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Abstract—Live virtual machine migration is an essential tool
for dynamic resource management in current data centers.
Many techniques have been developed to achieve this goal
with minimum service interruption. In this paper, we pro-
pose a pre-copy live VM migration using Distributed Shared
Memory (DSM) computing model. The setup is built using
two identical computation nodes to construct the environment
services architecture namely the virtualization infrastructure,
the shared storage server, and the DSM and High Performance
Computing (HPC) cluster. The custom DSM framework is
based on a low latency memory update Grappa. HPC cluster
with OPENMPI and MPI libraries support parallelization and
auto-parallelization work load by using CPUs computation
nodes. The DSM allows the cluster CPUs to access the same
memory space pages resulting in a lower memory data updates
based on locality attributes updates, which reduces the amount
of data transferred through the network. This model achieves a
good enhancement of the live VM migration metrics. Downtime
is reduced by 50% in the idle workload of Windows VM and
66.6% in case of Ubuntu Linux idle workload. In general, this
model not only reduces the downtime and the total amount
of data sent, but also does not degrade other metrics like the
total migration time and the application performance.

Keywords-Virtual Machine; Total Migration Time; Down
Time; Distributed Shared Memory; Physical Machine; HPC;

I. INTRODUCTION AND RELATED WORK

Live Virtual Machine (VM) migration process is a major

service provided by modern cloud service providers. It can

be defined as transferring the Virtual Machine (VM) state

while it continues to run and serve clients from one physical

machine to another physical machine without disrupting the

clients accessing that VM.

The VM state is dynamically changed during the live

migration process. As a result of serving live clients, these

changes affect the memory state, the virtual VM CPU

(vCPU) registers and state, and network state. The way to

transfer these three work spaces safely while continuing to

run the VM is to maintain sending the changes in a coherent

way until a stop condition occurs.

A lot of work has been done since 2005 when Clark [1]

proposed the pre-copy method of live migration, which is

based on transferring the memory state iteratively. After that,

many optimization methods [2] were proposed to enhance

the way how memory image and the CPU state are moved.
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Figure 1. System Design Model Overview
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Figure 2. System Logical Modules

Another approach which is based on CPU logging and replay

[3] requires synchronization and not much work has been

done using this approach. All these approaches consider the

following four performance metrics:

1) Total Migration Time: Time since starting the migra-

tion process until finished. Objective is to reduce the total

migration time.

2) Down Time: Time when the vCPU execution is sus-

pended in the source Physical Machine (PM) until vCPU is

resumed in the destination PM. Objective is to reduce the

down time.

3) Data Transferred Size: Size of data moved through

the network during the total live migration time. Objective

is to reduce the data transferred size.

4) VMs Application Performance: The migrated VM

application response. Objective is to keep the application

performance.

Following sections discuss the proposed model and how

it works.
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Table I
SETUP HARDWARE SPECIFICATION

Dell Precision T1700 Specifications

CPU Intel(R) Xeon(R) CPU E3-1271 v3 @ 3.60GHz (4 Cores)

Memory (RAM) 32G Byte Kingston 1600 MHz (0.6 ns)

Storage (Hard Disk) 1T Byte ATA Disk

Network Intel Ethernet Connection I217-LM 10/100/1000Mbps

OS Citrix Xenserver (Linux Centos 5.6 Custom)

Xen Kernel 2.6.32.43-0.4.1.xs1.8.0.835.170778xen

II. SYSTEM DESIGN MODULES

In this work we deployed the pre-copy migration of

Citrix Xen hypervisor using DSM running on top of High

Performance Computing (HPC). The DSM used is modified

to fit our requirements. This system architecture runs four

services (NFS, hypervisor XenMotion, HPC and the DSM),

which work in a cooperative way to handle the live VM

migration of XenServer hypervisor in an optimized way,

the enhancement of the XenServer motion using the NFS

shared storage, and the DSM HPC cluster to speed up

the XenServer VM motion. The building block architecture

of the proposed live VM migration is composed of three

services layers to facilitate the migration through running

the hypervisor migration process as a job in the DSM HPC

cluster computation. Figure 1 shows the conceptual architec-

ture of the module’s block components and communication

flows.

A. System Setup Physical Components

In this work, two identical Dell workstations with high

speed processor 4 Cores of Intel Xeon 3.6 GHz speed,

connected by Linksys Ethernet switch with port speed

100Mbps are deployed. Table I shows summary of hardware

specifications.

B. Logical Overview

Figure 2 depicts the logical modules as layers architecture

to build the VM migration. The first part is the shared

storage NFS Protocol, which is a transparent protocol that

allows the shared storage server update to be synchronized

with all virtual members. Second part is the Virtualization

Infrastructure using Citrix XenServer version 6.2 hypervisor,

which is used to create the virtual machines, and managed by

Citrix Xen-Center management console, which is a software

for managing VMs and virtual machines templates. The

shared storage and virtualization modules provide basic

setup for normal live migration.

Third part is the HPC Cluster Distributed Memory with

Message Passing. In general HPC clustering the distributed

memory concept is mandatory to support parallel program-

ming, which requires the use of explicit message passing

(MP), to allow processors to communicate. The standard

communication between processors is Message Passing In-

terface (MPI) that is supported by all high performance

Table II
WORKLOAD BENCHMARK

Workload Benchmark

Idle OS Run guest OS with idle state (for both OS types)

CPU intensive task

For Linux Compiling XEN source code

For Windows Installing Cygwin

Memory Intensive task Playing video (for both OS types)

Network Intensive Task Web server (for both OS types)

computing vendors. The role of HPC cluster is to provide

parallelization and auto-parallelization services to the codes

segments, based on the code attributes using OPENMPI

library.

Fourth part is the Distributed Shared Memory framework.

The DSM model works with the HPC cluster to provide the

shared memory accessibility for all cluster nodes and proces-

sors. DSM changes the inter-processor communication based

on shared memory communication paradigm, which allows

all processors in the HPC cluster to access the same memory

space. In such a model the process migration only requires

moving the process state from CPU scheduling ready queue

on one computation node processor to the ready queue on

the other node processor, since process control block PCB,

code and stack are all in the same memory address space,

and shared virtual memory is a single address space shared

by number of processors. Any processor can access any

memory location in the shared address space directly. The

role of DSM module is to provide memory state update in a

consistent and coherent way, where the pre-copy method

starts by moving the VM memory pages iteratively. The

DSM helps moving the memory pages by avoiding sending

the dirty pages.

III. LIVE VM MIGRATION USING DSM

The source machine (Worth) runs two VMs (Flake and

Flask); the guest OS (Win7) of Flake will be migrated.

The process will start by triggering the migration function

of the XenServer XAPI, which then starts the migration

process to do the pre-copy live VM migration. DSM will

provide a shared memory access to all cluster computation

nodes that enable direct access to all memory pages for

both source and destination virtualization servers. The live

VM migration process is localized by the source physical

machine, the OPENMPI scan the serialized code to find any

parallel segment to start the speed up. The DSM is used as a

global memory space between the HPC cluster computation

nodes that can help the pulling process migration of the VM.

Meanwhile the source physical machine continues to push

the virtual CPU state of the migrated VM and the Network

state as a priority task, then the remaining dirty pages is

moved as a lower priority task. The source and destination

virtualization servers will be loaded with the migration task

to start and terminate the live VM migration based on

the destination VM memory image consistency threshold,
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Figure 4. Total Migration Time and Downtime

which is bounded by three parameters: maximum number

of iterations, less memory pages changes (less dirty pages

generation), and consistent memory image at destination.

The DSM enhances the pre-copy Live VM migration

process by customizing some attributes of the Grappa [4]

DSM. The first modification is to update the message size.

DSM migration process works on moving memory pages

with an average size of 4KB instead of 32 bytes as used

in Grappa. The update message size is made same as

memory pages size. This will reduce the number of update

messages. Second modification is related to the memory

pages selection based on locality management. The data

accessed with low locality is usually modified on its home

processor rather than sending a copy of the code image

to the destination processor, where as the data accessed

with high locality is send to the requested processor. In

our approach the best is not to move the high data locality

memory pages, but its more efficient to first send the low

locality memory pages with lower memory dirtying pages

rate to the destination processor. This will make the update

frequency lower. The remaining higher memory dirty pages

are later transferred during the suspend and resume state.

The automatic parallelization provides parallel task of send-

ing and receiving VM memory pages. Figure 3 describes

the pre-copy with the customized DSM approach as time-

space diagram. This way our approach reduces the number

of dirty pages send from home processor to the destination

processor.

IV. PERFORMANCE MEASUREMENT

The live VM migration is done for both guest OSs,

the Windows7 VM Flake and the Ubuntu12 Linux Flask,

between the two host servers Unhand and Worth. The

experiment is run for each different case for six times to

make sure the measured values do not contain any special

errors, and then an average is calculated.

A. VM Workload Benchmarks

The guest VM OS is loaded with four different workloads

to test the live VM migration under different case scenarios,

which load migrated VM by applications that have variant

execution behaviors as benchmark, as given in Table II.

1) OS Idle Workload: In idle OS the memory dirty pages

generated have lowest time of generation during the VM

migration without running any heavy workload. The OS

load generation of memory changes in idle case is used to

evaluate the DSM live VM migration model.

2) CPU Intensive Workload: Compiling source code

(Linux VM) and Cygwin installation (Windows VM) are

a heavy CPU load and in these cases of workload the CPU

context of compiling time is higher than other CPUs jobs.

3) Memory Intensive Workload: The memory intensive

task workload is achieved by running video during the live

migration for both types of OSs, Windows and Linux VM,

in addition to the disk intensive read load for the video from

the hard disk.

4) Network Intensive Workload: For network intensive

task network state of each client connection to the web

server must be maintained until the client terminates the

connection. The data transferred in web workload mainly

has a big network state to save the web server clients

connection which increases memory foot print with higher

locality attribute.

As shown in Figure 4a) the total migration time is reduced

in all workloads but the best is with Cygwin installation

and idle workloads, which is about 25% and 20% of en-

hancement respectively, whereas with web and video work

load the enhancement is 6% and 8% respectively. Figure

4c) depicts the Linux VM total migration time. With DSM

it is less with all workloads and the best ratio is for idle

VM workload with 16.6% of enhancement reducing the total
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Figure 5. Windows Idle Workload
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Figure 6. Linux Ubuntu Idle Workload

migration time. Since Linux memory footprint is less than

Windows, the update of high locality dirty pages is lower in

Linux than in Windows. This makes DSM work better with

Windows VM.

In Figures 4b) and 4d), the downtime measured for

Windows and Linux with DSM has a good reduction in all

VM workload cases. It achieves about 42.8% of downtime

reduction in the Web work load for both windows VM

and Linux VM. In windows video playing there is no

enhancement because GPU is working with the memory load

and video images marshalling. But with Linux it achieves

10% of enhancement knowing that with Linux the video

does not stream in a smooth way, because of the basic

graphic driver work behavior. DSM reduces the down time

by reducing the number of faulty pages after the suspend and

resume state. The target processors can see all the memory
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Figure 7. Windows CPU Intensive Workload
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Figure 8. Linux Ubuntu CPU Intensive Workload

pages directly.

Figures 5 to 12 show the network and VM CPU per-

formance during the live VM migration. The time slot is

normalized as fixed time slot to show the period of the

starting time of live VM migration, downtime and total

migration time. We can see clearly the relation between the

VM CPUs performance and traffic activity. In all cases the

network traffic is bounded to a fixed bandwidth of 12Mbps to

protect the network, and during downtime period the traffic

rate is increased to reduce the downtime.

V. CONCLUSION

A novel method is proposed to run the live VM migration

in the cloud data centers using a distributed shared memory

high performance computing cluster. In this way, memory

of each computation nodes is shared and accessible to all

nodes CPUs with high abstraction for nodes local memory.
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Figure 9. Windows Memory Intensive Workload
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Figure 10. Linux Ubuntu Memory Intensive Workload

In the DSM model the same pre-copy method is used, so

the iteration phase provides the same memory stable state

with minimum transferring of dirty pages, because of the

proposed DSM locality attributes, which does not send any

highly changed memory page. Furthermore, the speed up is

achieved by using automatic parallelization of applicable and

memory accessibility mapping between source machine and

destination machine in sending memory pages or CPU and

network state. The proposed model is built and integrated

with virtualization architecture using the share storage. Our

future work is to integrate the DSM HPC cluster with the

VM migration as one unit.
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