
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Brief papers

Machine learning on big data: Opportunities and challenges

Lina Zhoua,⁎, Shimei Pana, Jianwu Wanga, Athanasios V. Vasilakosb

a Information Systems Department, UMBC, Baltimore, MD 21250, United States
b Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden

A R T I C L E I N F O

Communicated by Guoliang Wei

Keywords:
Machine learning
Big data
Data preprocessing
Evaluation
Parallelization

A B S T R A C T

Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed
to the forefront in recent years partly owing to the advent of big data. ML algorithms have never been better
promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns
and make more timely and accurate predictions than ever before; on the other hand, it presents major
challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework
of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is
centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework
is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and
the components of MLBiD provide directions for identification of associated opportunities and challenges and
open up future work in many unexplored or under explored research areas.

1. Introduction

Machine learning (ML) techniques have generated huge societal
impacts in a wide range of applications such as computer vision, speech
processing, natural language understanding, neuroscience, health, and
Internet of Things. The advent of big data era has spurred broad
interests in ML. ML algorithms have never been better promised and
also challenged by big data in gaining new insights into various
business applications and human behaviors. On the one hand, big data
provides unprecedentedly rich information for ML algorithms to
extract underlying patterns and to build predictive models; on the
other hand, traditional ML algorithms face critical challenges such as
scalability to truly unleash the hidden value of big data. With an ever-
expanding universe of big data, ML has to grow and advance in order to
transform big data into actionable intelligence.

ML addresses the question of how to build a computer system that
improves automatically through experience [1]. A ML problem is
referred to as the problem of learning from experience with respect
to some tasks and performance measures. ML techniques enable users
to uncover underlying structure and make predictions from large
datasets. ML thrives on efficient learning techniques (algorithms), rich
and/or large data, and powerful computing environments. Thus, ML
has great potential for and is an essential part of big data analytics [2].

This paper focuses on ML techniques in the context of big data and
modern computing environments. Specifically, we aim to investigate
opportunities and challenges of ML on big data. Big data presents new

opportunities for ML. For instance, big data enables pattern learning at
multi-granularity and diversity, from multiple views in an inherently
parallel fashion. In addition, big data provides opportunities to make
causality inference based on chains of sequence. Nevertheless, big data
also introduces major challenges to ML such as high data dimension-
ality, model scalability, distributed computing, streaming data [3],
adaptability, and usability. In this paper, we introduce a framework of
ML on big data (MLBiD) to guide the discussion of its opportunities
and challenges. The framework is centered on ML which follows the
phases of preprocessing, learning, and evaluation. In addition, the
framework is also comprised of four other components that both
influence and are influenced by ML, namely big data, user, domain,
and system. The components of MLBiD and the phases of ML provide
directions for identification of opportunities and challenges and open
up future work in many unexplored or under explored research areas.

2. A framework of machine learning on big data

The framework of ML on big data (MLBiD) is shown in Fig. 1.
MLBiD is centered on the machine learning (ML) component, which
interacts with four other components, including big data, user,
domain, and system. The interactions go in both directions. For
instance, big data serves as inputs to ML and the latter generates
outputs, which in turn become a part of big data; user may interact
with ML by providing domain knowledge, personal preferences and
usability feedback, and by leveraging learning outcomes to improve

http://dx.doi.org/10.1016/j.neucom.2017.01.026
Received 13 September 2016; Received in revised form 20 December 2016; Accepted 5 January 2017

⁎ Corresponding author.
E-mail addresses: zhoul@umbc.edu (L. Zhou), shimei@umbc.edu (S. Pan), jianwu@umbc.edu (J. Wang), athanasios.vasilakos@ltu.se (A.V. Vasilakos).

Neurocomputing 237 (2017) 350–361

Available online 12 January 2017
0925-2312/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2017.01.026
http://dx.doi.org/10.1016/j.neucom.2017.01.026
http://dx.doi.org/10.1016/j.neucom.2017.01.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.01.026&domain=pdf


decision making; domain can serve both as a source of knowledge to
guide ML and as the context of applying learned models; system
architecture has impact on how learning algorithms should run and
how efficient it is to run them, and simultaneously meeting ML needs
may lead to a co-design of system architecture. Next, we introduce each
component of MLBiD separately.

2.1. Machine learning

ML typically goes through data preprocessing, learning, and
evaluation phases (see Fig. 1). Data preprocessing helps prepare raw
data into the “right form” for subsequent learning steps. The raw data
is likely to be unstructured, noisy, incomplete, and inconsistent. The
preprocessing step transforms such data into a form that can be used as
inputs to learning through data cleaning, extraction, transformation,
and fusion. The learning phase chooses learning algorithms and tunes
model parameters to generate desired outputs using the preprocessed
input data. Some learning methods, particularly representational
learning, can also be used for data preprocessing. The evaluation
follows to determine the performance of the learned models. For
instance, performance evaluation of a classifier involves dataset selec-
tion, performance measuring, error-estimation, and statistical tests [4].
The evaluation results may lead to adjusting the parameters of chosen
learning algorithms and/or selecting different algorithms.

ML can be characterized in multiple dimensions: nature of learning
feedback, target of learning tasks, and timing of data availability.
Accordingly, we propose a multi-dimensional taxonomy of ML, as
shown in Fig. 2.

• Based on the nature of the feedback available to a learning system,
ML can be classified into three main types: supervised learning,
unsupervised learning, and reinforcement learning [5]. In super-
vised learning, a learning system is presented with examples of
input-output pairs, and the goal is to learn a function that maps
inputs to outputs. In unsupervised learning, the system is not
provided with explicit feedback or desired output, and the goal is
to uncover patterns in the input. As in unsupervised learning, a
reinforcement learning system is not presented with input-output
pairs. Like supervised learning, the reinforcement learning is given
feedback on its previous experiences. Unlike supervised learning,
however, the feedback in reinforcement learning is rewards or
punishments associated with actions instead of desired output or
explicit correction of sub-optimal actions. Semi-supervised learning
falls between supervised and unsupervised learning, where the
system is presented with both a small number of input-output pairs
and a large number of un-annotated inputs. The goal of semi-
supervised learning is similar to supervised one except that it learns
from both annotated and un-annotated data.

• Based on whether the target of learning is specific tasks using input
features or the features themselves, ML can be categorized into
representational learning and task learning. Representational learn-
ing aims to learn new representations of data that make it easier to
extract useful information when building classifiers or other pre-
dictors [6]. A good representation is one that disentangles the
underlying factors of variation. It is often one that captures the
posterior distribution of underlying exploratory factors for the
observed output in case of probabilistic models [6].

Preprocessing Learning Evaluation

System

User

Big Data

Domain

Machine Learning

Fig. 1. A framework of machine learning on big data (MLBiD).

Machine learning

Supervised Unsupervised Reinforcement

N
at

ur
e 

of
Le

ar
ni

ng
Fe

ed
ba

ck

Bayesian Networks
Support Vector
Machines
Decision Trees
Neural Networks

SOM
K-means Clustering
Hierarchical Clustering
Spectral Clustering
Topic Modeling

Recommendation
Systems
Reward System

Target of
Learning

Representation

Task

Batch Learning

Online learning

Timing of
Data

Availability

Fig. 2. A multi-dimensional taxonomy of machine learning.

L. Zhou et al. Neurocomputing 237 (2017) 350–361

351



Representation learning is often entangled with density estimation
and dimensionality reduction. Density estimation finds the under-
lying probability density function of a random variable.
Dimensionality reduction maps inputs from a high-dimensional
space to a space of lower-dimensionality. It is often difficult to
establish a clear objective or target in representation learning. In
contrast, task learning typically has desired outputs, and accordingly
is categorized into classification, regression, and clustering. In
classification, ML techniques produce a model that assigns unseen
inputs to one or more pre-defined classes. Regression differs from
classification in that its outputs are continuous rather than discrete
values. Clustering produces groups of data, and these groups are not
known in advance, which distinguishes itself from classification.
Traditionally, classification and regression are referred to as super-
vised learning, and clustering as unsupervised learning. Their
representative algorithms are also shown in Fig. 2.

• Based on the timing of making training data available (e.g., whether
the training data are available all at once or one at a time), ML can
be classified into batch learning and online learning. Batch learning
generates models by learning on the entire training data, whereas
online learning updates models based on each new input. A batch
learning algorithm assumes that data are independent and identi-
cally distributed or drawn from the same probability distribution,
which is usually not satisfied by real data. Online learning typically
makes no statistical assumptions about the data [7]. Although a
batch learning algorithm is expected to generalize, there is no notion
of generalization for online learning because the algorithm is only
expected to accurately predict the labels of examples that it receives
as input [7]. Online learning is used when it is computationally
infeasible to train over the entire dataset and/or when the data is
being generated over time and a learning system needs to adapt to
new patterns in the data.

Each ML algorithm can be categorized in multiple dimensions. For
instance, conventional decision trees belong to supervised batch
learning algorithms.

2.2. Big data

Big data has been characterized by five dimensions: volume
(quantity/amount of data), velocity (speed of data generation), variety
(type, nature, and format of data), veracity (trustworthiness/quality of
captured data), and value (insights and impact). We organized the five
dimensions into a stack, consisting of big, data, and value layers
starting from the bottom (see Fig. 3). The big layer is the most
fundamental and the data layer is central to big data, and the value
aspect characterizes impact of big data real world applications. The
lower layer (e.g., volume and velocity) depends more heavily on
technological advances, and higher layer (e.g., value) is more oriented
toward applications that harness the strategic power of big data. In
order to realize the value of big data analytics and to process big data
efficiently, existing ML paradigms and algorithms need to be adapted.

2.3. Other Components

2.3.1. Users
There are a variety of stakeholders of ML systems such as domain

experts, end-users, and ML researchers and practitioners.
Traditionally, it is the ML practitioners who make most decisions in
applying ML, starting from data collection all the way to performance
evaluation. End-user involvement during this process has been limited
to providing data labels, answering domain-related questions, or giving
feedback about the learned results, which is typically mediated by the
practitioners, leading to lengthy and asynchronous iterations [8].
However, end-users are inclined to provide more than just data labels.
They value transparency in the design of a learning system, which in
turn helps them understand the system and provide better labels/
feedback. Involving users in ML can potentially lead to more effective
learning systems and better user experiences [8]. For instance, inter-
active ML [8] allows users to interactively examine the impact of their
actions and adapt subsequent inputs to steer ML behaviors to obtain
desired outputs.

2.3.2. Domain
Domain knowledge facilitates ML in discovering interesting pat-

terns that may not be discoverable from datasets alone. Training
datasets may not be sufficiently large and/or representative to enable
the discovery of all patterns. It is also costly and even infeasible to
obtain sufficient and representative data, possibly due to great domain
variation and application-specific requirements. Domain knowledge
can help improve the generality and robustness of patterns induced
from datasets [9]. There are several ways to incorporate prior domain
knowledge into inductive ML [10]: (1) preparing training examples; (2)
generating hypotheses or hypothesis space; (3) modifying the search
objective; and (4) augmenting the search. These learned patterns can in
turn be used to update and refine the domain knowledge.

2.3.3. System
System architecture or platform, which consists of both software

and hardware, creates an environment in which ML algorithms can
run. For instance, compared with their simpler counterparts, a multi-
core machine with distributed architecture is expected to improve the
efficiency of ML. New framework and system architecture such as
Hadoop/Spark have been proposed to address the challenges of big
data. Nevertheless, migrating existing ML algorithms to distributed
architecture requires modifications to how ML algorithms are imple-
mented and deployed. In addition, the unique needs and values of ML
may inspire the design and development of new system architecture.

Based on the MLBiD framework, we identify important opportu-
nities and key challenges. We discuss them for each of the three phases
in ML− preprocessing, learning, and evaluation, separately.

3. Data preprocessing opportunities and challenges

Much of the actual effort in deploying an ML system goes into the
design of preprocessing pipelines and data transformations that result
in a representation of data that can support effective ML [6]. Data
preprocessing aims to address a number of issues such as data
redundancy, inconsistency, noise, heterogeneity, transformation, label-
ing (for (semi-)supervised ML), data imbalance and feature represen-
tation/selection. Data preparation and preprocessing is usually costly,
due to the requirement of human labor and a large number of options
to choose from. Additionally, some conventional data assumptions do
not hold for big data, consequently some preprocessing methods
become infeasible. On the other hand, big data creates the opportunity
of reducing the reliance on human supervision by learning from
massive, diverse, and streaming data sources directly.

Data

VelocityVolume

VeracityVariety

Value

Big
Technology

Application

Fig. 3. Big data stack.

L. Zhou et al. Neurocomputing 237 (2017) 350–361

352



3.1. Data redundancy

Duplication arises when two or more data samples represent the
same entity. The impact of data duplication or inconsistency on ML can
be severe. Despite a range of techniques for identifying duplicates
developed in the past 20 years [11], traditional methods such as
pairwise similarity comparison is no longer feasible for big data. In
addition, the traditional assumption that duplicated pairs are minority
compared with non-duplicated pairs no longer holds. To this end,
Dynamic Time Warping can be much faster than the state-of-the-art
Euclidean distance algorithms [12].

3.2. Data noise

Missing and incorrect values, data sparsity, and outliers can
introduce noise to ML. Traditional solutions to noisy data problem
face challenges in dealing with big data. For instance, manual methods
are no longer feasible due to its lack of scalability; replacement by
mean would lose the advantages of the richness and fine granularity of
big data. In some cases, interesting patterns may lie in these noisy data,
so simple deletion may not be a wise alternative. Accurate predictive
analytics of big data can be used to estimate missing values, such as
replacing incorrect readings due to malfunctioned sensors or broken
communication channels. To address considerable bias that may be
introduced into predictions by collective influence methods, maximum
entropy constraint has been imposed on the inference step, forcing the
predictions to have the same distribution as observed labels [13].
Despite that data sparsity may remain and even be aggravated by big
data, the sheer size of big data creates unique opportunities to enable
predictive analytics because there could be sufficient frequency accu-
mulated for different sub-samples. There have been efforts to scale up
outlier detection (e.g., ONION [14]) to enable analysts to effectively
explore anomalies in large datasets [14].

3.3. Data heterogeneity

Big data promise to offer multi-view data from different types of
repositories, in disparate formats, and from different samples of the
population and thus are highly heterogeneous. These multi-view
heterogeneous data (e.g., unstructured text, audio, and video formats
[15]) might have varying level of importance for a learning task. Thus,
concatenating all the features by treating them equally important will
unlikely lead to optimal learning outcomes. Big data present an
opportunity for learning from multiple views in parallel and then
ensembling multiple results by learning the importance of feature
views to the task. The method is expected to be robust to data outliers
and can address optimization difficulty and convergence issues [16].

3.4. Data discretization

Some ML algorithms such as decision trees and Naïve Bayes can
only deal with discrete attributes. Discretization translates quantitative
data into qualitative data, procuring a non-overlapping division of a
continuous domain. The purpose of attribute discretization is to find
concise data representations as categories, which are adequate for the
learning task to retain as much information in the original continuous
attribute as possible. However, when coping with big data, most of
existing discretization approaches will not be efficient. To address the
big data challenges, standard discretization methods have been paral-
lelized by developing a distributed version of the entropy minimization
discretizer based on Minimum Description Length Principle in big data
platforms, boosting both performance and accuracy [17]. In another
study [18], the data is first sorted based on the value of a numerical
attribute, and then split into fragments of the original class attribute.
These fragments, which are summarized by the percentage composi-
tion of different classes, are viewed as super instances and the target of

discretization.

3.5. Data labeling

Traditional data annotation methods are labor-intensive. Several
alternative methods have been suggested to address the challenge of
big data. For instance, online crowd-generated repositories can serve as
a source for free annotated training data, which can capture a large
variety in terms of both class number and intra-class diversity [19]. In
addition, human-level concept learning can be achieved through
probabilistic program induction [20]. Furthermore, the ability of
labeling data is built into ML algorithms such as semi-supervised
learning, transfer learning, and active learning (e.g., [21,22]). By using
active learning as the optimization strategy for labeling tasks in crowd-
sourced databases, one can minimize the number of questions asked to
the crowd, allowing crowd-sourced applications to scale. However,
designing active learning algorithms for a crowd-sourced dataset poses
many practical challenges, such as generality, scalability, and ease of
use [23]. Another issue is that such a dataset may not cover all user-
specific contexts, which may often result in significantly worse perfor-
mance than that of user-centric training [19].

3.6. Imbalanced data

The problem of imbalanced data has been addressed by traditional
stratified random sampling methods. However, the process can be very
time-consuming if it involves iterations of sub-sample generation and
error metrics calculation. In addition, traditional sampling methods
cannot efficiently support data sampling over a user-specified subset of
data that includes value-based sampling. Big data necessitates parallel
data sampling. For instance, a parallel sampling framework has been
proposed to generate sample dataset out of the original dataset based
on multiple distributed index files [24]. The parallel level can be
selected based on the dataset size and the available processes.

3.7. Feature representation and selection

The performance of ML is heavily dependent upon the choice of
data representation or features [6]. A ML algorithm's generalizability
depends on the dataset, which also indirectly depends on the features
that represent a salient structure of the dataset. Feature selection helps
enhance the performance of ML by identifying prominent features. It
essentially selects different subsets of features and data, and aggregates
them at different levels of granularity, which contributes to reducing
the amount of big data. However, feature engineering requires prior
domain knowledge and human ingenuity and is often labor-intensive
[6]. To address the weakness of current feature engineering algorithms
when dealing with big data, various solutions have been proposed, such
as distributed feature selection [25]; a low-rank matrix approximation
(e.g., standard Nyström method [26]); representation learning to make
learning algorithms less dependent on feature engineering by learning
a generic prior [6]; adaptive feature scaling scheme for ultra high-
dimensional feature selection, which iteratively activates a group of
features and solves a sequence of multiple kernel learning sub-
problems [27]; a unified framework for feature selection based on
spectral graph theory, which is able to generate families of algorithms
for both supervised and unsupervised feature selection [28]; fuzzy
clustering prior to classification, where classification is realized with
the center of groups, followed by de-clustering and classification via
reduced data [29]; and reducing the size of data dimensions and
volumes (e.g., Random Forest-Forward Selection Ranking and Random
Forest-Backward Elimination Ranking [30], and linguistic hedges
neuro-fuzzy classifier with selected features [31]). Recently, deep
neural network-based autoencoding has proven to be very effective in
learning video, audio and textual features [32,33].

L. Zhou et al. Neurocomputing 237 (2017) 350–361

353



4. Learning opportunities and challenges

Developing scalable ML algorithms that is capable to handle large
datasets has been a long-standing research theme in the ML commu-
nity prior to the advent of “big data” era. To better organize the
discussion of opportunities and challenges, we propose a taxonomy of
methods/platforms for ML on big data, as shown in Table 1.

In the taxonomy, we first categorize studies based on whether any
parallelism is considered in their algorithms/platforms. Methods in the
non-parallelism category aim to have much faster optimization meth-
ods that can deal with big data without any parallelism. Traditionally,
ML scalability was mainly focus on developing novel algorithms that
can run much more efficiently (e.g., with significantly better time
complexity and/or space complexity). For instance, stochastic gradient
descent, is a classic example of a scalable ML algorithm that in
principle can process massive datasets without the requirement of
huge memory [34]. There is also a tradeoff between scalability and
convexity, a desirable algorithm property that is amenable to theore-
tical analysis [34]. It has shown that trading convexity can provide
scalability advantages in SVM inference. Similarly, it has been argued
[35] that deep architectures such as multi-layer neural network with
several hidden layers are more efficient and thus more scalable in
representing typical learning tasks such as prediction, visual perception
and language understanding than shallow architectures exemplified by
modern kernel machines such as SVMs.

The parallelism category reflects the majority of state-of-the-art
scalable ML methods. To deal with emerging big data characterized by
huge feature dimensions and sample size, methods in this category
exploit data geometry in the input and/or algorithm/model space [30].
Specifically, we further classify parallelism methods that make ML
algorithms more scalable into two sub-categories: (1) data parallelism:
leveraging existing big data architecture, partitioning input data
vertically, horizontally, or even arbitrarily into manageable pieces,
and then computing on all subsets simultaneously, and (2) model/
parameter parallelism: creating parallelized versions of learning algo-
rithms by first dividing the learning model/parameters and then
computing on each structural block concurrently. We note that some
efforts such as [36–39] support both data parallelism and model/
parameter parallelism. Some other efforts such as [40] support more
than one type of parallelism techniques. In the following, we discuss
each type of the methods and key opportunities and challenges in big
data learning.

4.1. Non-parallelism

Optimization lies at the heart of most ML approaches. Traditional
optimization methods are categorized into combinatorial optimization

(greedy search, beam search, branch-and-bound) and continuous
optimization [57]. The latter is further grouped into unconstrained
(e.g., gradient descent, conjugate gradient, quasi-Newton methods)
and constrained optimization (e.g., linear programming, quadratic
programming). Constrained optimization is often costly especially
when the training dataset is large. One possible solution is to compute
an approximate optimum. The state-of-the-art large-scale optimization
algorithms use various stochastic gradient descent, stochastic coordi-
nate descent and distributed optimization, and particularly randomized
approximation algorithms, to learn from large-scale data [41].
Nevertheless, stochastic gradient descent methods are difficult to tune
and parallelize [58] and unlikely to have amazing performance for
large-scale problems.

Parameter optimization is computationally challenging for learning
methods with many hyperparameters. For large scale learning pro-
blems, it is desirable to obtain the optimal model parameters by going
through the data in only one pass [42]. To this end, second order
stochastic gradient and averaged stochastic gradient are asymptotically
efficient after a single pass on the training set [43]. In addition, pushing
analytical functions (mapping models) into big data architecture is
another alternative to making parameter optimization feasible on a
massive scale [59]. There have been studies on how to parallelize
constrained optimization methods used in many learning algorithms
such as SVMs, nonnegative least square problems, and L1 regularized
regression (LASSO) problems [29]. By converting these learning
problems into a series of matrix-vector multiplication operations,
parallelization can be implemented straightforwardly using
MapReduce or GPU parallelization programming models.
Furthermore, the use of limited memory BFGS and conjugate gradient
with line search can significantly simplify and speed up the process of
unsupervised feature learning and pretraining deep algorithms using
stochastic gradient descent methods, particularly when considering
sparsity regularization and GPUs or computer clusters [58].

4.2. Data parallelism

Existing ML models could utilize big data techniques to achieve
scalability. Such efforts can be classified into two categories. One is to
provide a general middleware layer that re-implements existing learn-
ing tasks so they can run on a big data platform such as Hadoop and
Spark. Such a middleware layer often provides general primitives/
operations that are useful for many learning tasks. This approach is
suitable for users who want to try different learning tasks/algorithms
within the same framework. The other category is to transform
individual learning algorithms to run on a big data platform. These
implementations are normally built directly on top of a big data engine
and could achieve better scalability or result.

4.2.1. General big data middleware for existing learning algorithms
Spark MLlib [47] and Mahout [48] are two representative open-

source projects/packages that support many scalable learning algo-
rithms. Many common learning algorithms, including classification,
regression, clustering, collaborative filtering and dimensionality reduc-
tion, are supported by both Spark MLlib and Mahout. Because they
provide an independent layer that separates front-end algorithms from
a back-end execution engine, it is easy to switch from one big data
engine to another. For instance, Mahout supports Hadoop, Spark and
H2O as its big data engines. Further, although these algorithms can be
used to process large datasets in a distributed environment, their usage
is very similar to those that run on a single machine with a small
dataset. In addition, this independent layer enables optimization
between logic plans from users and physical plans that can be executed
in a distributed environment. There are also projects for large-scale
stream data learning, such as SAMOA [71]. Yet they are still at an early
stage.

Table 1
A taxonomy of methods/platforms for machine learning on big data.

Parallelism Target Techniques Sample Studies*

Non-parallel Optimization [41,42] [43]

Parallel data MapReduce BN [44,45], DT [38], TM [46],
GP [47,48] [49] [50] [51]

DistributedGraph GA [52]
Others SVM [37], NN [53], GP

[36,39]

model/
parameter

Multi-threading SVM [37]
MPI/OpenMP NN [40], TM [46]
GPU NN [40,53,54]
Others SVM [55], NN [56], GP

[36,39]

* BN Bayesian network learning, DT decision tree, TM topic modeling, GP generic
platform, SVM support vector machine, NN neural network

L. Zhou et al. Neurocomputing 237 (2017) 350–361

354



4.2.2. Efforts on specific algorithms with parallel data
Although the above middleware supports many common learning

algorithms for big data, there are still both practical needs and research
interests to extend individual ML algorithms to support big data,
especially for less widely-used or new algorithms. Many ML algorithms
can be implemented by MapReduce, including linear regression, k-
means, logistic regression, Naive Bayes, SVM, ICA, PCA, EM, Neural
network, etc. [49]. Simple multiplicative algorithms can be used to
straightforwardly implement ML algorithms such as SVMs and non-
negative least square problems in parallel computational environments
using MapReduce [60]. MapReduce has also been used to achieve
parallel spatial data co-location mining [61], nearest neighbor classi-
fication [62], and Bayesian Network learning [44,45]. Many of these
new directions utilize increasingly complex ML workflows/pipelines
which require systems to use a combination of state-of-the art tools and
techniques [63].

4.3. Models/parameter parallelism

A host of efforts have been put on how to parallelize ML algorithms
(e.g., [64]) or seek performance guarantees on various parallelized
algorithms (e.g., [65]). These efforts are warranted because many ML
algorithms are at best trivially parallel [66–68]. In addition, big data
ML is not simply a scaled-up version of small data ML. It requires
different formulations and novel algorithms to address its associated
technical challenges. Parallelization of learning algorithms has roots in
distributed ML and large-scaled ML. Thus, we discuss opportunities
and challenges of ML on big data from the following perspectives:
distributed ML, parallelization in several primary ML paradigms, and
deep learning.

4.3.1. Distributed machine learning
Distributed ML can naturally solve the algorithm complexity and

memory limitation problem in large-scale ML [69]. To address the
inability of ML algorithms to use all the data to learn within a
reasonable amount of time, distributed ML scales up learning algo-
rithms by allocating the learning process on multiple computers or
processors [69], and solving a distributed optimization problem [70].
Distributed ML can achieve not only efficiency by parallel data loading
but also fault tolerance by replicating data across machines. Moreover,
using different learning processes to train several classifiers from
distributed data sets increases the possibility of achieving higher
accuracy especially on a large domain [69]. Another advantage of
distributed algorithms is that they can be integrated with other parts of
data management (e.g., [71]). However, designing and implementing
efficient and provably correct parallel algorithms is extremely challen-
ging [52]. Additionally, traditional parallel ML algorithms distribute
computation to nodes, which works well in dedicated parallel machines
with fast communication among nodes but not so well when data are
transferred across networks, which leads to high communication cost
due to network latencies. Thus, accessing data from local disks is highly
preferred. But most ML algorithms are not designed to achieve good
data locality. Further, the communication delays between different
machines may cause problems in convergence even though a non-
distributed algorithm shows a good convergence rate [70].

GraphLab is a parallel framework for ML which exploits the sparse
structure and common computational patterns of ML algorithms [52].
It enables ML experts to easily design and implement efficient scalable
parallel algorithms by composing problem-specific computation, data-
dependencies, and scheduling, in a shared-memory multiprocessor
setting. For example, bagging trains several subsets and assembles the
results of several linear classifications. Nevertheless, scaling up en-
semble ML techniques to large and distributed data remains a research
challenge. Adaboosting of Extreme Learning Machine has been ex-
plored by leveraging the power of MapReduce to build a reliable
predictive bag of classification models [72]. These models can produce

good generalization performance and efficiency. A weight based
ensemble algorithm is proposed to learn a Bayesian Network structure
from an ensemble of local results, which also employs Kepler scientific
workflow to build the whole learning process [44].

4.3.2. Parallelization of traditional ML algorithms
Here we discuss the parallelization of several traditional supervised

ML algorithms, including SVM with Gaussian and polynomial kernels,
Bayesian networks, and decision trees.

Support vector machines (SVMs) have been promising classification
methods due to their solid mathematical foundations, which exhibit
two prominent properties: margin maximization and nonlinear classi-
fication using kernels. However, kernel-based SVM algorithms suffer
from a scalability problem as they require computing a kernel matrix
with O(N2) time and space complexity [73]. SVM was recently adapted
to the field of high performance computing through power/perfor-
mance prediction, auto-tuning, and runtime scheduling [37]. Parallel
SVMs has become one of the best out-of-the-box classification methods
[74]. The key idea is to introduce a parallel optimization step to quickly
remove most of nonsupport vectors, where block diagonal matrices are
used to approximate the original kernel matrix so that the original
problem can be split into hundreds of subproblems which can be solved
more efficiently. In addition, some effective strategies such as kernel
caching and efficient computation of kernel matrix are integrated to
speed up the training process [55], and to substantially reduce
computation and memory overhead required to compute the kernel
matrix, without significantly impacting results accuracy [73].

Bayesian networks are a powerful probabilistic representation
(Graphical models). There have been substantial recent developments
on adaptive, flexible and scalable Bayesian learning. Big Bayesian
learning includes nonparametric Bayesian methods for adaptively
inferring model complexity, regularized Bayesian inference for improv-
ing the flexibility via posterior regularization, and scalable algorithms
and systems based on stochastic subsampling and distributed comput-
ing for dealing with large-scale applications [75].

Decision trees have been known for superior interpretability of their
learning results. Random forest has demonstrated its effectiveness for
predictive analytics on high-dimensional data in various applications
(e.g., [76]). Moreover, parallel learning of tree ensembles using
MapReduce on computer clusters has been used to construct scalable
classification and regression trees [38].

4.3.3. Deep learning
Recently, deep neural network-based learning becomes one of the

fastest growing and most exciting areas of ML with big data. Neural
networks are a family of models inspired by biological neural networks
that consist of interconnected neurons whose connections can be tuned
and adapted to inputs. Deep neural networks can be simply viewed as
neural networks with many large hidden layers, or deep-layered
architecture with each layer applying a nonlinear transformation from
its input to its output. Recently, big data and novel techniques to train
deeper networks, along with the availability of more powerful compu-
ters (e.g., faster CPUs and the advent of general purpose GPUs), faster
network connectivity, and better software infrastructure have created
great opportunities for deep learning research. For example, various
deep learning software and libraries including Theano [53], Caffe [54],
Torch7 [40], Tensorflow [36], are created to empower innovative GPU-
accelerated deep learning applications. Among them, Theano was
originally developed as a symbolic math processor for symbolic
differentiation or integration, on complicated non-linear functions. It
has later been widely adopted by neural network and ML researchers as
a useful environment for developing new ML algorithms. The Caffe
framework includes a large repository of pre-trained neural network
models suitable for a variety of image classification tasks. Moreover,
Google's Tensorflow is an open source software library for numerical
computation using data flow graphs. With Tensorflow, computation

L. Zhou et al. Neurocomputing 237 (2017) 350–361

355



can be deployed to one or more CPUs or GPUs efficiently. In the past
few years, deep learning has witnessed tremendous growth in a wide
range of applications, including image processing and computer vision
[77–81], speech and natural language processing [82,83], health [84],
and so on.

Typically, deep neural networks can be trained in two different
modes (1) supervised training in which a large number of task-related
labeled ground truth data is available (2) self-taught learning (some-
times also called unsupervised learning) in which training data can be
automatically generated from unlabeled data without much human
effort [85]. For example, ImageNet [79] is an image dataset with over
14 million images labeled with over 20 thousand concepts. Images of
each concept are quality-controlled and human-annotated. This labeled
dataset is frequently used in training many of the state-of-the-art image
recognition systems that employ deep learning [77]. As of 2015, a
rough rule of thumb is that a supervised deep learning algorithm will
generally achieve acceptable performance with around 5000 labeled
examples per category, and will match or exceed human performance
when trained with a dataset containing at least 10 M labeled examples
[86].

Deep learning algorithms can also take advantage of a huge amount
of unsupervised data to automatically learn complex representation
[3]. The best results obtained on supervised learning tasks often
involve an unsupervised feature learning step [87]. For example, in
Natural Language Processing (NLP), unsupervised learning of word
embeddings [88] has proven to be very effective in many NLP tasks.
Although no annotated data are required to train a model, the system
automatically learns a neural network model that is capable of deriving
a vector representation of a word based on how well it can correctly
predict the neighboring words in its context. In image processing, an
autoencoder consisting of an encoder and a decoder is often used for
unsupervised feature learning where the encoder uses raw data (e.g.,
image) as input and produces feature or representation as output, and
the decoder uses the extracted feature from the encoder as input and
reconstructs the original raw input data as output. The goal is to
automatically learn an image representation to minimize the differ-
ences between the raw and the reconstructed image.

Deep neural networks displace kernel machines with manually
designed features in part because the time and memory cost of training
a kernel machine is quadratic in the size of a dataset, and datasets have
grown to be large enough for this cost to outweigh the benefits of
convex optimization. On the other hand, the availability of labeled data
varies greatly from one domain to another. Thus, one key challenge of
applying deep learning is to generalize well from smaller datasets by
taking advantage of large quantities of unlabeled data, with unsuper-
vised or semi-supervised learning techniques.

4.4. Hybrid approaches

Hybrid approaches combine model and data parallelism by parti-
tioning both data and model variables simultaneously. This not only
leads to faster learning on distributed clusters, but also enables ML
applications to work efficiently when both data and model are too large
to fit in the memory of a single machine [46]. For example, DistBelief is
a software framework designed for distributed training and learning of
deep networks with very large models (e.g., a few billion parameters)
and very large data sets. It leverages large clusters of machines to
manage both data and model parallelism via multithreading, message
passing, synchronization as well as communication between machines
[56]. SystemML aims at declarative, large-scale ML on top of
MapReduce, in which ML algorithms are expressed as higher-level
language scripts. This higher-level language exposes several constructs
that constitute key building blocks for a broad class of supervised and
unsupervised ML algorithms. The algorithms expressed in SystemML
are compiled and optimized into a set of MapReduce jobs that can run
on a cluster of machines [50]. One key challenge is how to efficiently

combine both types of parallelism for arbitrary ML scripts and work-
loads.

4.5. Key opportunities and challenges

In addition to detailed discussion of opportunities and challenges
that big data present to ML throughout this section, here we highlight a
few key opportunities and challenges.

ML on big data requires a new way of thinking and novel algorithms
to address many technical challenges [89]. Big data is one of the key
enablers of deep learning, which has improved the state-of-the-art
performance in various applications. Deep learning can typically
recognize at least 1000 different categories, which is at least 2 orders
of magnitude higher than the typical number of categories handled by a
traditional neural network [86]. In addition, big data enables learning
at multi-granularity. Furthermore, big data provides opportunities to
make causality inference based on chains of sequence, to enable
effective decision support.

The need of ML on big data presents unique opportunities for co-
design of system and ML. ML can affect how systems are designed.
Since many ML programs are fundamentally optimization-centric and
admit error-tolerant, iterative-convergent algorithmic solutions, an
integrative system design may consider issues such as bounded-error
network synchronization and dynamic scheduling based on ML pro-
gram structure [39]. Hardware accelerations, including a new super-
computer, are under development that only target ML tasks [90,91].

Learning on big data promises a great opportunity for research on
workflow management and task scheduling. This is because one key
issue in ML on big data is how to divide/schedule the task/data and
then integrate multiple predictions. Database query optimization
techniques can be utilized to identify effective execution plans, and
the resulting runtime plans can be executed on a single unified data-
parallel query processing engine [51,92]. A slowdown predictor can be
embedded in the map-reduce infrastructure to improve the agility and
timeliness of scheduling decisions [93]. The latest Spark MLlib can
assemble a sequence of algorithms into a single pipeline, or workflow.
It supports scalable execution and automatic parameter tuning for all
algorithms within the pipeline.

ML on big data presents an unprecedented opportunity for learning
with humans in the loop for several reasons. First, ML on big data
requires people with background in both ML algorithms and paralle-
lization techniques, which is very challenging for most users. Thus,
there is an increasing attention to the design of ML systems that are
easy to understand and easy to use. Second, solely relying on ML
algorithms may not bring out the full potential of big data because the
algorithms may discover many spurious relationships. Thus, it would
be particularly beneficial for ML algorithms to leverage the comple-
mentary strengths of human knowledge/expertise. Third, in traditional
ML, users often play a passive role (as consumers of ML results). To
engage users and help them gain insight into big data, we need to move
more toward interactive ML and away from batch ML. Effective
interactive ML relies on the design of novel interaction techniques
based on an understanding of end-user capabilities, behaviors, and
needs [8]. By learning interactively from end-users, ML systems can
reduce the need for supervision by experts and empower end-users to
create big data ML systems to meet their own needs.

ML on big data also highlights the importance of privacy-preserving
ML. Big data may be highly personal [1]. For instance, healthcare data
may be collected from multiple organizations that have different
privacy policies, and may not explicitly share their data publicly.
Since joint ML may sometimes becomes necessary, how to share big
data among distributed ML entities while mitigating privacy concerns
becomes a challenging problem. For instance, privacy-preservation ML
has been achieved by employing the data locality property of Hadoop
architecture and only a limited number of cryptographic operations at
the Reduce steps are needed [94]. A privacy-preserving solution for

L. Zhou et al. Neurocomputing 237 (2017) 350–361

356



SVM classification has also been proposed [95].
Big data enhances the real-world impact of ML. The applications in

which ML has created real world impact range from science (e.g.,
physical design, biological science, earthquake prediction) to business
(e.g., financial systems, post-approval drug monitoring, self-driving
cars), and from public platforms (e.g., social media) to organizational
realms (e.g., intrusion networks, healthcare systems).

Among the existing challenges for ML on big data, one key issue is
to improve the efficiency for iterations. Existing parallel frameworks
are not particularly designed for ML algorithms. Usually big data tools
perform computation in batch-mode and are not optimized for tasks
with iterative processing and high data dependency among operations
(e.g., due to heavy disk I/O). Iterative subtasks (i.e., processing steps
which are executed repetitively until a convergence condition is met)
dominate both categories of algorithms. Optimizing cluster resource
allocations among multiple workloads of iterative algorithms often
require an estimation of their runtime, which in turn requires: (a)
predicting the number of iterations and (b) predicting the processing
time of each iteration [96]. The Hadoop infrastructure can both avoid
extremely slow, or straggler tasks and handle them at runtime (through
speculative execution). Spark [92] supports not only MapReduce and
fault tolerance but also cache data in memory between iterations. On a
related note, methods have been developed to improve computational
efficiency on big data without sacrificing ML performance, which hold
only small pieces of the data rather than all data in fast memory, and
build a predictor on each small piece and then combine these
predictors together [97]. In addition, graph-based architectures and
in-memory big data tools have been developed to minimize the I/O cost
and optimize iterative processing [98].

Another challenge is to minimize the feedback/communication
from/with classifiers. The problem of learning the optimal classifier
chain at run-time has been modeled as a multi-player multi-armed
bandit problem with limited feedback [99]. It does not require
distributed local classifiers to exchange any information except limited
feedback on mining performance to enable the learning of an optimal
classifier chain [99].

A third challenge is to address the velocity aspect of big data in ML.
Current (de-facto standard) solutions for big data analysis are not
designed to deal with evolving streams [100]. A ML system must be
able to cope with the influx of changing data in a continual manner.
Lifelong Machine Learning is in contrast with the traditional one-shot
learning [101]. To this end, online learning has been exploited to make
kernel methods efficient and scalable for large-scale learning applica-
tions. For instance, two different online kernel ML algorithms − Fourier
Online Gradient Descent and Nystrom Online Gradient Descent algo-
rithms have been explored to tackle three online learning tasks: binary
classification, multi-class classification, and regression [102,103].

A fourth challenge is to address the variety aspect of big data in ML.
Most traditional ML algorithms can only take certain type of input,
such as numerical, text or images. In many cases, data that could be
used for a single ML goal may come in different types and formats. It
will result in an explosion of features to be learned and is sometimes
referred as a “Big Dimensionality” challenge [104]. For instance, one
ML algorithm might need learn from: (1) a mixture of large volume of
data and high speed stream data, or (2) large volume of data with
image, text, acoustic, and motion features.

A fifth challenge is increased problem complexity (e.g., in multi-
class classification and new classes). In document and image cluster-
ing/classification, in addition to a large number of data points and their
high dimensionality, the number of clusters/classes is also large.
Therefore, there is a need to gradually expand the capacity of ML
models to predict an increasingly large number of new classes [105].

ML on big data presents numerous other challenges. For instance,
optimization in conventional ML focuses on average performance, but
hard to prevent poor outcomes. Most traditional ML algorithms are not
designed for data that are not loaded into memory completely.

Additionally, it is complex to set objective functions due to the large
number of component terms and various trade-offs among perfor-
mance measures. Noise is a bigger issue for big data because patterns
typically reside in a small subset of data (e.g., spam and online attacks).

5. Evaluation opportunities and challenges

Traditional ML has an established set of metrics for performance
evaluation, such as accuracy, error rate, precision, recall, squared error,
likelihood, posterior probability, information gain, K-L divergence,
cost, utility, margin, optimization error, estimation error, approxima-
tion, and mean and worst outcome. These metrics focus on the
prediction accuracy of ML. In addition, scalability, traditionally used
to evaluate a parallel program, is the emphasis of big data analytics.
Scalability has been operationalized as such metrics as data I/O
performance, fault tolerance, real-time processing, memory usage,
data size supported, iterative task support, and throughput [106].

Evaluating big data ML is not a simple combination of the two types
of metrics. It needs to address both trade-offs within each type of the
metrics and complex trade-offs between them. For instance, precision
and recall, accuracy and response time, are classical performance
trade-offs. The support of iterative tasks goes against fault tolerance
in supporting scalability (e.g., MapReduce supports fault tolerance but
not iteration). Additionally, non-iterative algorithms (e.g., Nystrom
approximation) scale better than iterative ones (e.g., Eigen decomposi-
tion) but with slightly worse performance. Although it is faster to train
a linear SVM than a non-linear one, it is more difficult to parallelize the
former than the latter. Further, the conventional tradeoff between
computation and communication is particularly applicable to big data
ML. Algorithms should be carefully designed so that time saved on
computation can compensate the cost associated with communication/
loading. Take parallel SVM as an example; although its computational
cost is high (not linear), its data communication/loading cost is less of
a concern. Many methods (e.g., stochastic gradient descent or coordi-
nate descent) are inherently sequential, and consequently communica-
tion cost becomes a main concern. In addition, traditionally ML
research only considers running time (depends on the number of
operations) but ignores data loading time (depends on the number of
access). For linear algorithms, loading time could be bigger than
running time. The opposite is true for kernel methods.

The complexity of existing ML algorithms is often overwhelming
because many (layman) users do not understand the trade-offs and the
challenges in parameterization and choosing between different learning
techniques. For example, to run an ML algorithm, users often need to
set hyper-parameters. Since the values of hyper-parameters may
significantly impact execution time and results, choosing proper
parameters is critical in ML applications. However, existing ML
systems typically offer little or no help on how to set parameters. In
addition, since these algorithms can be hard to understand for people
who do not have a strong background in ML or distributed systems,
finding the right parameters can be very challenging [107].

There is an increasing attention to the usability of ML models in
terms of interpretability, ease of use, stability, and so on. Among them,
ease of use is the most commonly used usability metrics. Some ease of
use metrics include complexity in setting objective functions, resilience,
average error, and pattern “diversity”. However, interpretability and
stability [99,100] are not the main design considerations for many well-
performed ML algorithms. Understanding and explaining the underlying
process from which observable information is generated are important
challenges for statistical ML. In contrast, rule-based ML models are
intuitive and able to express cause-effect relationships. Nevertheless,
rule-based models face their own set of research challenges such as rule
generation, evaluation, execution, optimization, and maintenance.

Declarative approach to ML is one way to make ML more accessible
to non-experts [108]. To address the lack of support of data indepen-
dence and declarative specification in big data solutions, MLbase was

L. Zhou et al. Neurocomputing 237 (2017) 350–361

357



developed to harness the power of ML for both non-expert end-users
and ML researchers [107]. The system provides: (1) a simple declara-
tive way to specify ML tasks, (2) a novel optimizer to select and
dynamically adapt the choice of learning algorithms (transforms a
declarative ML task into a sophisticated learning plan), (3) a set of
high-level operators to enable ML researchers to implement a wide
range of ML methods without deep system knowledge, and (4) a new
run-time optimized for the data-access patterns of these high-level
operators [107].

Although it is less theoretically interesting to design an algorithm
that is slightly worse in accuracy but has greater ease of use and system
reliability, the latter can be very valuable in practice [109]. Therefore,
developing usable ML on big data will facilitate the training of data
scientists (e.g., in parameter tuning, workflow optimization, and data
preparation) and a wide adoption of ML in practice.

One conventional way to explain data is through charts, graphs and
other visualization techniques, because humans can readily make
decisions based on patterns and comparisons. Nevertheless, as data
volume goes up, this method is reaching its limits [110].

In order for big data ML to receive wide societal acceptance to exert
impacts, data ethics issues such as data privacy, security, ownership,
liability, and behavioral targeting should also be addressed [111,112].

In summary, since commonly accepted evaluation metrics are the
main driving force behind new ML algorithm development, there is an
urgent need to establish more comprehensive evaluation metrics that
are beyond typical accuracy and scalability based measures. For
example, comprehensive usability-based evaluation metrics will help
guide the development of new ML algorithms that simultaneously
balance multiple usability factors such as interpretability, efficiency,
accuracy, stability, robustness and ease of use.

6. Future research and conclusion

This paper presents an overview of opportunities and challenges of
ML on big data. Big data creates numerous challenges for traditional
ML in terms of scalability, adaptability, and usability, and presents new
opportunities for inspiring transformative and novel ML solutions to
address many associated technical challenges and create real-world

impacts. These opportunities and challenges serve as promising direc-
tions for future research in this area. We further highlight some open
research issues in ML on big data according to the components of the
MLBiD framework, as shown in Table 2.

Most existing work on ML for big data focused on the volume,
velocity and variety aspects, but there has not been much work
addressing the remaining two aspects of big data: veracity and value.
To handle data veracity, one promising direction is to develop algo-
rithms that are capable of accessing the trustworthiness or credibility of
data or data sources so that untrustworthy data can be filtered during
data pre-processing; and another direction is to develop new ML
models that can inference with unreliable or even contradicting data.
To realize the value of big data in decision support, we need to help
users understand ML results and the rationale behind each system's
decision. Thus, explainable ML will be an important future research
area. Moreover, to support human-in-the-loop big data ML, we need to
address fundamental research questions such as how to effectively
acquire large amount of annotated data through crowd sourcing; how
to evaluate an ML algorithm based not only on its prediction accuracy
or scalability, but also on its overall capability to support end users in
performing their tasks (e.g., usability-based measure). Further, addi-
tional open research issues include: (1) how to protect data privacy
while performing ML; (2) how to make ML more declarative so that it
is easier for non-experts to specify and interact with; (3) how to
incorporate general domain knowledge into ML; and (4) how to design
new big data ML architecture that seamlessly provides decision support
based on real-time analysis of large amount of heterogeneous data that
may not be reliable.

In summary, ML is indispensible to meet the challenges posed by
big data and uncover hidden patters, knowledge, and insights from big
data in order to turn its potential into real value for business decision
making and scientific exploration. The marriage of ML and big data
points to prosperous future in a new frontier.

Acknowledgements

This work was supported in part by the National Science
Foundation [grant number 1527684]. The authors would like to thank

Table 2
Open Research Issues in Machine Learning on Big Data.

Main Component Aspects Open research issues

Big Data Volume • Cleaning and compressing big data

• Large scale distributed feature selection

• Workflow management and task scheduling
Velocity • Real time online learning for streaming data

Variety • Multi-view learning for heterogeneous multimedia data

• Multimedia neural semantic embedding

Veracity • Assessing data veracity

• Learning with unreliable or contradicting data

Value • Explainable ML for decision support

• Multi-user collaborative decision support based on big data analysis

User Labeling • Crowd sourced active learning for effective large scale data annotation
Evaluation • Comprehensive evaluation measures for ML (e.g, usability-based measures)
Privacy • Privacy preserving distributed ML

User Interface • Visualizing big data

• Intelligent user interfaces for interactive ML

• Declarative ML
Domain Domain knowledge • Incorporating general domain knowledge (e.g., ontology, first-order logic, business rules) in ML

System Infrastructure • New infrastructure that seamlessly provides decision support based on real time analysis of large amount of heterogeneous and
unreliable data.

• General big data middleware

L. Zhou et al. Neurocomputing 237 (2017) 350–361

358



Yueyang Jiang for his assistance with retrieving and downloading some
of the references cited in this paper from various databases.

References

[1] M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects,
Science 349 (2015) 255–260.

[2] C.-W. Tsai, C.-F. Lai, H.-C. Chao, A.V. Vasilakos, Big data analytics: a survey, J.
Big Data 2 (2015) 1–32.

[3] M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald,
E. Muharemagic, Deep learning applications and challenges in big data analytics,
J. Big Data 2 (2015) 1–21.

[4] N. Japkowicz, M. Shah, Evaluating Learning Algorithms: a Classification
Perspective, Cambridge University Press, New York, NY, USA, 2011.

[5] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice
Hall, Upper Saddle River, New Jersey, USA, 2010.

[6] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. on Pattern Anal. Mach. Intell., Trans. 35 (2013)
1798–1828.

[7] O. Dekel, From Online to Batch Learning with Cutoff-AveragingNIPS (2008),
2008, pp. 377–384.

[8] S. Amershi, M. Cakmak, W.B. Knox, T. Kulesza, Power to the people: the role of
humans in Interactive machine learning, AI Mag. 35 (2014) 105–120.

[9] V. Mirchevska, M. Luštrek, M. Gams, Combining domain knowledge and machine
learning for robust fall detection, Expert Syst. 31 (2014) 163–175.

[10] T. Yu, Incorporating Prior Domain Knowledge into Inductive Machine
LearningComputing Sciences, University of Technology Sydney, Sydney,
Augtralia, 2007.

[11] Q. Chen, J. Zobel, K. Verspoor, Evaluation of a machine learning duplicate
detection method for bioinformatics Databases, Proc. ACM Ninth Int. Workshop
Data Text. Min. Biomed. Inform. (2015) 4–12.

[12] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, et al.,
Addressing Big data time series: mining Trillions of time series subsequences
Under dynamic time Warping, ACM Trans. Knowl. Discov. Data 7 (2013) 10.

[13] J.J.Pfeiffer , III, J.Neville, P.N.Bennett, Overcoming relational learning biases to
accurately predict preferences in large scale networks, in: Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 853–863.

[14] L.Cao, M.Wei, D.Yang, E.A.Rundensteiner, Online outlier exploration over large
datasets, in: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 89–98.

[15] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and
analytics, Int. J. Inf. Manag. 35 (2015) 137–144.

[16] X.Cai, F.Nie, H.Huang, Multi-view K-means clustering on big data, in:
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, 2013, pp. 2598–2604.

[17] S. Ramírez-Gallego, S. García, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-
Canedo, A. Alonso-Betanzos, et al., "Data discretization: taxonomy and big data
challenge," Wiley Interdisciplinary Reviews, Data Mining and Knowledge
Discovery, vol. 6, pp. 5-21, 2016.

[18] Y.Z.Y.-M.Cheung, Discretizing Numerical Attributes in Decision Tree for Big Data
Analysis, in: Proceedings of the 2014 IEEE International Conference on Data
Mining Workshop (ICDMW), 2014.

[19] L.-V. Nguyen-Dinh, M. Rossi, U. Blanke, G. Tröster, Combining crowd-generated
media and personal data: semi-supervised learning for context recognition, Proc.
1st ACM Int. Workshop Pers. data meets Distrib. Multimed. (2013) 35–38.

[20] B.M. Lake, R. Salakhutdinov, J.B. Tenenbaum, Human-level concept learning
through probabilistic program induction, Science 350 (2015) 1332–1338.

[21] G. Zhang, S.-X. Ou, Y.-H. Huang, C.-R. Wang, Semi-supervised learning methods
for large scale healthcare data analysis, Int. J. Comput. Healthc. 2 (2015) 98–110.

[22] J. Suzuki, H. Isozaki, and M. Nagata, Learning condensed feature representations
from large unsupervised data sets for supervised learning, in: Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics, Human
Language Technologies, short papers, 2, 2011, pp. 636–641.

[23] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, S. Madden, Scaling up crowd-
sourcing to very large datasets: a case for active learning, Proc. VLDB Endow. 8
(2014) 125–136.

[24] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, J. Ahrens, Effective
and efficient data sampling using bitmap indices, Clust. Comput. 17 (2014)
1081–1100.

[25] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Distributed feature
selection, Appl. Soft Comput. 30 (2015) 136–150.

[26] S. Sun, Jing Zhao, J. Zhu, A review of Nyström methods for large-scale machine
learning, Inf. Fusion 26 (2015) 36–48.

[27] M. Tan, I.W. Tsang, L. Wang, Towards ultrahigh dimensional feature selection for
big data, J. Mach. Learn. Res. 15 (2014) 1371–1429.

[28] Z.Zhao, H.Liu, Spectral feature selection for supervised and unsupervised learn-
ing, in: Proceedings of the 24th international conference on Machine learning,
2007, pp. 1151–1157.

[29] J. Cervantes, X. Li, W. Yu, Support vector machine classification based on fuzzy
clustering for large data sets, in: Proceedings of the 5th MICAI, 2015, pp. 572–
582.

[30] O. Y. S. Al-Jarrah, A., M. Elsalamouny, P. D. Yoo, S. Muhaidat, and K. Kim,
Machine-Learning-Based Feature Selection Techniques for Large-Scale Network
Intrusion Detection, in: Proceedings of the 2014 IEEE 34th International

Conference on in Distributed Computing Systems Workshops (ICDCSW).
[31] A.T. Azar, A.E. Hassanien, Dimensionality reduction of medical big data using

neural-fuzzy classifier (04/01/2015)Soft Comput. - A Fusion Found., Methodol.
Appl. 19 (2015) 1115–1127.

[32] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising
Autoencoders: learning useful representations in a deep network with a local
denoising criterion, J. Mach. Learn. Res. 11 (2010) 3371–3408.

[33] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, Autoencoder for words,
Neurocomputing 139 (2014) 84–96.

[34] R. Collobert, F. Sinz, J. Weston, L. Bottou, Trading convexity for scalability, Proc.
23rd Int. Conf. Mach. Learn. (2006) 201–208.

[35] Y. Bengio, Y. LeCun, Scaling learning algorithms towards, AI (ed), in: L. Bottou,
O. Chapelle, D. DeCoste, J. Weston (Eds.), Large Scale Kernel Machines, MIT
Press, Cambridge, MA, 2007.

[36] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., "TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems," CoRR,
2016.

[37] Y. You, H. Fu, S.L. Song, A. Randles, D. Kerbyson, A. Marquez, et al., Scaling
support vector machines on modern HPC platforms, J. Parallel Distrib. Comput.
76 (2015) 16–31.

[38] B. Panda, J.S. Herbach, S. Basu, R.J. Bayardo, PLANET: massively parallel
learning of tree ensembles with MapReduce, Proc. VLDB Endow. 2 (2009)
1426–1437.

[39] E. Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, et al., Petuum: a new platform
for distributed machine learning on Big data, IEEE Trans. Big Data (2015) 49–67.

[40] R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A Matlab-like Environment
for Machine Learning, in: Proceedings of the Neural Information Processing
Systems (NIPS) Workshop on BigLearn, 2011.

[41] T.Yang, Q.Lin, R.Jin, Big data analytics: Optimization and randomization, in:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 2327–2327.

[42] W. Xu, Towards Optimal one pass large scale learning with averaged stochastic
gradient descent, 2011. Available at: arXiv:1107.2490.

[43] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in:
Proceedings of COMPSTAT, 2010, pp. 177–186.

[44] J. Wang, Y. Tang, M. Nguyen, I. Altintas, A Scalable data Science workflow
approach for Big data Bayesian network learning, Proc. 2014 IEEE/ACM Int.
Symp. Big Data Comput. (2014) 16–25.

[45] K. Yue, H. Wu, X. Fu, J. Xu, Z. Yin, W. Liu, A data-intensive approach for
discovering user similarities in social behavioral interactions based on the
bayesian network, Neurocomputing 219 (2017) 364–375.

[46] A. Kumar, A. Beutel, Q. Ho, E.P. Xing, Fugue: Slow-Worker-Agnostic Distributed
Learning for Big Models on Big Data, in: Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland,
2014, pp. 531–539.

[47] K. Sankar, H. Karau, Fast Data Processing with Spark, Second ed., Packt
Publishing, 2015.

[48] S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action, Manning
Publications Co., 2011.

[49] C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G.R. Bradski, A.Y. Ng, et al., Map-reduce for
machine learning on multicore, NIPS (2006) 281–288.

[50] A.K.Ghoting, R.E.Pednault, B.Reinwald, V.Sindhwani, S.Tatikonda, Y.Tian, et al.,
SystemML: Declarative machine learning on MapReduce, in: Proceedings of the
27th International Conference on Data Engineering (ICDE), 2011.

[51] V.R. Borkar, Y. Bu, M.J. Carey, J. Rosen, N. Polyzotis, T. Condie, et al., Declarative
systems for large-scale machine learning, IEEE Data Eng. Bull. 35 (2012) 24–32.

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein,
Distributed GraphLab: a framework for machine learning and data mining in the
cloud, Proc. VLDB Endow. 5 (2012) 716–727.

[53] Theano Development Team, Theano: A Python framework for fast computation of
mathematical expression. Available: arXiv:1605.02688.

[54] Y.Jia, E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Girshick, et al., Caffe:
Convolutional Architecture for Fast Feature Embedding, in: Proceedings of the
22nd ACM international conference on Multimedia, Orlando, Florida, USA, 2014.

[55] J.-x. Dong, A. Krzyzak, C.Y. Suen, Fast SVM training algorithm with decomposi-
tion on very large data sets, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005)
603–618.

[56] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., Large scale
distributed deep networks, in: Proceedings of the Neural Information Processing
Systems, Lake Tahoe, Nevada, United States, 2012, pp. 1232–1240.

[57] J.E. Mason, I. Traoré, I. Woungang, Machine Learning Techniques for Gait
Biometric Recognition: Using the Ground Reaction Force, Springer, Switzerland,
2016.

[58] Q.V.Le, J.Ngiam, A.Coates, A.Lahiri, B.Prochnow, A.Y.Ng, On optimization
methods for deep learning, in: Proceedings of the 28th International Conference
on Machine Learning, Bellevue, WA, USA, 2011.

[59] Y. Ganjisaffar, T. Debeauvais, S. Javanmardi, R. Caruana, C.V. Lopes, Distributed
tuning of machine learning algorithms using MapReduce Clusters, Proc. Third
Workshop Large Scale Data Min.: Theory Appl. (2011) 2.

[60] C.Dijun Luo, Ding, H.Huang, Parallelization with ultiplicative algorithms for big
data mining, in: Proceedings of the 12th International Conference on Data Mining
(ICDM), 2012, pp. 489–498.

[61] J.S.Yoo, D.Boulware, D.Kimmey, A Parallel Spatial Co-location Mining Algorithm
Based on MapReduce, in: proceedings of the 2014 IEEE International Congress
on Big Data, 3rd, pp. 25–31.

[62] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera, MRPR: A MapReduce

L. Zhou et al. Neurocomputing 237 (2017) 350–361

359

http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref1
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref1
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref2
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref2
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref3
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref3
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref3
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref4
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref4
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref5
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref5
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref6
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref6
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref6
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref7
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref7
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref8
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref8
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref9
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref9
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref10
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref10
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref10
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref11
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref11
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref11
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref12
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref12
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref12
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref13
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref13
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref14
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref14
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref14
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref15
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref15
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref16
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref16
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref17
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref17
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref17
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref18
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref18
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref18
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref19
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref19
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref20
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref20
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref21
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref21
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref22
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref22
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref22
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref23
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref23
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref23
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref24
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref24
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref25
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref25
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref26
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref26
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref26
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref27
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref27
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref27
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref28
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref28
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref28
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref29
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref29
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref30
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref30
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref30
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref31
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref31
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref31
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref32
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref32
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref33
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref33
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref34
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref34
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref35
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref35
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref36
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref36
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref36
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref37
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref37
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref37
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref38
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref38
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref38
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref39
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref39
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref39
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref40


solution for prototype reduction in big data classification, Neurocomputing 150
(2015) 331–345 Part A.

[63] S. Landset, T.M. Khoshgoftaar, A.N. Richter, T. Hasanin, A survey of open source
tools for machine learning with big data in the Hadoop ecosystem, J. Big Data 2
(2015) 1–36.

[64] R.Gemulla, E.Nijkamp, P.J.Haas, Y.Sismanis, Large-scale matrix factorization
with distributed stochastic gradient descent, in: Proceedings of the 17th ACM
SIGKDD international conference ion Knowledge discovery and data mining, San
Diego, California, USA, 2011, pp. 69–77.

[65] D. Hsu, N. Karampatziakis, J. Langford, A.J. Smola, Parallel online
learningScaling up machine learning: Parallel and distributed approaches,
Cambridge University Press, 2011.

[66] P.Domingos, G.Hulten, A General Method for Scaling Up Machine Learning
Algorithms and its Application to Clustering, presented at Proceedings of the
Eighteenth International Conference on Machine Learning, 2001, pp. 106–113.

[67] R. Bekkerman, M. Bilenko, J. Langford (Eds.), Scaling up Machine Learning:
Parallel and Distributed Approaches, Cambridge University Press, New York,
2012.

[68] C. Parker, Unexpected challenges in large scale machine learning, Proc. 1st Int.
Workshop Big Data, Streams Heterog. Source Min.: Algorithms, Syst., Program.
Models Appl. (2012) 1–6.

[69] D. Peteiro-Barral, B. Guijarro-Berdiñas, A survey of methods for distributed
machine learning, Prog. Artif. Intell. 2 (2013) 1–11.

[70] K.L.C.Zhu, M.Savvides, Distributed class dependent feature analysis — A big data
approach, in: proceedings of the 2014 IEEE International Conference on Big Data,
2014.

[71] M. Yui, I. Kojima, A database-Hadoop hybrid approach to Scalable machine
learning, IEEE Int. Congr. Big Data (BigData Congr.) (2013) 1–8.

[72] F.Ö. Çatak, Classification with boosting of extreme learning machine over
arbitrarily partitioned data, Soft Comput. (2015) 1–13.

[73] M. Hefeeda, F. Gao, and W. Abd-Almageed, Distributed approximate spectral
clustering for large-scale datasets, in: Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing, 2012, pp.
223–234.

[74] G. Cavallaro, M. Riedel, M. Richerzhagen, J.A. Benediktsson, A. Plaza, On
Understanding Big data impacts in remotely sensed image classification using
support vector machine methods, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
8 (2015) 4634–4646.

[75] J.Zhu, J.Chen, W.Hu, Big Learning with Bayesian Methods. Available: 〈http://
arxiv.org/pdf/1411.6370〉, 2014.

[76] L.Bagheri, H.Goote, A.Hasan, G.Hazard, Risk adjustment of patient expenditures:
A big data analytics approach, in Proceedings of the 2013 IEEE International
Conference on Big Data, 2013.

[77] A. Krizhevsky, I. Sutskever, G. Hinton, Imagen. Classif. Deep convolutional Neural
Netw. (2012).

[78] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applica-
tions in vision, in: Proceedings of IEEE International Symposium on Circuits and
Systems, 2010, pp. 253–256.

[79] J. Deng, K. Li, M. Do, H. Su, L. Fei-Fei, Construction and analysis of a large scale
image ontology, Vis. Sci. Soc. 1 (2009).

[80] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Deep learning for visual
understanding: a review, Neurocomputing 187 (2016) 27–48.

[81] X. Jiang, Y. Pang, X. Li, J. Pan, Speed up deep neural network based pedestrian
detection by sharing features across multi-scale models, Neurocomputing 185
(2016) 163–170.

[82] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, et al., Recursive
deep models for semantic compositionality over a sentiment treebank, in:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

[83] S. Zhou, Q. Chen, X. Wang, Active deep learning method for semi-supervised
sentiment classification, Neurocomputing 120 (2013) 536–546.

[84] N. Zeng, Z. Wang, H. Zhang, W. Liu, F.E. Alsaadi, Deep belief networks for
quantitative analysis of a gold immunochromatographic strip, Cogn. Comput. 8
(2016) 684–692.

[85] R.Raina, A.Battle, H.Lee, B.Packer, A.Y.Ng, Self-taught learning: transfer learning
from unlabeled data, in: Proceedings of the 24th international conference on
Machine learning, Corvalis, Oregon, USA, 2007.

[86] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[87] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does

Unsupervised Pre-training help deep learning?, The J. Mach. Learn. Res. 11
(2010) 625–660.

[88] T.Mikolov, I.Sutskever, K.Chen, G.S.Corrado, J.Dean, Distributed
Representations of Words and Phrases and their Compositionality, presented at
the NIPS, Stateline, NV, 2013.

[89] X.-w. Chen, X. Lin, Big data deep learning: challenges and perspectives, Access,
IEEE 2 (2014) 514–525.

[90] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, et al., DaDianNao: a machine-
learning Supercomputer, 47th Annu. IEEE/ACM Int. Symp. Micro. (2014)
609–622.

[91] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J.K. Kim, et al.,
TABLA: a unified template-based framework for accelerating statistical machine
learning, IEEE Int. Symp. High. Perform. Comput. Archit. (HPCA) (2016) 14–26.

[92] M.Zaharia, M.Chowdhury, M.J.Franklin, S.Shenker, I.Stoica, Spark: cluster
computing with working sets, presented at in: Proceedings of the 2nd USENIX
conference on Hot topics in Cloud Computing, Boston, MA, 2010.

[93] E.Bortnikov, A.Frank, E.Hillel, S.Rao, Predicting execution bottlenecks in map-
reduce clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in
Cloud Ccomputing, 2012, pp. 18–18.

[94] K. Xu, H. Yue, L. Guo, Y. Guo, Y. Fang, Privacy-preserving machine learning
algorithms for big data systems, in: Proceedings of the 2015 IEEE 35th
International Conference on Distributed Computing Systems (ICDCS), 2015, pp.
318–327.

[95] J. Vaidya, H. Yu, X. Jiang, Privacy-preserving SVM classification, Knowledge Inf.
Syst. 14 (2008) 161–178.

[96] A.D. Popescu, A. Balmin, V. Ercegovac, A. Ailamaki, PREDIcT: towards predicting
the runtime of large scale iterative analytics, Proc. VLDB Endow. 6 (2013)
1678–1689.

[97] L. Breiman, Pasting small votes for classification in large databases and On-Line,
Machine Learn. 36 (1999) 85–103.

[98] H. Kashyap, H.A. Ahmed, N. Hoque, S. Roy, D.K. Bhattacharyya, Big Data Anal.
Bioinforma.: A Mach. Learn. Perspect. (2015).

[99] J.Xu, C.Tekin, M.van der Schaar, Learning optimal classifier chains for real-time
big data mining, in Proceedings 51st Annu. Allerton Conference Comm., Control
and Comput. (Allerton'13), 2013.

[100] G.De Francisci Morales, SAMOA: a platform for mining big data streams, in:
Proceedings of the 22nd International Conference on World Wide Web, 2013, pp.
777–778.

[101] Q.Yang, Big data, lifelong machine learning and transfer learning, in: Proceedings
of the sixth ACM international conference on Web search and data mining, 2013,
pp. 505–506.

[102] J. Lu, S.C. Hoi, J. Wang, P. Zhao, Z.-Y. Liu, Large scale online kernel learning, J.
Mach. Learn. Res. 17 (2016) 1–43.

[103] Z. Wang, K. Crammer, S. Vucetic, Breaking the curse of kernelization: budgeted
stochastic gradient descent for large-scale SVM training, The J. Mach. Learn. Res.
13 (2012) 3103–3131.

[104] Y. Zhai, Y.S. Ong, I.W. Tsang, The emerging big dimensionality, IEEE Comput.
Intell. Mag. 9 (2014) 14–26.

[105] T.Xiao, J.Zhang, K.Yang, Y.Peng, Z.Zhang, Error-Driven Incremental Learning in
Deep Convolutional Neural Network for Large-Scale Image Classification, in:
Proceedings of the ACM International Conference on Multimedia, 2014, pp. 177–
186.

[106] D. Singh, C.K. Reddy, A survey on platforms for big data analytics, J. Big Data 2
(2014) 1–20.

[107] T.Kraska, A.Talwalkar, J.Duchi, R.Griffith, M.J.Franklin, M.I.Jordan, MLbase: A
Distributed Machine-learning System, in: Proceedings of the 6th Biennial
Conference on Innovative Data Systems Research, Asilomar, California, USA,
2013.

[108] V. Markl, Breaking the chains: on declarative data analysis and data independence
in the big data era, Proc. VLDB Endow. 7 (2014) 1730–1733.

[109] S. Tong, Lessons learned developing a practical large scale machine learning
system 2016, Google Research Blog, 2010.

[110] T.R. Armes, M, Using Big data and predictive machine learning in aerospace test
environments, IEEE Autotestcon (2013).

[111] B.Thuraisingham, Big Data Security and Privacy, in: Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, San Antonio, Texas,
USA, 2015.

[112] B.Nelson, T.Olovsson, Security and Privacy for Big Data: A Systematic Literature
Review, in: Proceedings of the 2016 IEEE International Conference on Big Data,
Washington, D.C, 2016, pp. 3693–3702.

Lina Zhou is an associate professor of Information
Systems at the University of Maryland, Baltimore County.
She has published more than 150 referred papers in
academic journals and conferences. Her current research
interests include information extraction, machine learning,
online deception, intelligent human-computer interaction.
She currently serves on the editorial boards of seven
international journals.

Shimei Pan received a Ph.D. in Computer Science from
Columbia University. Before joining UMBC, Dr. Pan was a
research scientist at IBM Watson Research Center in New
York. Her primary research interests are large-scale text
mining, social media analytics, and their applications in
human behavior modeling. She is also interested in human-
centered text mining and intelligent interactive systems.
Dr. Pan has authored more than 70 peer-reviewed papers
in major international conferences and journals. She has
also served on various technical program committees for
major international conferences such as IJCAI, EMNLP,
IUI, CIKM and RecSystem.

L. Zhou et al. Neurocomputing 237 (2017) 350–361

360

http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref40
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref40
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref41
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref41
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref41
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref42
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref42
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref42
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref43
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref43
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref43
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref44
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref44
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref44
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref45
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref45
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref46
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref46
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref47
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref47
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref48
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref48
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref48
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref48
http://arxiv.org/pdf/1411.6370
http://arxiv.org/pdf/1411.6370
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref49
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref49
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref50
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref50
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref51
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref51
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref52
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref52
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref52
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref53
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref53
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref54
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref54
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref54
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref55
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref56
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref56
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref56
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref57
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref57
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref58
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref58
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref58
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref59
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref59
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref59
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref60
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref60
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref61
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref61
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref61
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref62
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref62
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref63
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref63
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref64
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref64
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref65
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref65
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref65
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref66
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref66
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref67
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref67
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref68
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref68
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref69
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref69
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref70
http://refhub.elsevier.com/S0925-2312(17)30057-7/sbref70


Jianwu Wang received a Ph.D. degree from the Institute
of Computing Technology, Chinese Academy of Sciences, in
2007. He currently is an Assistant Professor with the
Department of Information Systems, University of
Maryland, Baltimore County. He is also an Adjunct
Professor at North China University of Technology,
China. His research interests include big data, scientific
workflow, distributed computing, service-oriented comput-
ing, and end-user programming. He has published 60+
papers with more than 600 citations.

Athanasios V. Vasilakos is Professor with the Lulea
University of Technology, Sweden. He served or is serving
as an Editor for many technical journals, such as the IEEE
Transactions on Network and Service Management; IEEE
Transactions on Cloud Computing, IEEE Transactions on
Information Forensics and Security, IEEE Transactions on
Cybernetics; IEEE Transactions on Nanobioscience; IEEE
Transactions on Information Technology in Biomedicine;
ACM Transactions on Autonomous and Adaptive Systems;
the IEEE Journal on selected areas in communications.

L. Zhou et al. Neurocomputing 237 (2017) 350–361

361


	Machine learning on big data: Opportunities and challenges
	Introduction
	A framework of machine learning on big data
	Machine learning
	Big data
	Other Components
	Users
	Domain
	System


	Data preprocessing opportunities and challenges
	Data redundancy
	Data noise
	Data heterogeneity
	Data discretization
	Data labeling
	Imbalanced data
	Feature representation and selection

	Learning opportunities and challenges
	Non-parallelism
	Data parallelism
	General big data middleware for existing learning algorithms
	Efforts on specific algorithms with parallel data

	Models/parameter parallelism
	Distributed machine learning
	Parallelization of traditional ML algorithms
	Deep learning

	Hybrid approaches
	Key opportunities and challenges

	Evaluation opportunities and challenges
	Future research and conclusion
	Acknowledgements
	References




