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An investigation of the free vibration behavior of thin-walled composite box-beams is carried out by considering different assumptions
in the constitutive equations. Within the present model some non-classical effects, such as restrained warping and transverse shear,
are incorporated. Free vibration results are validated against experimental and numerical results, which are available in the literature.
The natural frequencies obtained based on the different assumptions of constitutive equations are compared, and it is revealed that
these assumptions play an important role in the proper treatment of the free vibration behavior of torsion-bending coupled composite
beams. The results obtained based on the proposed constitutive equations are demonstrated to have a good agreement with the finite
element results as far as the lower natural frequencies of the beams are concerned.
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1. Introduction

The enhancement of the theory of thin-walled composite
beams has notably drawn the attention of many researchers
in the past two decades. It has been revealed that in order to
properly treat the behavior of thin-walled composite beams,
a number of nonclassical effects, such as restrained warping,
transverse shear, and also the mechanisms of structural cou-
plings, have to be carefully considered.

Song and Librescu [1] have proposed a model in which
the effects of restrained warping and transverse shear on the
vibration behavior of composite beams are studied. By in-
cluding these effects, the predicted values of the natural fre-
quencies have become lower than the corresponding values
obtained by neglecting restrained warping effects. In a model
developed by Chandra and Chopra [2], it is suggested that
the variation of shear stiffness along the contour of a cross-
section has a significant influence on the warping and twist
characteristic of a composite beam. Volovoi and Hodges [3]
have used an asymptotically correct linear theory for com-
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posite thin-walled beams. They have revealed that the inclu-
sion of hoop bending moment and shell bending is important
for a proper prediction of torsional stiffness of a number of
thin-walled composite beams. The latter finding is used by
Jung et al. [4] in order to subsequently suggest a so-called
mixed method, which combines the force and displacement
approaches in a unified form. They have then achieved sim-
ilar results to those of Volovoi and Hodges [3]. Qin and Li-
brescu [5] have validated the model developed earlier in Song
and Librescu [1] against experimental data. They have shown
that the static and dynamic behaviors predicted by this re-
fined model are in good agreement with experimental data
and other analytical models. Suresh and Nagaraj [6], in a
comprehensive comparison between experimental and ana-
lytical results, have revealed that their proposed model, in
which the refined warping function and higher shear defor-
mation theory are considered, can predict the static and dy-
namic behavior of thin-walled composite beams efficiently.
They suggested that the way the warping is modeled has a sig-
nificant role in a correct treatment of thin-walled composite
beams.

The model that is used in the current study is mainly based
on the works by Song and Librescu [1] and Qin and Librescu
[5] with some modifications in the constitutive equations. It
will be shown that these modifications can significantly influ-
ence the free vibration behavior of single-celled thin-walled
composite beams.
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Fig. 1. Coordinate systems and kinematic variables for the beam
model.

2. Theoretical Developments

2.1. Kinematics

For completeness, the previous model by Song and Librescu
[1] and Qin and Librescu [5], on which the current study is
mainly based, is presented below.

The geometric configuration and the chosen coordinate
system are depicted in Figures 1 and 2.

In order to model a single-celled cross-section fiber-
reinforced thin-walled beam, the following assumptions are
adopted [5]:

(1) The cross-sections do not deform in their own planes.
(2) Transverse shear effects are incorporated. In addition, it

is stipulated that the transverse shear strains, �xz and �yz,
are uniform over the cross-sections.

(3) In addition to the warping displacement along the mid-
line contour (referred to as primary warping), the off mid-
line contour warping (referred to as the secondary warp-
ing) is also incorporated.

(4) It is assumed that over the cross-section, �nn and Nsn are
negligibly small when deriving the stress–strain constitu-
tive law.
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Fig. 2. The geometry of the thin-walled composite box-beam
(CAS lay-up, � (y) = −� (−y) , � (x) = −� (−x)).

(5) The deformations are small and linear elasticity theory is
used.

Based on the latter assumptions, the following displacements
and strains that contribute to the potential energy are adopted
[5]:

u (x, y, z, t) = u0 (z, t) − y� (z, t) , (1a)
v (x, y, z, t) = v0 (z, t) + x� (z, t) , (1b)

w (s, z, n, t) = w0 (z, t) + �y (z, t)
(

x + n
dy
ds

)

+ �x (z, t)
(

y − n
dx
ds

)
− �′ (z, t) {F̄ (s) + ¯̄F (n, s)}, (1c)

where

F̄ (s) =
∫ s

0
[rn (s) − � (s)] ds, (2a)

¯̄F (n, s) = −na (s) , (2b)

in which F̄ (s) and ¯̄F (n, s) are referred to as primary and
secondary warping functions and ()′ denotes the derivative
with respect to z and

rn (s) = x
dy
ds

− y
dx
ds

, (3a)

a(s) = x
dx
ds

+ y
dy
ds

, (3b)

� =
∮

rnds∮
ds

, (3c)

�x (z, t) = �yz − v′
0, (4a)

�y (z, t) = �xz − u′
0. (4b)

Spanwise strain can be written as follows:

εzz (s, z, n, t) = ε(0)
zz (s, z, t) + nε(1)

zz (s, z, t) , (5a)

where

ε(0)
zz (s, z, t) = w′

0 (z, t) + �′
y (z, t) x (s) + �′

x (z, t) y (s)

− �′′ (z, t) F̄ (s) , (5b)

ε(1)
zz (s, z, t) = �′

y (z, t)
dy
ds

− �′
x (z, t)

dx
ds

+ �′′ (z, t) a (s) ,

(5c)

and tangential and transverse shear strains are as follows:

�sz = � (0)
sz + � �′, (6a)

�nz = (�y + u′
0)

dy
ds

− (�x + v′
0)

dx
ds

, (6b)

where

� (0)
sz = (�x + v′

0)
dy
ds

+ (�y + u′
0)

dx
ds

. (6c)
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2.2. Constitutive Equations

Considering a thin-walled composite beam consisting of N
laminates, the constitutive equations for the kth lamina can be
shown to be as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ss

�zz

�nn

�zn

�sn

�sz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(k)

= [C](k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εss

εzz

εnn

�zn

�sn

�sz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(k)

, (7a)

where [C](k) is the stiffness matrix of the kth lamina and

[C](k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C13 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)

. (7b)

where the stiffness coefficients Ci j are defined in Appendix A
of Librescu and Song [7].

As mentioned before, assuming that the �nn is negligible
compared with the other stress components, i.e., �nn = 0, the
following expression for the transverse normal strain can be
extracted:

εnn = −C13

C33
εss − C23

C33
εzz − C36

C33
�sz. (8)

As a result, the constitutive equations can be written as
below: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�ss

�zz

�zn

�sn

�sz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(k)

= [
Q̄

]
(k)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εss

εzz

�zn

�sn

�sz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(k)

, (9a)

where [Q̄](k) is the matrix of transformed reduced elastic coef-
ficients and is given by:

[Q̄](k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 0 0 Q̄16

Q̄21 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄54 Q̄55 0

Q̄61 Q̄62 0 0 Q̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

(k)

, (9b)

where

Q̄i j = Ci j − Ci3Cj3

C33
= Q̄ ji , (i, j = 1, 2, 6) , (9c)

Q̄lm = Clm, (l, m = 4, 5) . (9d)

Toward obtaining the constitutive equations of the thin-
walled composite beam, the stress resultants are defined as:

(a) The in-plane stress resultants:

⎧⎪⎨
⎪⎩

Nss

Nzz

Nsz

⎫⎪⎬
⎪⎭ =

N∑
k=1

∫ n(k)

n(k−1)

⎧⎪⎨
⎪⎩

�ss

�zz

�sz

⎫⎪⎬
⎪⎭

(k)

dn. (10a)

(b) The transverse shear stress resultants:

{
Nzn

Nsn

}
=

N∑
k=1

∫ n(k)

n(k−1)

{
�zn

�sn

}
(k)

dn. (10b)

(c) The out-of-plane stress resultants:

⎧⎪⎨
⎪⎩

Mss

Mzz

Msz

⎫⎪⎬
⎪⎭ =

N∑
k=1

∫ n(k)

n(k−1)

⎧⎪⎨
⎪⎩

�ss

�zz

�sz

⎫⎪⎬
⎪⎭

(k)

ndn. (10c)

In the above equations, n(k) and n(k−1) denote the distances
from the middle surface of the cross-section to the upper and
lower surface of the kth layer and N is the number of layers.

Considering Eqs. (9) and (10) and assuming that the trans-
verse shear stress resultants, Mzn and Msn , are negligible, the
constitutive equations for a thin-walled composite beam can
be derived as:

⎧⎪⎨
⎪⎩

Nss

Nzz

Nsz

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ε(0)
ss

ε(0)
zz

�sz

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ε(1)
ss

ε(1)
zz

0

⎫⎪⎪⎬
⎪⎪⎭ , (11a)

⎧⎪⎨
⎪⎩

Mss

Mzz

Msz

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ε(0)
ss

ε(0)
zz

�sz

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ε(1)
ss

ε(1)
zz

0

⎫⎪⎪⎬
⎪⎪⎭ , (11b)

{
Nzn

Nsn

}
=

[
A44 A45

A45 A55

] {
�zn

�sn

}
, (11c)
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where Ai j , Bi j , and Di j are defined as:

Ai j =
N∑

k=1

∫ n(k)

n(k−1)

Q̄(k)
i j dn, (12a)

Bi j =
N∑

k=1

∫ n(k)

n(k−1)

Q̄(k)
i j ndn, (12b)

Di j =
N∑

k=1

∫ n(k)

n(k−1)

Q̄(k)
i j n2dn. (12c)

It should be noted that the transverse shear stiffness quan-
tities are modified as:

Alm =
N∑

k=1

k2
lm Q̄(k)

lm

(
n(k) − n(k−1)

)
, (l, m = 4, 5) , (13a)

where

k2
lm = k = 5

6
. (13b)

There are many different parameters that affect the shear
correction factor. However, in the present work, the shear fac-
tor value is chosen to be 5/6 as it is proposed by Reissner [8]
and also reported by Librescu and Song [7], Ochoa and Reddy
[9], and Vinson and Sierakwski [10]. Certainly more accurate
methods may be used to calculate the shear correction factors,
for instance, using a parabolic distribution of transverse shear
stresses across the laminate thickness [7, 10]. Definitely the
assumption of 5/6 for the shear correction factor may intro-
duce some errors to the obtained results, which are inevitably
accepted by the authors.

2.3. Equations of Motion

By the use of Extended Hamilton’s Principle, the governing
equations of motion of a thin-walled composite beam with
a circumferentially asymmetric stiffness (CAS), i.e., � (y) =
−� (−y) , � (x) = −� (−x), where � is the ply angle is devel-
oped in Song and Librescu [1], Qin and Librescu [5], and Qin
[11] as:

�v0 : a55(v′′
0 + �′

x) + a56�′′′ = b1v̈0, (14a)

�� : a37�′′
x + a77�′′ − a56(v′′′

0 + �′′
x ) − a66�(IV)

= (b4 + b5)�̈ − (b10 + b18)�̈′′, (14b)

��x : a33�′′
x + a37�′′ − a55(v′

0 + �x) − a56�′′ = (b4 + b14)�̈x,

(14c)

�u0 : a14w
′′
0 + a44

(
u′′

0 + �′
y

) = b1ü0, (15a)

�w0 : a11w
′′
0 + a14

(
u′′

0 + �′
y

) = b1ẅ0, (15b)

��y : a22�′′
y − a14w

′
0 − a44

(
u′

0 + �y
)

= (b5 + b15) �̈y, (15c)

in which the coefficients ai j and bi are listed in Appendices D
and F of Song and Librescu [1].

Boundary conditions of the above equations are as follows:

At z = 0:

v0 = �x = � = �′ = 0, (16a)
w0 = u0 = �y = 0. (16b)

At z = L:

�v0 : a55(v′
0 + �x) + a56�′′ = 0,

��x : a33�′
x + a37�′ = 0,

�� : −a66�′′′ + a77�′ − a56(v′′
0 + �′

x),
+ a37�′

x + (b10 + b18)�̈′ = 0,

��′ : a56(v′
0 + �x) + a66�′′ = 0. (17a)

�w0 : a11w
′
0 + a14(u′

0 + �y) = 0,

�u0 : a14w
′
0 + a44(u′

0 + �y) = 0,

��y : a22�′
y = 0. (17b)

Herein, v0 denotes the vertical deflection, � is the twist of
the cross-section, �x is the rotation of the cross-section about
x-axis, u0 is the extensional deflection, w0 is the lateral deflec-
tion, and �y is the rotation of the cross-section about y-axis.
The coefficients a11, a22, a33, a44, a55, a66, and a77 denote the ex-
tensional, lateral bending, vertical bending, lateral transverse
shear, vertical transverse shear, warping, and twist stiffness,
respectively; a14 is the coefficient of elastic coupling between
lateral transverse shear and lateral bending, a37 is the coeffi-
cient of elastic coupling between vertical bending and twist,
and a56 is the coefficient of elastic coupling between vertical
transverse shear and warping, while b1, b4, b5, b10,b14, b15, and
b18 are the inertia coefficients.

As stated in Qin and Librescu [5] and Qin [11], due to
the complex boundary conditions and complex couplings
involved in the above equations, the Extended Galerkin’s
Method (EGM) is used. The underlying idea of this method is
to select weight functions that need only fulfill the geometric
boundary conditions, while the effects of the natural bound-
ary conditions are kept in the governing equations. When the
linear combination of these weight functions is capable of sat-
isfying the natural boundary conditions, the convergence rate
is usually excellent. In the present analysis, a total number of
nine shape functions in the form of simple polynomials are
used. For the thin-walled beams to be investigated here, this
method leads to both symmetric mass and stiffness matrices
(further details can be found in Appendices B and C).

As mentioned earlier, Volovoi and Hodges [3] and also Jung
et al [4] showed that the preliminary assumptions in consti-
tutive equations have a significant and considerable effect on
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the behavior of thin-walled composite beams, especially on
predicting torsional stiffness of this kind of composite beams.
They showed that, for a correct prediction of torsional stiff-
ness, it is necessary for shell bending to be accounted for in the
thin-walled composite beam model. To investigate the effects
of preliminary assumptions for constitutive equations in free
vibration behavior, three sets of assumptions will be examined
here:

(1) ε(0)
ss = ε(1)

ss = 0,

(2) Nss = ε(1)
ss = 0,

(3) Nss = Mss = 0.

The three sets of assumptions introduced in the present
work have been widely utilized in the static as well as free vi-
bration analysis of thin-walled composite beams by different
authors. For instance, the first set was used in Chandra and
Chopra [2], Bauld et al. [12], and Chandra and Chopra [13];
the second set was used in Song and Librescu [1] and Cen-
tolanza et al. [14]; and the third set was used in Jung et al. [15],
Wu and Sun [16], and Jung et al. [17]. The present study is car-
ried out towards better understanding of the effects of these
assumptions and also the assumption of in-plane rigidity of
the beam cross-section on the free vibration behavior. These
three sets of assumptions can be considered as the three levels
of estimation of the elastic energy in the governing equations
of motion and, consequently, the stiffness values of the beam
cross-section.

The first set (i.e., ε(0)
ss = ε(1)

ss = 0) by ignoring any in-plane
deformations of cross-section, as stated in Jung et al. [18]
and Kosmatka and Ie [19], would be interpreted as neglecting
the Poisson’s effects. As a matter of fact, the in-plane cross-
sectional deformations are results of Poisson’s coupling with
the out-of-plane cross-section stress distribution [19].

The second set (i.e.,Nss = ε(1)
ss = 0) results in the inevitable

violation of compatibility and the equilibrium condition along
the junction due to Nss = 0. This loss of compatibility and lack
of equilibrium can be justified on the following ground: the
extensional stiffness of the constituent plates are so great in
comparison to their flexural stiffness that little resistance is
encountered as each of the plates moves in its own plane. The
assumption of ε(1)

ss = 0 secures the in-plane rigidity condition
of the cross section.

The third set (i.e., Nss = Mss = 0) is similar to the second
set except for the fact that the in-plane rigidity condition of
the cross-section (i.e., ε(1)

ss = 0) is relaxed by being replaced by
(Mss = 0), which means that little resistance is encountered as
each of the plates bends in its plane.

Table 1. The lay-up configuration of thin-walled composite box-
beams for the validation study

Lay-up Upper wall Lower wall Left wall Right wall

CAS1 [30]6 [30]6 [30/−30]3 [30/−30]3
CAS2 [45]6 [45]6 [45/−45]3 [45/−45]3

Table 2. Material properties and geometry of thin-walled com-
posite box-beams

E11 = 141.9 GPa G12 = G13 = 6.0 GPa
E22 = E33 = 9.79 GPa G23 = 4.83 GPa
� = 1445 Kg/m3 	12 = 	13 = 0.42,	23 = 0.25
Length (L) 844.55 mm
Width (2b) 24.21 mm
Depth (2d) 13.46 mm
Thickness of each layer 0.127 mm

The above sets of assumptions will lead to the following
sets of constitutive equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Nzz

Nsz

Mzz

Msz

Nzn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 0

K21 K22 K23 K24 0

K41 K42 K43 K44 0

K51 K52 K53 K54 0

0 0 0 0 K65

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε(0)
zz

�
(0)
sz

�′

ε(1)
zz

�zn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (18)

The reduced stiffness coefficients (Ki j ) corresponding to
each set are listed in Appendix A.

3. Results and Discussions

Initially, the validation of the theoretical developments is at-
tempted to ensure the proper implementation of the method-
ology and the corresponding assumptions in the constitutive
equations. This is achieved by obtaining the results for a com-
posite box-beam based on the third set of assumptions given
above, and comparing the results with those already available
in the literature, which are obtained by an experimental test
[20] or other theoretical studies [5, 21, 22]. Two cases with CAS
lay-up configurations, which are denoted by CAS1 and CAS2
(see Table 1), are considered. Table 2 shows the geometric di-
mensions and material properties used in the corresponding
box-beams.

In order to study the effects of three different sets of consti-
tutive equations on the free vibration behavior of thin-walled
composite box-beams, two cases of lay-up configurations re-
ferred to as CAS3 and CAS4 with varying ply angles are
considered. These lay-ups have initially been introduced by
Volovoi and Hodges [3]. The stacking sequences of these lay-
ups are given in Table 3 and the material properties and ge-
ometric dimensions used in the analysis are listed in Table 2.
The predicted results by different sets of assumptions are
compared with finite element method (FEM) results that are

Table 3. Thin-walled composite box-beams lay-ups

Lay-up Upper wall Lower wall Left wall Right wall

CAS3 [�3/ − �3] [�3/ − �3] [�3/ − �3] [�3/ − �3]
CAS4 [�]6 [�]6 [�/ − �]3 [�/ − �]3
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Table 4a. The experimental, FEM, and theoretical natural frequencies (Hz) for thin-walled composite box-beams

Lay-up Mode No. Ref. [20] (experiment) Ref. [5] Ref. [21] Ref. [22] Present (theory) Present (FEM)

CAS1 1 20.96 21.8 19.92 22.07 22.3 20.965
2 128.36 123.28 124.73 138.21 139.36 131.00

CAS2 1 16.67 15.04 14.69 15.13 15.28 15.372
2 96.15 92.39 92.02 94.83 95.62 96.158

Table 4b. The relative differences in comparison with the either experiments or FEM analysis

Difference (experiment)

Lay-up Mode Ref. [20] (experiment) Ref. [5] Ref. [21] Ref. [22] Present (theory) Present (FEM)

CAS1 1TV∗ — 4% −4.96% 5.27% 6.4% 0.02%
2TV — −3.96% −2.83% 7.67% 8.53% 2.05%

CAS2 1TV — −9.78% −11.9% −9.24% −8.33% −7.8%
2TV — −3.91% −4.3% −1.38% −0.55% 0.008%

Difference (FEM)

Lay-up Mode Ref. [20] Ref. [5] Ref. [21] Ref [22] Present (theory) Present (FEM)

CAS1 1TV — 3.98% −4.98% 5.27% 6.37% —
2TV — −5.9% −4.78% 5.5% 6.38% —

CAS2 1TV — −2.16% −4.43% −1.57% −0.6% —
2TV — −3.91% −4.3% −1.38% −0.56% —

∗Twist-vertical bending coupling modes [21].

obtained by implementing an ANSYS code using Shell99 ele-
ment type.

It is noted that in the case of CAS1 and CAS2 lay-ups, for
the sake of consistency with the literature notation, the ply
angle � is measured relative to “z” axis but for the CAS3 and

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

F
re

q
u

en
cy

 (
H

z)

Ply Angle (degree)

Theoretical (First Set)

Theoretical (Second Set)

Theoretical (Third Set)

ANSYS

Fig. 3. The 1st natural frequency of the box-beam (CAS3).

CAS4 it is measured with respect to “s” axis. Thus, the CAS1
and CAS2 lay-ups are identical to the CAS4 configuration
when � = 60◦ and � = 45◦, respectively.

The validation results are presented in Table 4a in con-
junction with the present FEM analysis. In Table 4b, a com-
parison between the results and those obtained by either the
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Fig. 5. The 3rd natural frequency of the box-beam (CAS3).

experimental or FEM analysis is presented separately. As it
is observed, the comparison of the results against experimen-
tal data does not follow a logical trend. This might be due
to fact that the experimental results are usually affected by
many practical factors, such as the accuracy of the imple-
mentation of the right boundary conditions, measurement
errors, and many others. On the other hand, in the com-
parison of the present theoretical results as well as those
of different references against the FEM results, a generally
reasonable consistency can be observed. Further discussions,
with respect to the comparison of the results, are provided
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Fig. 6. The 4th natural frequency of the box-beam (CAS3).
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Fig. 7. The 5th natural frequency of the box-beam (CAS3).

at a later stage in the article once the results corresponding
to the effects of different sets of constitutive equations are
presented.

Figures 3 through 9 display the first seven natural fre-
quencies of CAS3 configuration. It is seen that the first set
of assumptions (ε(0)

ss = ε(1)
ss = 0) have generally led to the re-

sults, which are not in close agreement with those predicted
by FEM. The latter set of assumptions has mainly resulted
in higher natural frequencies compared to those obtained by
ANSYS. For example, in the case of � = 50◦, it is seen in
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Fig. 8. The 6th natural frequency of the box-beam (CAS3).
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Fig. 9. The 7th natural frequency of the box-beam (CAS3).

Figure 3 that a difference of about 37% is experienced be-
tween the first natural frequency values obtained by either the
first set of assumptions or by ANSYS code. It is also seen that
the frequencies predicted by the second and third sets up to
the 7th frequency are in very good agreement compared to
FEM results. In the case of 8th and 9th (see Figures 10 and
11) frequencies for the ply angles of 0◦ ≤ � < 50◦, the the-
oretical results obtained by the second and third sets are in
a very close accordance compared to FEM results. However,
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Fig. 10. The 8th natural frequency of the box-beam (CAS3).
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Fig. 11. The 9th natural frequency of the box-beam (CAS3).

for the ply angles of 50◦ ≤ � < 90◦, this accordance is not
satisfying.

For CAS4 configuration, the predicted frequencies are de-
picted in Figures 12 through 20. Similar to that experienced
with reference to CAS3 configuration, it is seen that in the
case of CAS4 configuration, the natural frequencies are not
predicted accurately based on the first set of assumptions (see
Figures 12 through 20). For example, in the case of � = 50◦,
it is seen in Figure 12 that a difference of about 68% is ex-
perienced between the first natural frequency values obtained
by either the first set of assumptions or by ANSYS code.
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Fig. 12. The 1st natural frequency of the box-beam (CAS4).
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Fig. 13. The 2nd natural frequency of the box-beam (CAS4).

Compared to the first set, the second set (Nss = ε(1)
ss = 0),

which is used by Librescu and his co-workers in free vibra-
tion and aeroelastic analyzes [23, 24], has generally predicted
the results considerably closer to the FEM results. But the
second set has also demonstrated noticeable errors in some
cases. For example, in the case of � = 70◦, the first natural fre-
quency (see Figure 12) is predicted with about 29% difference
between that obtained by the second set and that achieved by
FEM analysis. As far as the third set is concerned, it is seen that
for the ply angles of 0◦ ≤ � < 50◦ the natural frequencies up
to the 7th frequency are predicted with a very good accuracy
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Fig. 14. The 3rd natural frequency of the box-beam (CAS4).
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Fig. 15. The 4th natural frequency of the box-beam (CAS4).

compared to FEM results. For the ply angles of 50◦ ≤ � < 80◦
in a number of modes, namely, the 1st, 3rd, 5th, 6th, and 7th,
this accuracy starts to slightly deteriorate but it is still within
the acceptable range. On the other hand, in the higher modes,
namely, the 8th and 9th natural frequencies, the theoretical
results compared to those of FEM are not satisfactory at all
even in the case of the third set.

It seems that the above-mentioned free vibration behav-
ior of composite box-beam occurred due to the preliminary
assumptions that are made in developing the thin-walled com-
posite beam model by which it is assumed that the beam
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Fig. 16. The 5th natural frequency of the box-beam (CAS4).
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Fig. 17. The 6th natural frequency of the box-beam (CAS4).
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Fig. 18. The 7th natural frequency of the box-beam (CAS4).
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Fig. 19. The 8th natural frequency of the box-beam (CAS4).
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Fig. 20. The 9th natural frequency of the box-beam (CAS4).

cross-section does not deform in its own plane and also the
magnitude of stiffness coefficient terms. This conclusion can be
drawn by considering Figures 21 through 24. In Figures 21 and
22, the third and ninth ANSYS mode shapes for the CAS4 in

Fig. 21. ANSYS result for the 3rd mode shape of CAS4 (� = 70◦).
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Fig. 22. ANSYS result for the 9th mode shape of CAS4 (� = 70◦).

the case of � = 70◦ are depicted, respectively. It is seen in Fig-
ure 22 corresponding to the ninth mode that the cross-section
has significantly deformed in its plane (i.e., the shell bending
has occurred), thus the developed thin-walled composite beam
model being unable to capture the effects of cross-section de-
formation has not managed to follow the ANSYS analysis.
A similar issue has also been addressed by Dancila et al. [25]
who suggested that the higher natural frequencies cannot be
predicted accurately unless the cross-sectional deformation is
allowed for.

Figures 23 and 24 show the variation of transverse bending
rigidity (a33) and bending-torsion elastic coupling coefficient
(a37) with the ply angle based on the third set of assumptions
for the CAS4 and CAS3 configurations, respectively.

It is seen in Figure 23 that for the CAS4 lay-up, the bending-
twist elastic coupling coefficient has a notable size, which
cannot be easily overlooked when compared to the bending
rigidity and it has its maximum value for the ply angles of
50◦ < � ≤ 80◦. Therefore, the contribution of twist modes in
the natural frequencies is expected to be relatively significant
within the aforementioned range of ply angles. This contribu-
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Fig. 23. (a) Bending-Twist Elastic Coupling Coefficient (CAS4)
based on the third set (b) Bending Rigidity Coefficient (CAS4)
based on the third set.

tion becomes even more pronounced in the case of higher natu-
ral frequencies where the twist deformation becomes apparent
in the modes shapes (see Figure 22). Thus, in the case of lower
natural frequencies and for the ply angles of 0◦ < � ≤ 50◦
the results obtained by the present work are in a very good
agreement compared to FEM results (see Figures 12–18 for
the third set). Since the present model cannot capture the
twist modes thoroughly (i.e., the in-plane shell bending modes
are not captured) the predicted natural frequencies start to
slightly lose their accuracy compared to FEM results in the
case of the lower natural frequencies and for the ply angles of
50◦ < � ≤ 80◦, in which the bending modes are still dominant
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but the amount of bending-twist coupling is considerable (see
Figures 12–18 for the third set).

Based on the above discussion and the fact that the CAS1
lay-up corresponds to CAS4 configuration with � = 60◦,
the differences between the natural frequencies obtained
by present theoretical results and those achieved by FEM
analysis in the case of CAS1 lay-up (see Table 4b) are
justified.

In the case of CAS3 lay-up as seen in Figure 24, the
bending-twist coupling coefficient is not considerable rela-
tive to bending rigidity coefficient. Thus, for almost all ply
angles in the case of lower modes (i.e., the first seven natu-
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Fig. 24. (a) Bending-twist elastic coupling coefficient (CAS3)
based on the third set. (b) Bending rigidity coefficient (CAS3)
based on the third set.

ral frequencies) where the twist and shell bending deforma-
tions are not yet dominant in the corresponding mode shape,
the obtained results by using the third set are in close agree-
ment with those obtained from the FEM analysis (see Fig-
ures 3–9).

4. Conclusions

The effects of different assumptions of constitutive equations
on the free vibration behavior of a number of thin-walled com-
posite beams with torsion-bending coupling have been inves-
tigated. The thin-walled composite beam model that is used in
the present study is based on an existing beam model, includ-
ing some non-classical effects, such as restrained warping and
transverse shear. The free vibration results were presented for
three sets of assumptions for constitutive equations and com-
pared against finite element results provided using ANSYS.
It is shown in this work that the assumptions of constitutive
equations play an important role in predicting the natural fre-
quencies of composite beams. Thus, an inappropriate selection
of the corresponding assumptions may lead to catastrophic re-
sults. For example, in some cases a difference of about 68%
compared to FEM results has been observed. As far as the
lower natural frequencies are concerned, a good agreement
has been observed between FEM results and those obtained
by the application of the third set of assumptions. However,
neither the third set nor the other sets of assumptions could
capture the higher natural frequencies with adequate accuracy.
It seems that the incorporation of cross-sectional deformation
in the beam model is essential in order to be able to capture
the higher natural frequencies.
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Appendix A

The reduced stiffness coefficients for Nss = Mss = 0:

K11 = A22 + (
A2

12 D11 − 2A12 B11 B12 + B2
12 A11

)
/(

B2
11 − D11 A11

)
,

K12 = A26+[A12 (A16 D11−B11 B16) + B12 (A11 B16 − B11 A16)]/(
B2

11 − D11 A11
)
,

K13 = � (s) K12,

K14 = B22+[A12 (B12 D11−B11 D12) + B12 (A11 D12 − B11 B12)]/(
B2

11 − D11 A11
)
,

K21 = A26+[A16 (A12 D11−B11 B12) + B16 (A11 B12 − B11 A12)]/(
B2

11 − D11 A11
)
,

K22 = A66 + (
A2

16 D11 − 2A16 B11 B16 + B2
16 A11

)
/(

B2
11 − D11 A11

)
,

K23 = � (s) K22,

K24 = B26+[A16 (B12 D11−B11 D12) + B16 (A11 D12 − B11 B12)]/(
B2

11 − D11 A11
)
,

K41 = B22 + [B12 (A12 D11 − B11 B12) + D12 (A11 B12 − B11 A12)]/(
B2

11 − D11 A11
)
,

K42 = B26 + [B12 (A16 D11 − B11 B16) + D12 (A11 B16 − B11 A16)]/(
B2

11 − D11 A11
)
,

K43 = � (s) K42,

K44 = D22 + [
B2

12 D11 − 2B12 B11 D12 + D2
12 A11

]
/(

B2
11 − D11 A11

)
,

K51 = B26 + [B16 (A12 D11 − B11 B12) + D16 (A11 B12 − B11 A12)]/(
B2

11 − D11 A11
)
,

K52 = B66 + [B16 (A16 D11 − B11 B16) + D16 (A11 B16 − B11 A16)]/(
B2

11 − D11 A11
)
,

K53 = � (s) K52,

K54 = D22 + [B16 (B12 D11 − B11 D12) + D16 (A11 D12 − B11 B12)]/(
B2

11 − D11 A11
)
,

K65 = A44 − A2
45

A55
.

The reduced stiffness coefficients for Nss = ε(1)
ss = 0:

K11 = A22 − A2
12

A11
,

K12 = A26 − A12 A16

A11
=K21,

K13 =
(

A26 − A12 A16

A11

)
� (s) ,

K14 = B22 − A12 B12

A11
= K41,

K22 = A66 − A2
16

A11
,

K23 =
(

A66 − A2
16

A11

)
� (s) ,

K24 = B26 − A16 B12

A11
= K42.

K43 =
(

B26 − A16 B12

A11

)
� (s) ,

K44 = D22 − B2
12

A11
,

K51 = B26 − B16 A12

A11
,

K52 = B66 − B16 A16

A11
,

K53 =
(

B66 − B16 A16

A11

)
� (s) ,
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K54 = D26 − B12 B16

A11
,

K65 = A44 − A2
45

A55
.

The reduced stiffness coefficients for ε(0)
ss = ε(1)

ss = 0:

K11 = A22,

K12 = A26=K21,

K13 = K12� (s) ,

K14 = B22 = K41,

K22 = A66,

K23 = K22� (s) ,

K24 = B26 = K42.

K43 = B26� (s) ,

K44 = D22,

K51 = B26,

K52 = B66,

K53 = B66� (s) ,

K54 = D26,

K65 = A44 − A2
45

A55
.

M =
∫ L

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1ΨuΨT
u 0 0 0 0 0

b1ΨvΨT
v 0 0 0 0

b1ΨwΨT
w 0 0 0

(b4 + b5)Ψ�ΨT
�

+(b10 + b18)Ψ′
�Ψ

′T
�

0 0

Symmetric (b4 + b14)ΨxΨT
x 0

(b5 + b15)ΨyΨT
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K =
∫ L

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a44Ψ′
uΨ

′T
u 0 a14Ψ′

uΨ
′T
w 0 0 a44ΨuΨ′T

y

a55Ψ′
vΨ

′T
v 0 a56Ψ′

vΨ
′′T
� a55Ψ′

vΨ
T
x 0

a11Ψ′
wΨ′T

w 0 0 a14Ψ′
wΨT

y

a77Ψ′
�Ψ

′T
� + a66Ψ′′

�Ψ
′′T
� (a37 − a56) Ψ′

�Ψ
′T
x 0

Symmetric a55ΨxΨT
x + a33Ψ′

xΨ
′T
x 0

a44ΨyΨT
y + a22Ψ′

yΨ
′T
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix B

In order to apply the EGM to the governing equations, the
separation of variables is implemented as follows:

u0(z, t) = �T
u (z)qu(t), v0(z, t) = �T

v (z)qv(t),
w0(z, t) = �T

w(z)qw(t),
�(z, t) = �T

� (z)q�(t), �x(z, t) = �T
x (z)qx(t),

�y(z, t) = �T
y (z)q y(t).

where �T
u (z) , �T

v (z) , �T
w (z) , �T

� (z) , �T
x (z), and

�T
y (z) are appropriate shape functions and

qu (t) , qv (t) qw (t) , q� (t) , qx (t), and q y (t) are the vec-
tors of generalized coordinates. Applying the later equations
results in the discretized equations of motion:

[M] {q̈} + [K ] {q} = {0} ,

where {q} = [
qT

u qT
v qT

w qT
� qT

x qT
y
]T

and
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In the present work, shape functions in the form of simple
polynomials are adopted:

�T
u (z) = [

z z2 . . . zN
]T

, �T
v (z) = [

z z2 . . . zN
]T

, �T
w (z) = [

z z2 . . . zN
]T

,

�T
� (z) = [

z2 z3 . . . zN+1
]T

, �T
x (z) = [

z z2 . . . zN
]T

, �T
y (z) = [

z z2 . . . zN
]T

,

where N is the number of shape functions to be used in the
analysis.

Appendix C

Convergence study of the EGM:
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Convergence of the nine first natural frequencies of com-
posite box-beam C AS4, � = 0◦.


