161 0.101895 0.110776 0.009333 0.009291 0.009298
100 0.025678 0.025736 0.025521 0.002695 0.002700 0.002693
500 0.005956 0.006123 0.005792 0.000591 0.000592 0.000590
1000 0.001836 0.001719 0.001698 0.000332 0.000332 0.000331
5000 0.000562 0.000606 0.000563 0.000060 0.000060 0.000059
10000 0.000155 0.000178 0.000164 0.000043 0.000043 0.000043

k ¼3.4 c ¼1.0
30 0.324506 0.300876 0.313545 0.003108 0.003108 0.003108
100 0.075273 0.078167 0.072598 0.000921 0.000920 0.000917
500 0.017064 0.017757 0.016356 0.000210 0.000210 0.000209
1000 0.006680 0.006952 0.006574 0.000088 0.000088 0.000088
5000 0.001649 0.001834 0.001274 0.000014 0.000013 0.000013
10000 0.000322 0.000440 0.000192 0.000010 0.000009 0.000009

k ¼6.0 c ¼1.0
30 1.175033 1.007468 1.033168 0.001049 0.001043 0.001043
100 0.276899 0.254690 0.231008 0.000305 0.000302 0.000302
500 0.054785 0.052821 0.044450 0.000063 0.000063 0.000064
1000 0.028277 0.028499 0.020756 0.000027 0.000027 0.000027
5000 0.006821 0.006460 0.005929 0.000008 0.000008 0.000008
10000 0.000846 0.000669 0.000622 0.000003 0.000003 0.000003
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3.1. The method of moment estimation (MoM)

In a general sense, the moment methodology is based on
obtaining the unknown parameters out of equanimity by equaliz-
ing the theoretical moments related to the distribution and the
moments obtained from the sampling. To estimate two-parameter
Weibull distribution parameters using the moment method, the
initial, coefficient of variation related to the sample should be
calculated. The shape parameter is calculated by equalizing the
calculated sample coefficient of variation and the theoretical
coefficient of variation. Coefficient of variation related to the
sample is presented as follows:

CV
4

MoM ¼
∑
n

i ¼ 1
vi2
!
n

∑
n

i ¼ 1
vi

!2 �1

2
666664

3
777775 ð3Þ

in Eq.(3), vi stands for the wind speed data and n stands for the
sample size.

The k̂ value is calculated through the CV value obtained from
the sample using the following equation.

Γ 2
k̂
þ1

� �
Γ 1

k̂
þ1

� �h i2�1

8><
>:

9>=
>;¼ CV

4
MoM ð4Þ

The calculated k̂ value is the estimation of shape parameter
obtained with the MoM method for the two-parameter Weibull
distribution.

In Eq. (4), Γ represents the gamma function. In the third step,
the estimation of scale parameter (c) is calculated using the shape
parameter (k) estimated via the moment method. To estimate the
scale parameter, the following equation can be utilized.

ĉ¼
1
n

� �
∑
n

i ¼ 1
vi

 !

Γ 1
k̂
þ1

� �
2
66664

3
77775 ð5Þ

in Eq. (5), vi stands for the wind speed data and n stands for
sample size.

3.2. The L-moment estimation method (L-MoM)

L-moment is an estimation method based on the linear
combination of order statistics [23,24]. This estimation method is
efficient and yields robust estimators against outliers [25].

Let X be a random variable with a cumulative distribution
function given by (2), and let X1:nr X2:nr…r Xn:n be the order
statistics of a random sample of size n from the distribution of X.

The L-moments are defined to be the quantities

λr ¼
1
r
∑
r�1

j ¼ 1
ð�1ÞjCj

r�1Eðxr� j:rÞ ð6Þ

for r¼1, 2, …, n, where Cr
n ¼ n!

r!ðn� rÞ!. The coefficient of L-variation
(CVL�MoM) is defined as follows:

CVL�MoM ¼ λ2
λ1

ð7Þ

For a data sample of size n, the data are first sorted in the
ascending order of X1r X2r…r Xn. Then, the unbiased

estimator of CVL�MoM is calculated using the following formulas:

CV
4

L�MoM ¼
2
n

� �
∑
n

i ¼ 1

i�1
n�1

� �
xi

" #

1
n

� �
∑
n

i ¼ 1
xi

" # �1

8>>>><
>>>>:

9>>>>=
>>>>;

ð8Þ

With the calculated coefficient variation related to the sample
then,

1� 2
� 1

k̂

� �" #( )
¼ CV

4
L�MoM ð9Þ

the k̂ value is calculated. The calculated k̂ value is the L-MoM
estimation of the shape parameter for the two-parameter Weibull
distribution. After the estimation of shape parameter k with the
L-MoM method by using Eq. (9), the scale parameter (c) can be
estimated using Eq. (10).

ĉ¼
1
n

� �
∑
n

i ¼ 1
xi

Γ 1
k̂
þ1

� �
2
664

3
775 ð10Þ

3.3. The maximum likelihood estimation method (ML)

The maximum likelihood method is a widely used prediction
method in statistical estimation theory. Maximum likelihood
methodology is based on the maximization of the likelihood
function. However, ML estimations of the shape parameter for
the two-parameter Weibull distribution can be calculated itera-
tively. For this reason, the iteration problem should be solved. The
parameter that yields Eq. (11) is the k value of the ML estimation of
shape parameter. This is found after calculation of the derivative
for the shape parameter of the likelihood function.

∑
n

i ¼ 1
vk̂i lnðviÞ

∑
n

i ¼ 1
vk̂i

0
BBB@

1
CCCA�

∑
n

i ¼ 1
lnðviÞ

n

0
BB@

1
CCA

2
6664

3
7775� k̂¼ 0

8>>><
>>>:

9>>>=
>>>;

ð11Þ

The modified Newton–Raphson method has been used to solve
Eq. (11). After the estimation of the shape parameter, the ML
estimation of the scale parameter is determined using Eq. (12).

ĉ¼
∑
n

i ¼ 1
vk̂i

n

0
BB@

1
CCA

1
k̂

� �
ð12Þ

4. Monte Carlo simulation

In this study, a Monte Carlo simulation has been used to
compare the methods used in the estimation of the shape (k)
and scale (c) parameters for a Weibull distribution. In the simula-
tions, the sample sizes are 30, 100, 500, 1000, 5000 and 10,000;
the shape parameter values are 1.0, 2.0, 3.4, and 6.0; and the scale
parameter value is 1.0. Fig. 1 shows graphics of the probability
density function related to the two-parameter Weibull distribution
for different shape parameter values.

To compare the estimation methods, the Mean Square Error
(MSE) criteria have been utilized. For θ parameter, MSE criteria
could be stated as follows:

MSEðθ̂Þ ¼ E½ðθ̂�θÞ2� ð13Þ
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Table 1 presents the simulation results obtained for shape and
scale parameter values and for all sample sizes. As can be inferred
from Table 1, the best estimation is yielded by the L-moment
method in the prediction of a 30 unit sample size (n¼30), with
various shape, and scale parameters. It can be claimed that the
ML method is the most effective method in the estimation of
the shape parameter (k) when the sample size is 100 or more
(nZ100). As for the estimation of the scale parameter (c), it can be
claimed that there is no significant difference among the MoM,
L-MoM and ML estimation methods. In cases in which the
distribution is skewed to the right or is symmetrical and nZ100,
the ML method is preferable in comparison to the other methods
in the estimation of the shape (k) parameter.

5. Parameter estimation for actual wind data

In this study, the theoretically compared parameter estimation
methods are applied to an actual wind data set. The data set,

which belongs to Bilecik Province and was gauged at 10 m in the
summer of 2008, was obtained from the Republic of Turkey's
General Directorate of Meteorology. The data, though gauged at
10 m, was utilized to gauge the wind speed at 30 m via Hellman's
coefficient of amplification. Hellman's coefficient of amplification
can be stated as follows:

Vw ¼ Vr
Hw

Hr

� 	α

ð14Þ

in the above equation, Vw represents the desired wind speed (in m/s);
Vr represents the gauged wind speed (in m/s); Hw represents the
desired height (in m); Hr represents gauge height; and α represents
the surface situation [26]. The terrestrial coefficient of friction (α) is
determined according to the surface situation. In this study, the value
for α is 0.34. (For more information about α please see [27].)

The fitting of the data obtained at 10 m and 30 m to the two-
parameter Weibull distribution has been tested via Anderson
Darling (A2). A2 statistics can be calculated using the following
formula [28].

A2 ¼ �N� ∑
n

i ¼ 1

2i�1
n

½ ln FðviÞþ lnð1�FðvNþ1� iÞÞ�
( )

ð15Þ

A2 statistic have been calculated to be 3.25 for the wind speed
data gauged at 10 and 30 m. The p-Value related to the A2 statistics
is larger than 0.01 (p40.01). It can be claimed that wind speed
data gauged at 10 and 30 m fit the Weibull distribution at a
significance level of 0.01. Fig. 2 shows the distributional graphics
relevant to the wind speed data described above.

Table 2 displays the parameter predictions obtained via the
MoM, L-MoM and ML methods related to the wind speed data
obtained in the summer of 2008 in Bilecik Province.

Here (k̂) stands for the estimated shape parameter and (ĉ)
represents the estimated scale parameter. The wind power density
related to the wind speed can be calculated using the following

Fig. 2. Distribution of wind speed at 10 m and 30 m.

Table 2
Parameter estimation for actual wind data.

10 m 30 m

k̂ ĉ k̂ ĉ

MoM 1.993500197 2.980329991 1.993500205 4.329976906
L-MoM 1.977194146 2.979837573 1.977194154 4.329261496
ML 2.016383581 2.987563636 2.016383581 4.340486316

Fig. 1. Weibull distribution with different shape parameters.
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formula [29,30]:

Pw ¼ 1
2
ρc3Γ 1þ3

k

� 	
ð16Þ

The standard air density value is calculated to be 1.22 at 15 1C
and 1 atm pressure in dry air [31]. In the formula for estimated
wind power density, the standard air density value has been taken
to be ρ¼1.22. Moreover, the wind power density calculated
according to the wind speed data and modeled in line with the
three various methods is displayed in Table 3.

As evident from these findings, the calculated force density
values based on the parameter estimations obtained from the
various methods also prove to be different. Considering the
findings in Tables 2 and 3 it is evident that the value of wind
power density depends on the correct parameter estimation.

The findings show that, with large sample sizes, the ML method
yields better results than the other methods. (This can be inferred
from the simulation results presented in Section 3.) As the data set
utilized in this study comprises 2200 observations, estimation via
the ML method is most efficient in the calculation of the wind
power density of the shape (k) and scale (c) parameter values.

6. Results and discussion

In this study, introducing L-MoM method and comparing it
with other methods is aimed. So that in the literature, usage of
L-MoM method, which gives more effective results with less data,
could be extended. Correctly analysis of a small number of wind
speed data that can be achieved with time and financial con-
straints can be ensured. It has been noted that in comparison to
the other methods the L-MoM method yields better results with
small sample sizes.

Table 1 shows that, as the sample size increases the ML method
proves to be more efficient. Moreover, in this study, MoM, L-MoM
and ML parameter estimation methods have been used in analyz-
ing an actual data set. Wind power densities have also been
calculated with the help of estimated parameter values. As
observed in Table 3, wind force densities vary based on different
parameter estimation methods. Considering that wind energy
plants are built based on the calculated wind force densities,
it is evident that the parameter estimation method is of great
importance.

L-MoM method is more actual method than MoM and ML. But
data analysis of wind speed is often done by help of parameters
which are found by using MoM and ML estimators. Parameter
estimate about wind speed data would be more accurate con-
sidering cases in which the optimum result is given from used
parameter estimation methods. Instead of using the same method
in different conditions to use the best method that matches the
conditions provide calculated energy potential to be more accu-
rate. L-MoM method allows estimating parameters more accurate
with less observation (please see; Table 1 for MSE values about
estimation methods).

Wind energy is an increasingly popular source of renewable
energy. To use this energy effectively, some crucial steps should be
considered. Initially, the fitting of wind speed data to a certain

probability distribution function should be determined statisti-
cally. Then, parameters should be estimated using the most
effective estimation method for a determined distribution. At this
point, the best results can be achieved through administering
not only one but, rather, multiple parameter prediction methods
and choosing the most effective one. Finally, utilizing the values
obtained from the most suitable parameter estimation method,
wind power density potential can be calculated in an accurate and
precise manner. The L-MoM method, which we presented in this
study, may be beneficial for research using small sample sizes.
Companies that want to benefit from wind speed could obtain
information about appropriateness of the region to invest more
reliably with less time and cost by L-MoM method.
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