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Abstract 
The growth in numbers and capacity of mobile devices 
such as mobile phones coupled with widespread 
availability of inexpensive range of biosensors presents 
an unprecedented opportunity for mobile healthcare 
applications. In this paper we propose a novel 
approach for Situation-Aware Adaptive Processing 
(SAAP) of data streams for smart and real-time 
analysis of data. The implementation and evaluation of 
the framework for a health monitoring application is 
described. 
 
 
1. Introduction  
 

Recently, innovations in mobile communications 
and low-cost of wireless biosensors have paved the 
way for development of mobile healthcare applications 
that provide a convenient, safe and constant way of 
monitoring of vital signs of patients. A key in the 
provision of mobile healthcare services is the issue of 
using technological innovation to support continuous 
monitoring of patient conditions, providing a degree of 
self-diagnosis and enabling effective real-time decision 
making to reduce fatalities. Ubiquitous Data Stream 
Mining (UDM) techniques [1] such as lightweight, 
one-pass data stream mining algorithms [2-3] can 
perform real-time analysis on-board small/mobile 
devices while considering available resources such as 
battery charge and available memory. However, to 
perform smart and intelligent analysis of data on 
mobile devices, it is imperative for adaptation 
strategies to factor in contextual information.  

Contextual information can be related to a network, 
application, environment, process, user or device. As a 
meta-level concept over context we define the notion 
of a situation that is inferred from contextual 
information [4]. Situation-awareness provides 
applications with a more general and abstract view of 
their environment rather than focusing on individual 
pieces of context.  Situation-aware adaptive data 
stream mining leverages the full potential of UDM by 

going beyond mere available resources and can enable, 
if not guarantee, the continuity and consistency of the 
running applications.  

In real-world, situations evolve and change into 
other situations (e.g. �healthy� changes to 
�hypertension�). Changes that occur between situations 
are also good indicators of situations that may emerge 
� albeit with some vagueness and uncertainty. To 
enable situation-awareness in mobile healthcare 
applications, it is important for the situation modeling 
and reasoning approach to represent uncertainty and 
vagueness associated with health-related situations. 

Reviewing recent works in mobile healthcare 
reveals that most of these projects [5-8] have mainly 
focused on using, enhancing or combining existing 
technologies and context-aware projects [9-13] mostly 
deal with a limited scope (i.e. not applicable to other 
context-aware scenarios). In mobile healthcare 
computing, a general approach for modeling and 
reasoning about uncertain, health situations and 
performing smart and cost-efficient analysis of data in 
real-time has not been introduced and is an open issue.  

In this paper we propose situation-aware adaptive 
processing (SAAP) of data streams for mobile 
healthcare applications. The novelty and contribution 
of this project are as follows: i) situation-awareness is 
achieved by Fuzzy Situation Inference (FSI) that 
combines fuzzy logic principles with the Context 
Spaces (CS) model, a formal and general context 
modeling and reasoning for pervasive computing 
environments. The strengths of fuzzy logic for 
modeling of vague situations are combined with the CS 
model�s underlying theoretical basis for supporting 
context-aware pervasive computing scenarios; ii) 
SAAP incorporates situation-awareness into data 
stream mining and provides gradual tuning of data 
streaming parameters according to occurring situations 
and available resources. This approach improves data 
stream mining operations in an intelligent and cost-
efficient manner. The SAAP approach enables 
continuity and consistency of running operations that 
are of high important for health monitoring 
applications that deal with sensitive and critical data. 
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1.1. A Scenario  
 

John has had a heart attack and is released from 
hospital but there are concerns that he might be 
susceptible to another heart attack and is also 
experiencing blood pressure fluctuations. Constant 
monitoring of his vital signs could help him to reduce 
his anxiety, decrease the need for routine visits to 
medical facilities, and also detect early warning 
features of a possible impending event. He has a smart 
phone with SAAP installed on it and is willing to wear 
biosensors to measure his vital signs. The data is 
wirelessly sent to his mobile where SAAP detects any 
changes not only in his vital signs but in any contextual 
information that is related to the application (e.g. the 
battery level of the mobile phone). SAAP uses this 
information to reason about situations in real-time and 
according to inferred situations, it performs intelligent 
and cost-efficient analysis of data. When fluctuations 
of vital signs are within a specified �acceptable� 
threshold, there is no need for frequent measurement 
and use of resources can be reduced and moderated. 
However, when these fluctuations are over the 
threshold, this �situation� warrants a closer monitoring 
by the system and more frequent measurements. This 
type of adaptation requires factoring in both available 
resources and criticality of health situations. 

This paper is structured as follows: Section 2 
discusses the related work. Section 3 presents the 
SAAP architecture. Section 4 describes the Fuzzy 
Situation Inference (FSI) that enables situation-
awareness. Section 5 discusses the adaptation engine. 
Section 6 and 7 describes implementation and 
evaluation respectively. Finally section 8 concludes the 
paper and discusses the future work. 
 
2. Related Work  
 

Mobile healthcare computing is a new and evolving 
area of research that exploits the recent development in 
mobile networks and communications for health 
monitoring applications. EPI-MEDICS [5] is a large 
scale European project that provides personal 
monitoring of ECG signals for early detection of 
cardiac ischemia and arrhythmia and generating 
different levels of alarms. Another European project 
called the MobiHealth project [6] uses 2.5 (GPRS) and 
3G (UMTS) technologies to integrate all the sensors 
and actuators into a wireless network called Body Area 
Network (BAN). The project of ubimon (Ubiquitous 
Monitoring Environment for Wearable and Implantable 
Sensors) [7] aims to provide continuous management 
of patients mainly focusing on sensors and wireless 
technology rather than data analysis techniques. 
Personalization is another area of focus in developing 

mobile health monitoring applications that has been 
studied in [8].  

Context-awareness is one of the key requirements 
of health monitoring systems that enables autonomous 
operations without patient�s intervention and enhances 
decision making of healthcare professionals on patient 
condition [9]. However, there are limited researches 
that have attempted to fully address the context-
awareness or provide a general and formal 
representation of context [10-12]. One of the works in 
mobile healthcare that incorporates both context-
awareness and adaptation is proposed in [13] but the 
paper does not provide the details of how and when the 
proposed adaptation strategies are applied. Studies in 
data stream processing [14-15] are very application-
specific and focus on very limited areas of research. A 
general approach for smart and cost-efficient analysis 
of data for mobile healthcare systems has not been 
introduced in the current state-of-the-art and is still an 
open issue.  
 
3. Situation-Aware Adaptive Processing 
(SAAP) of Data Streams  
  

The architecture for Situation-Aware Adaptive 
Processing (SAAP) of data streams consists of three 
components of Fuzzy Situation Inference (FSI), 
Resource Monitor (RM) and Adaptation Engine (AE) 
as shown in Figure 1.  

 

 
Figure 1. The architecture of SAAP (Situation-
Aware Adaptive Processing) of Data Streams 

 
The FSI engine enables situation-awareness using 

fuzzy logic principles. Resource Monitor (RM) is a 
software component that continuously monitors 
available resources such as available memory and 
battery usage and reports their availability to the 
adaptation engine. The Adaptation Engine (AE) is 
responsible for gradual tuning of data stream 
processing parameters in real-time according to the 
occurring situations and available resources. The 
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SAAP layer is built on the top of the data stream 
mining algorithms running on mobile devices and 
provides them with situation-aware adaptation. The 
next section discusses the FSI technique. 

 
4. Fuzzy Situation Inference (FSI) 
 

FSI is a situation modeling and reasoning approach 
that integrates fuzzy logic into the Context Spaces (CS) 
model [4]. FSI uses the benefits of the CS model for 
supporting pervasive computing environments while 
incorporating fuzzy logic to deal with uncertainty 
associated with vague and real-world situations.  

 
4.1. The Context Spaces model 
 

The Context Spaces model (hereafter CS) 
represents contextual information as geometrical 
objects in multidimensional space called situations [4]. 
The concept of a �situation space� is characterized by a 
set of regions. Each �region� is a set of acceptable 
values of a context attribute that satisfies a predicate. 
In addition to basic concepts and techniques for 
situation modeling and reasoning, the CS model 
provides heuristics developed specifically for 
addressing context-awareness under uncertainty. These 
heuristics are integrated into reasoning techniques that 
are utility-based data fusion algorithms and compute 
the confidence level in the occurrence of a situation 
[16]. The CS deals with uncertainty mainly associated 
with sensors� inaccuracies. Yet there is another aspect 
of uncertainty in human concepts and real-world 
situations that needs to be represented by the context 
model and reflected in the results of situation 
reasoning. Fuzzy logic uses multi-value logic and has 
the benefit of dealing with this level of uncertainty by 
assigning membership degrees to values.  

 
4.2. Situation Modeling 
 

FSI consists of three subcomponent including 
fuzzifier, rules and inference engine. Fuzzifier, as a 
software component, maps crisp input (i.e. values of 
context attributes) into fuzzy sets using trapezoidal 
membership functions. In a fuzzy set, membership of 
an item is gradual and is represented by a degree 
between 0 and 1 [17]. In FSI, situations of interest are 
defined using fuzzy rules by domain experts and stored 
in a rule repository. Each FSI rule consists of multiple 
conditions joined with the AND operator but a 
condition can itself be a disjunction of conditions [18]. 
To model the importance of conditions, we assign a 
weight w to each condition with a value ranging 
between 0 and 1. The sum of weights is 1 per rule. A 

weight represents the importance of its assigned 
condition relative to other conditions in defining a 
situation. An example of a FSI rule is as follows: 

if Room-Temperature  is �hot� and Heart-Rate is 
�fast� and ( Age is �middle-aged� or �old) then situation 
is �heat stroke�  

The next subsection discusses situation reasoning. 
  

4.3. Situation Reasoning 
 
To reason about a situation, rules need to be 

evaluated to produce a single output that determines 
the membership degree of the consequent [19]. The 
conditions joined with the OR operator are evaluated 
using the maximum function. However, to evaluate the 
conditions joined with the AND operator, FSI provides 
four reasoning techniques as shown in Table 1.  
 

Table 1. Reasoning techniques 
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These techniques integrate fuzzy logic into the CS 
reasoning methods to provide another aspect of 
uncertainty (i.e. uncertainty of situations and delta 
changes of context) in the computation of confidence 
value for the occurrence of a situation.  

The situation reasoning techniques of CS are based 
on four heuristics that are introduced to manage 
uncertainty in pervasive computing environments. 
These heuristics are as follows: i) relative weights of 
context attributes and confidence level of values; ii) 
sensors� inaccuracy; iii) symmetric and asymmetric 
context attributes; iv) and partial and complete 
containment of symmetric context attributes. Table 1 
depicts reasoning methods of CS, their FSI equivalent 
that are combined with fuzzy logic and their 
underlying heuristics and theoretical concepts. 

The next subsections discuss each heuristic and 
reasoning technique in more detail. 
 
4.3.1. Weights and contribution level. The first 
reasoning technique of CS is based on the weights of 
context attributes and the level of confidence of 
attributes� values. Weights are assigned to context 
attributes and represent relative importance of each 
context attribute for inferring a situation. Level of 
confidence is assigned to each element and reflects 
how that element relates to the modeled situation. In 
this heuristic, the contribution function that computes 
the contribution level is proposed at a conceptual level 
and its implementation is later introduced in the second 
reasoning technique based on sensors� inaccuracy. 

In FSI, the concept of weights is associated with 
linguistic variables (i.e. context attributes). The 
concept of contribution level is similar to the 
membership degree of elements in a fuzzy set but they 
are implemented using membership functions. The 
result of )( ii xw μ  represents a weighted membership 

degree of ix  and n represents the number of conditions 
in a rule (1 i n). 

 
4.3.2. Sensors� inaccuracy. To provide automatic 
computation of the contribution level at run-time, the 
second reasoning method of CS uses the impact of 
sensor inaccuracies and unreliability as a determining 
factor to compute the contribution level. This method 
computes the probability of a context attribute correct 
value t

ia�  being contained in the region iA . To 
compute the probability value based on the reliability 
of a sensor, the reliability of reading (e.g. 95%) is used 
to represent the probability value (i.e.  =0.95).  

The second option to compute the probability value 
is to integrate the sensors� inaccuracy of reading rather 

than the reliability of reading. Using this option, the 
probability value is calculated in the following format: 

 
1)  )).max(Pr())min(Pr( j

i
t
ij

j
i

t
ij AaeAae −≤−−≤  

 
where t

ia  denotes the sensed value of the context 

attribute,  je  represents the sensor reading error (i.e. 
t
ia  - t

ia� ) and )min( j
iA  and )max( j

iA  represent 
minimum and maximum values of the region. 

The second reasoning method of CS deals with 
uncertainty factoring in inaccuracies of sensors 
however this equation does not reflect delta changes of 
values in the equation and is not adequate to reason 
about vague situations. The FSI equivalent technique 
not only incorporates the contribution level associated 
with sensors� inaccuracy but includes the membership 
of the values as another factor affecting the 
contribution level. In the FSI model, we first calculate 
the correct value based on the reliability or error rate 
and then pass it to the membership function. The 
function f calculates the correct value of the context 
based on the inaccuracy value ie . If ie  is a reliability 
rate, the sensed value is multiplied by it and if it is an 
error rate (i.e. ±) it is added to the sensed value. 

 
4.3.3. Symmetric and asymmetric context 
attributes. The third reasoning technique of CS 
introduces the concepts of symmetric context attribute 

SCA  and asymmetric context attribute ACA . A 
symmetric context attribute increases the confidence in 
inferring a situation if its value is within the 
corresponding region and decreases the confidence if it 
is outside that region (e.g. reasoning about the 
�hypertension� situation based on �blood pressure�). An 
asymmetric context attribute increases the confidence 
in inferring a situation if its value is within the 
corresponding region but would not decrease the 
confidence if it is outside that region (e.g. reasoning 
about the �heat stroke� situation based on �age�).  

Whenever an asymmetric attribute is not contained 
within its region, the redistribution method assigns 0 to 
the weight of the attribute and recalculates the relative 
weights for the remaining attributes as follows. 
 

2) 
=

=
n

i
iii www

1
/�  

 
The concept of symmetric and asymmetric 

attributes and its corresponding reasoning technique is 
applied into FSI (as shown in Table 1). However, since 
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values that linguistic variables take are not numeric 
(i.e. these values are called terms that represent fuzzy 
sets), the concept of symmetric and asymmetric 
concepts are applied to the values of fuzzy sets 
associated with linguistic variables. 

   
4.3.4. Partial and complete containment. The fourth 
heuristic deals with the fact that the value of an 
important context attribute should affect the result of 
the situation inference more than the other attributes 
(i.e. less important ones) and when several attributes 
are significant for the evaluation of a situation we may 
want to ensure that all of them are contained in their 
regions. This heuristic has been integrated into the 
fourth reasoning technique that aims to address the 
trade-off between complete containment of all 
symmetric context attributes (i.e. when all values of 
symmetric attributes are contained in their 
corresponding regions) and their individual 
contribution using the third reasoning technique. This 
heuristic does not apply to asymmetric attributes 
because they do not decrease the confidence for the 
occurrence of a situation.  

To address the trade-off between complete and 
partial containment, the fourth reasoning technique 
presents each aspect of containment with a dimension 
using utility weights (i.e 1q  and 2q ) and combines 
them towards inferring the occurrence of a situation. 
The utility weights of two dimensions determine which 
aspect of containment is more important (i.e. complete 
or partial).    

The concept of partial and complete containment 
and its reasoning technique are applied to FSI. Similar 
to the third reasoning method, FSI maps values of 
symmetric context attributes into the values of fuzzy 
sets corresponding to symmetric linguistic variables. 

Results of situation reasoning using the techniques 
discussed earlier suggests the degree of confidence in 
the occurrence of a situation. In FSI, if the output of a 
rule evaluation for the �hypertension� situation yields a 
degree of 0.885, we can suggest that the level of 
confidence in the occurrence of �hypertension� is 
0.885. This value can be compared to a confidence 
threshold  between 0 and 1 (i.e. predefined by the 
application�s designers) to determine whether a 
situation is occurring.      

The next section discusses the component of the 
AE (Adaptation Engine). 
 
5. Adaptation Engine (AE) 
 

The AE (Adaptation Engine) is responsible for 
gradual tuning of data stream processing parameters 
according to the occurring situation/s and available 

resources in real time. Lightweight data stream mining 
techniques such LWC, LWCLass, RA-Cluster, ERA-
Cluster, and DRA-Cluster [2-3, 20-22] are adaptive to 
availability of resources via adjusting the algorithm 
parameters. These parameters control output, input 
and/or the process of the algorithm. In these 
algorithms, the adaptation process is done through 
Algorithm Granularity (AG) approach.  

AG has three different variations of AOG 
(Algorithm Output Granularity), AIG (Algorithm Input 
Granularity) and APG (Algorithm Processing 
Granularity) [21-22]. AOG controls the algorithm 
output rate based on the availability of memory via 
changing the data stream mining algorithm parameters 
to encourage or discourage the creation of new output 
structures. Similarly AIG and APG [22] control the 
input rate and consumption of processing power 
according to the battery level and CPU usage 
respectively. 

We have inspired by the concepts of AG and 
developed three different adaptation strategies. These 
strategies include resource-aware, situation-aware and 
hybrid strategies as shown in Figure 2.  

 

 
Figure 2. Adaptation of data stream mining  
 
AE constantly monitors occurring situations that 

are inferred by FSI and availability of resources 
reported by RM.  

Each pre-defined situation needs to be assigned a 
criticality value (i.e. a value between 0 and 1) that 
indicates their importance. For both situations (S) and 
computational resources (R), there are two thresholds 
(i.e. lower and upper bounds), a value between 0 and 1, 
which indicate safe, medium and critical levels. The 
higher the value is, the higher the situation importance 
and resource usage is. Based on these levels of 
criticality for situations and resources, there can be 
nine possible variations (cases) of adaptation at run 
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time. Controller that is a subcomponent of AE makes 
decisions on which strategy needs to be performed 
according to these thresholds. These nine cases are 
presented in Table 2. We have allocated the adaptation 
strategies according to these nine cases. When 
resources are critical it means that the mobile device 
can not continue the mining operations and the 
adaptation strategies that we provide are not adequate 
to address the issue. Therefore other strategies such as 
migration of the data or the process need to be 
performed which are out of the scope of this project. 

 
Table 2. Adaptation Cases 

Cases Adaptation strategy 

1- if R at safe level and S 
at safe level 

Situation-aware strategy 

2- if R at safe level and S 
at medium level 

Situation-aware strategy 

3- if R at safe level and S 
at critical level 

Situation-aware strategy 

4- if R at medium level 
and S at safe level 

Resource-aware strategy 

5- if R at medium level 
and S at medium level 

Hybrid strategy 

6- if R at medium level 
and S at critical level 

Hybrid  strategy 

7- if R at critical level and 
S at safe level 
8- if R at critical level and 
S at medium level 
9- if R at critical level and 
S at critical level 

Other strategies e.g.  
migration  

 
5.1. Resource-aware Adaptation Strategy 

 
Resource-aware adaptation strategy occurs when 

the situation is at safe level but resource availability is 
at medium level. This is because normal situations do 
not require frequent monitoring and the results of 
resource-aware adaptation do not contradict the 
requirements of normal situations. Resource-awareness 
is inspired by the AG approach. One of the AOG-based 
clustering algorithms is called LightWeight Clustering 
(LWC) [29]. LWC considers a threshold distance 
measure for clustering of data. Increasing this 
threshold discourages forming of new clusters and in 
turn reduces resource consumption.  

AOG is a three-stage, resource-aware distance-
based mining data streams approach. The process of 
mining data streams using AOG starts with a mining 
phase. In this step, a value of threshold distance 
measure is determined. This threshold has the ability to 
control the output rate of the running mining algorithm.  

The second stage in AOG-mining approach is the 
adaptation phase. In this phase, the threshold value is 
adjusted to cope with the data rate of the incoming 

stream, available memory, and time constraints to fill 
the memory with generated knowledge (data mining 
output).  

The last stage in AOG approach is the knowledge 
integration phase. This stage represents the merging of 
generated results when the memory is full. This 
integration allows the continuity of the mining process 
on resource-constrained devices. 

The next subsection discusses situation-aware 
adaptation strategy based on the results of the FSI. 
 
5.2. Situation-aware Adaptation Strategy 

 
Situation-aware adaptation in AE is performed 

when resources are available and at safe level. 
Situation-aware adaptation occurs based on occurring 
situations inferred by FSI. These results are multiple 
situations with different level of confidence. To 
provide a fine-grained adaptation and reflecting the 
level of confidence of each situation in the adaptation 
phase, we compute weighted average of the data 
mining parameter value based on confidence values of 
situations and the pre-set value of the parameter for 
each situation. The pre-set values of parameters are 
automatically calculated based on the importance 
values of the situations that will be discussed further in 
the evaluation section. The situation-aware adaptation 
enables reflecting all the results of situation inference 
in the adaptation of parameter values and is 
represented as follows: 
 

3) 
= =

=
n

i

n

i
ijij pp

1 1
/� μμ  

where  jp   represents the set value of a parameter 

for a pre-defined situation iS , iμ  denotes the 
membership degree of  situation iS  where 1 i n and n 
represents the number of pre-defined situations, and   

jp�  represents aggregated value of the parameter.  
Situation-aware adaptation itself results in cost-

efficiency because when a situation has a lower 
importance value, the computed set value for the 
threshold will be a higher value. This decreases the 
output of the LWC algorithm and reduces the memory 
consumption.   

The next subsection describes hybrid adaptation 
strategy. 

 
5.3. Hybrid Adaptation Strategy 

 
When resources are at medium level and situations 

are at medium or critical level (i.e. cases 5 and 6 in 
Table 2), the controller applies the hybrid adaptation 
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strategy. When the adaptation cases 5 or 6 occurs, 
resource-aware and situation-aware adaptation 
strategies each compute different values according to 
resource availability and occurring situations 
respectively. Therefore there is a trade-off between the 
results of these two strategies. Hybrid adaptation 
strategy addresses this issue by computing the average 
value of parameter based on the results of the two 
strategies and criticality values of the situation and 
resource as follows: 

 

4) 
SR

SSRR
I ycriticalitycriticalit

ycriticalitpycriticalitp
p

+
+

=
).�().�(�  

 
Having discussed the theoretical framework of our 

work, the following section presents the 
implementation and evaluations we have performed. 

 
6. Implementation  
 

We have implemented a prototype of health 
monitoring application based on FSI in J2ME and 
deployed it on a Nokia N95 (shown in Figure 3). The 
prototype reasons about situations of �normal�, �pre-
hypotension�, �hypotension�, �pre-hypertension� and 
�hypertension�. This application can be used by 
patients who suffer from blood pressure fluctuations. A 
trapezoidal membership function is used to compute 
membership degree of context values. Contextual 
information used includes systolic and diastolic blood 
pressure (SBP and DBP) and heart rate (HR).  

 

 
Figure 3. The prototype of SAAP-based health 
monitoring application with an ECG biosensor 

 
To capture the patient�s heart rate, we have used a 

two lead ECG biosensor from Alive Technologies [23] 
that transmits ECG signals using Bluetooth to the 
mobile phone. For the blood pressure, we have used 
randomly generated data that simulates blood pressure 

fluctuations. The health monitoring application 
performs situation reasoning and situation-aware 
adaptation in real-time on the mobile device using the 
LWC algorithm. Status bars on the mobile phone 
displays the level of certainty and confidence in the 
occurrence of each situation. 

The evaluation of FSI and adaptation engine is 
presented in the next section.  
 
7. Evaluation  
 

For evaluation of SAAP, we have performed two 
evaluations. First evaluation is a comparative 
evaluation of FSI, CS and Dempster-Shafer and second 
evaluation focuses on the adaptation of threshold 
parameter of LWC according to occurring situations.    

 
7.1. Evaluation of FSI 

To evaluate the FSI model, we have compared the 
FSI situation reasoning technique to the CS and 
Dempster-Shafer (hereafter DS) reasoning approaches. 
The purpose of this evaluation is first to validate the 
FSI model against a well-known reasoning technique 
such as DS and a context model developed for 
pervasive computing environments such as CS. The 
second objective of the evaluation is to highlight the 
benefits of the FSI to deal with uncertain situations.  

In this evaluation, we have considered situations of 
�hypotension�, �normal� and �hypertension�. These 
situations are defined using context attributes of 
systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) with the scale of 40-170 and 20-150 
mm Hg and heart rate (HR) with the range of 20-150 
bpm.  

Table 3 depicts modeling of the three situations in 
the CS model including the weights of attributes and 
their corresponding regions of values. Assigned 
weights are 0.4 for SBP and DBP and 0.2 for HR.  

 
Table 3. Situation definitions in CS 

Situation Context attribute Region of values 
Hypotension 
 
 

1=SBP 
2=DBP 
3=HR 

85 
60 
45 

Normal 1=SBP 
2=DBP 
3=HR 

>85 and 135 
>60 and 110 
>45 and 85 

Hypertension 1=SBP 
2=DBP 
3=HR 

>135 
>110 
>85 

 
The modeling of the three situations in the FSI 

model is presented in Table 4. Weights of conditions 
for the FSI rules conform to the weights used in CS.  

 

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7



Table 4. Situation definitions in FSI 

Situation Linguistic Variable Terms 
represented 
below via  FSI 
rules 

1=SBP 
2=DBP 
3=HR 

low, normal, high 
low, normal, high 
slow, normal, fast

Rule1: if SBP is low and DBP is low and HR is low then 
situation is hypotension 
Rule2: if SBP is normal and DBP is normal and HR is 
normal then situation is normal  
Rule3: if SBP is high and DBP is high and HR is high then 
situation is hypertension 

To apply the DS algorithm for reasoning about situations, 
we use the Dempster’s rule of combination. The normalized 
version of the combination rule is as follows. 

5)  

=∩

=∩

−
=

φQP ji

RQP ji

QmPm

QmPm
Rm

)().(1

)().(
)(  

 
where m(R) denotes the mass value computed for a 

proposition R given the evidences i and j. If R 
represents a situation, considering all existing 
propositions, the intersection of some of these 
propositions denoted as P and Q results in the 
proposition R (i.e.  ) and the intersection of other 
combinations of propositions results in an empty set. 

To model the three situations of Hypotension (L), 
Normal (N) and Hypertension (H) with DS, we first 
need to define propositions and events. Since all three 
situations are incompatible we include a proposition of 
Unknown (U) that would consist of three situations. 
Then we identify the events and mass values that 
reflect the association of an event with the occurrences 
of each proposition as depicted in Table 5.  

 
Table 5. Definitions of events and mass values 

Event  N L H U 
SBPLow (40-85) 0 0.7 0 0.3 
SBPMed(86-135)  0.7 0 0 0.3 
SBPHigh(136-
180)  

0 0 0.7 0.3 

DBPLow(20-60)  0 0.7 0 0.3 
DBPMed(61-110)  0.7 0 0 0.3 
DBPHigh(110-
130) 

0 0 0.7 0.3 

HRSlow(20-45)  0.2 0.4 0 0.4 
HRMed(46-85)  0.4 0.2 0.2 0.2 
HRFast(86-130)  0.2 0 0.4 0.4 

 
Mass values are assigned in a way that they reflect 

to what degree each event indicates a situation. Since 
we have based our situations on three context 
attributes, we define three mass functions 
corresponding. Then we apply DS combination over all 
propositions and evidence. 

The dataset used for the evaluation consists of 131 
context states and their scales contribute to the 
occurrence of each pre-defined situation as well as the 
uncertain situations that occurs when situations evolve. 

Figure 4 presents the results of the evaluation of 
CS, DS and FSI for situation reasoning about 
�hypotension�, �normal� and �hypertension�.  
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Figure 4. Results of the evaluation  
 

Figure 4 shows three approaches of CS, DS and FSI 
have a relatively similar trend according to context 
changes. When the data corresponds to a pre-defined 
situation the results of three approaches almost 
overlap. However, when changes of data indicate the 
occurrence of an unknown and uncertain situation, 
differences of reasoning results between CS, DS and 
FSI are more apparent.  

Compared to FSI, the results of situation reasoning 
by the CS and DS methods show sudden rises and falls 
with sharp edges when situations change which do not 
match the real-life situations. This is because the DS 
and CS approaches do not deal with delta changes of 
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the values and are not able to reflect the gradual 
evolution of one situation to another situation. When 
the value of context attributes decreases or increases, 
its membership degree also increases and decreases 
accordingly and gradually. This enables FSI to provide 
more accurate situation reasoning results in terms of 
reflecting very minor changes of context.  

The evaluation validates the accuracy of the FSI 
model for situation modeling and reasoning and it also 
shows that FSI is able to reflect very minor changes of 
context in situation inference and represent changes in 
a more gradual and smooth manner. The evaluation 
shows that the FSI model is more appropriate approach 
for representation of human concepts and for reasoning 
about the real-world situations that are defined by 
continuous values. Health-related situations are 
examples of these types of scenarios where FSI can 
prove to be more fitting approach compared to the DS 
and CS reasoning approaches. 

 
7.2. Evaluation of Situation-Aware Adaptation 

 
In the implementation of the SAAP we have used 

the LightWeight Clustering (LWC) [29] algorithm as 
the data stream mining algorithm. This algorithm is 
one-pass and operates using the AOG principals as 
discussed earlier in the paper. The LWC algorithm 
provides adaptability by adjusting the parameter of 
threshold distance measure according to the available 
memory on a device such as a PDA. In the evaluation 
of situation-aware adaptation, we have adjusted the 
parameter of threshold of LWC according to the 
confidence level of the occurring situations. The values 
of LWC threshold for each situation are computed 
based on the importance value of each situation and the 
minimum and maximum values of the threshold (i.e. 6 
and 45 respectively) using the following formula: 
 
threshold=minValue+(maxValue-minValue)*(1-importance) 
 

Using the above formula, if we assign the situations 
of �normal�, �hypertension� and �hypotension� the 
importance values of 0.1, 0.9 and 0.5, the computed 
threshold values of each situation will be 42, 10 and 26 
respectively. These values are acceptable given a 
variation of 12 (i.e. 42 divided by 3) for any of the 
context attributes of SBP, DBP and HR has no 
significant impact on a healthy individual while a 
variation of 3 for �hypertension� can be significant. 

To evaluate the situation-aware adaptation, we have 
used the same 131 context states used for the first 
evaluation. Figure 5 shows that the threshold value is 
adjusted according to the confidence value of each 
situation. Decreasing the threshold value increases the 

number of the output (clusters) that is required for 
closer monitoring of more critical situations.  
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Figure 5. Situation-Aware Adaptation Results  

 
The next section concludes the paper and discusses 

future work. 
 

8. Conclusion and Future Work  
 

In this paper we proposed and validated a general 
approach for situation-aware adaptive processing 
(SAAP) of data streams that incorporates situation-
awareness into data stream processing using fuzzy 
logic. The fuzzy situation inference model allows 
modeling and reasoning about real-world and health-
related situations. The SAAP architecture enables real-
time analysis of data emanating from multiple sensors 
including bio-sensors onboard mobile devices while 
factoring in contextual/situational information and 
resource availability. This approach significantly 
enhances a range of mobile healthcare applications.   

There are several directions in which we are 
extending this work. We are currently finalizing 
implementation and evaluation of hybrid adaptation 
using RA-Cluster [22] that enables adaptation of the 
parameters of radius threshold, randomization factor 
and sampling rate according to the memory, CPU and 
battery usage respectively. Furthermore, we are 
working on extensive testing of our prototype in real-
world situation in conjunction with relevant healthcare 
professionals and domain experts in order to develop 
an understanding of high risk situations for the 
monitoring of patients and identifying what 
information is required from bio-sensors.  
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