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Abstract 

The article presents a proposal for a combined application of fuzzy logic and genetic algorithms to control the 
procurement process in the enterprise. The approach presented in this paper draws particular attention to the impact 
of external random factors in the form of demand and lead time uncertainty. The model uses time-variable 
membership function parameters in a dynamic fashion to describe the modelled output fuzzy (sets) values. An 
additional element is the use of genetic algorithms for optimisation of fuzzy rule base in the proposed method. The 
approach presented in this paper was verified according to four criteria based on a computer simulation performed 
on the basis of the actual data from an enterprise. 
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1. Overview of inventory management issues 

As a result of the on-going globalisation and mass consumption, the demand on the goods market is 
characterised by intense dynamics and a certain level of uncertainty, especially in large agglomerations and urban 
areas. The logistical processes that occur there as part of supply networks focus primarily on the flow of the streams 

 

 
* Corresponding author. Tel.: +(48) 12-628-37-21; 

E-mail address: pwiecek@pk.edu.pl 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of CIT 2016



165 Paweł Więcek  /  Transportation Research Procedia   18  ( 2016 )  164 – 171 

of material goods, but also take into account the flows of necessary information and financial resources. The 
volatility of these processes and certain level of uncertainty cause all sorts of inventory to amass at various levels of 
the logistic network in order to ensure the continuity of production and the uninterrupted availability of the finished 
products to customers. Due to the impact of random factors on the nodal elements of the supply network 
(manufacturing plants, distribution centres, warehouses, etc.) through the volatility of demand for semi-finished 
products or finished products, lead time changeability, vendors’ limited capabilities, etc., the optimal policy for the 
supply and inventory control logistics is of utmost importance to the effectiveness of the entire logistic network.  

As a result of the above-mentioned factors and the ever-increasing competition among entities, logistics 
companies are often forced to keep a high inventory level in order to maintain the desired service level. This 
behaviour makes it possible to dynamically respond to unexpected changes in the demand or other external factors 
but it generates increased costs at the same time. These are, in particular, associated with the carrying the inventory, 
leasing additional storage space and freezing the limited financial resources in the inventory. On the other hand, the 
inventory level that is too low in relation to the stock-keeping units characterised by an unusual demand pattern 
which are essential for the enterprise can lead to the occurrence of external costs caused by lost resources. They can 
be expressed as cash but also as a customer loss, lowering the reputation of the enterprise or a loss of its 
competitiveness. This situation is also conducive to the formation of additional transport costs associated with the 
implementation of unplanned deliveries. 

2. Overview of inventory control solutions 

Due to the impact of the aforementioned factors, the optimal inventory control is a complex decision-making 
process that requires analysis of multiple criteria and parameters, which in practice are usually non-deterministic in 
nature. The result is that the basic decisions about how much merchandise should be purchased and at what point in 
time in order to minimise the stocking and stock-carrying costs and meet the established level of customer service 
are made in conditions of uncertainty. The subject literature, both domestic and international, provides numerous 
rich sources on the topic of inventory management. The most popular classical methods for determining inventory 
levels include, first and foremost, the Economic Order Quantity (EOQ) model, the Re-Order Point (ROP) models 
and Re-Order Cycle (ROC) models (Krzyżaniak, Cyplik, 2007). However, the applicability of these methods is quite 
limited as it often requires the adoption of limitations on the stationarity of demand or the known and fixed lead 
time. The extensions of these methods take into account certain variability with regard to the demand or the lead 
time by introducing an additional parameter in the form of a safety stock, which aims to cover the unexpected 
changes in the demand (Grzybowska, 2010), (Niziński, Żurek, 2011), (Krawczyk, 2011). In addition to the above-
mentioned methods, one may also encounter other control models, such as: the reorder point model using fixed 
reorder cycles or the combined re-order point and fixed re-order cycle model (Wolski, 2010). Few papers indicate 
the problem of inventory control in the conditions of demand discontinuity. When dealing with this issue, authors 
often present methods created by Wagner-Within and Silver-Meal. Compared to the domestic literature, the list of 
international publications on the subject of inventory control is definitely more extensive and takes into account a 
greater number of determinants and characteristics of the task being considered (Axaster, 2006), (Lang, 2009), 
(Nahmias 2010). An important element raised in foreign publications is the simultaneous inclusion of several 
products in the control models, which is much closer to the reality (Frank, 2009), (Li, Cheng, Wang, 2007), (Maity, 
2007), (Maity, 2009). Due to the difficulty of simultaneously taking into account many parameter variables in the 
analytical models, more and more papers suggest identifying uncertainty through the introduction of a fuzzy 
environment. Some articles (Mandal, Roy, 2006), (Roy, 2007), (Taleizadeh, 2009), (Hsieh, 2002), (Maiti, 2006), 
present an approach that assumes that demand, lead time, stock-carrying costs, customer service, etc. are fuzzy 
values. Due to the great complexity and elaborateness of the problem, researchers have been increasingly proposing 
the use of genetic algorithms to find optimal solutions to the issue (Taleizadeh, 2013), (Khanlarpour, 2013), (Gupta 
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K, 2015). Despite this, in most cases the suggested methods do not take into account the impact of several random 
factors on the control system at the same time. Therefore, it seems reasonable to develop models and methods for 
solving the problems of procurement logistics with the use of artificial intelligence techniques. These include, in 
particular, fuzzy reasoning models supported by the use of genetic algorithms as a synergic element used to further 
enhance the quality of the solution.  

3. The use of fuzzy logic and genetic algorithms to solve the problem of inventory control in conditions of 
demand and lead time uncertainty 

The As mentioned previously, the impact of many external determinants on the procurement logistics subsystem 
leads to the situation where taking the right decision in this respect requires methods and tools with the ability to 
specify events characterised by uncertainty, information inaccuracy and adaptation to the changing system 
parameters. Hence, the theory of fuzzy sets and fuzzy reasoning systems is suitable for the wide range of application 
in the field of inventory control and management in logistics. An additional element that supports and complements 
the functioning of fuzzy system in the proposed control method will be the use of genetic algorithm. Its aim will be 
to optimise the knowledge base contained in the fuzzy rules by optimal selection of weights for these rules. 

3.1. Fuzzy logic 

Fuzzy logic is an example of a multi-valued logic. Closely related to the theory of fuzzy sets, it was introduced 
by L. Zadeh. In contrast to the classical logic, the fuzzy logic theory assumes that there may be an infinite number of 
intermediate values between the false state and the true state. This means that an element of a given set may belong 
to this set only to a certain degree. This reasoning leads to the formulation of the definition of fuzzy set. According 
to it, the fuzzy collection A in a non-empty space X is a set of pairs: 

 

 

where: 

        
is known as the membership function of fuzzy set A. This representation assigns a degree of fuzzy set membership 
of each element  to the fuzzy set A. One can distinguish the following cases: 

in the case of full membership of an element x to the fuzzy set A ( . 

 in the case of no membership of the element x to the fuzzy set A ( . 

 in the case of a partial membership of an element x to the fuzzy set A 
Similarly to the classical approach, fuzzy sets make it possible to perform a series of operations in the form of a 

sum, product, etc. 
Another important concept necessary to describe fuzzy systems is the linguistic variable, i.e. the input or output 

quantity in the fuzzy system that is estimated using linguistic values (high demand, long lead time, etc.). 

3.2. Genetic algorithms 

Genetic algorithms are algorithms designed to search for optimal solutions to artificial human-created 
optimisation problems. Their functioning is based on the mechanisms of natural selection and the process of 
heredity. They combine the evolutionary principle of survival of the fittest individuals (solutions of decision 
problem). When considering a set of solutions to the decision problem, one can compare it to the population of 
organisms. Each solution (individual) can be attributed its own characteristics of adaptation to certain set conditions 
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(criterion function that measures the quality of a certain solution). This allows you to simulate the evolutionary 
processes by duplicating better solutions in the future "generations" and eliminating those that are not as good at 
satisfying the optimisation problem criteria. This operation is carried out on the basis of the reproduction of genetic 
code and more specifically on the possibility of collating partial ideas (similarly to crossover) that come from a 
variety of solutions, which results in better innovative solutions to the problem. In practice, this requires adoption of 
a method of transforming a specific solution into a uniquely representative code string, often called a chromosome. 
In this way, using the so-defined code strings (solution population), one can perform processing, e.g. the crossover 
and mutation operations, and receive new solutions (Goldberg, 1989).  

3.3. Proposed method for solving the problem   

The approach proposed in the article involves describing the uncertainty of input and output system parameters 
through fuzzy sets. Then, on the basis of the knowledge base contained in the rules, the optimal sharpened control 
parameters are determined. The rule base consists of a set of conditional instructions. The generalised inference rule 
modus tollens can be specified in the following way: 

Antecedent    
Implication    

Conclusion     
Where:  are fuzzy sets, and x and y are linguistic variables. 
The input data supplied to the fuzzification block are fuzzified, i.e. the degree of their membership to particular 

fuzzy sets is determined. Then, each rule is run in the inference block and also activation degrees are calculated for 
the antecedents contained within them. Each rule is assigned a certain weight w. In this way, rules with higher 
weights have a greater impact on the determination of the output variable value. In order to guarantee the required 
control efficiency, a genetic algorithm was used to optimise the weight values for a fuzzy system rule set. Therefore, 
the decision variable is the vector of the rule weights. The optimisation process is performed on the basis of the 
minimisation of the function being a weighted sum of standardized three sub-criteria: the average inventory level, 
the number of stock-outs and the number of deliveries for a fixed period of time, on the basis of training data sets. 
The above-mentioned problem can be represented as follows: 

 

 

 

 

 

Where: 
 – cumulative criterion function 

W – vector of weights for a rule set 
 ,  – maximum and minimum, respectively, for the function determining the average inventory level 

,  – maximum and minimum, respectively, for the function determining the number of stock-outs 

,  – maximum and minimum, respectively, for the function determining the number of required deliveries 
 - weights for partial criteria 

The structure of a single chromosome is presented on Fig. 1. 
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Fig. 1. Sample chromosome structure 

The functioning of the reasoning block optimized by the genetic algorithm results in the sharp output system 
values. Fig. 3 shows the general scheme of the entire system of the presented approach. 

Fig. 2. Scheme of proposed system 

The input to the system comprises three variables describing the forecast demand, the actual inventory level on a 
given day and the random lead time. The control parameters in the proposed system are the actual re-order point and 
the actual order quantity. The first specifies the emergency inventory level at which an order must be placed and the 
latter designates the item batch size that is appropriate for a certain moment. All variables, both input and output, are 
defined as linguistic variables determined on a set of linguistic values. For example, one of the input variables can 
be as follows: . Each estimation of the linguistic variable is assigned 
an appropriate fuzzy set. Fig. 3 shows the methods of describing the uncertainty of input parameters in the control 
system. 

 

Fig. 3. Input system parameters described by means of fuzzy sets 

The presented fuzzy sets are described by the proposed triangular and trapezoidal membership functions. The 
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characteristic points on the horizontal axes of the diagrams are determined based on historical observations of a 
certain variable in a fixed time horizon. Output system parameters were defined in a similar way Fig. 4. 

 
Fig. 4. Output system parameters described by means of fuzzy sets 

 
Characteristic points on the horizontal axis are identified on the basis of the following formulas: 
 

 

 where: 
P – estimated demand for the product within a specified time horizon (e.g. a year)  
Kz – stocking unit costs 
Ku – stock-carrying costs 
 

 

where: 
Dsr – average demand for the article on a given day 
Lsr – average lead time 

 – standard demand deviation 
k – adopted safety factor specifying the level of customer service 
 
The approach proposed in this paper is an example of continuous inventory monitoring and control system. The 

input and output variables are updated for the adopted time interval (e.g. one day). Hence, the identified 
characteristic points in the fuzzy space for the output variables are only the initial values in the simulation of the 
entire analysed planning period. Within each successive one-day time interval, the parameters of the membership 
function describing the outputs from the system are modified based on the identified prediction error (Fig. 5.) 
Thanks to this, the system has a greater ability to adapt and intelligently identify any unusual situations. 

 

 
Fig. 5. The method of updating the membership function parameters for output system variables 
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4. Sample calculation and results 

In order to verify the effectiveness of the proposed solution, a computer simulation has been performed on the 
inventory level of certain product, based on historical demand data from the enterprise within a period of six 
months. The simulation results were compared with the results obtained from the classical ordering level method 
and the combined re-order point and fixed reorder cycle model. These methods are broadly presented in (Axsater, 
2006). For the set of all possible combination of rules in the reasoning module, optimisation process was performed 
for weights as shown in the previous section. As a consequence, a set of 27 most useful rules was received together 
with their assigned optimal weights. The final comparison of the results of the inventory level simulation was made 
on the basis of the adopted criteria in the form of the total inventory costs for the considered period, the average 
inventory level, the number of deliveries and the number of the encountered stock-outs. The simulations were 
carried out for 25 data sets. The final results were averaged. Fig. 6. shows the simulation scheme as per the proposed 
approach. 

Fig. 6. Simulation scheme as per the proposed fuzzy method 

The sequence of all the steps presented in the simulation scheme is performed each time for each day of the 
entire six-month period. Table. 1. and Table. 2. contain the presentation of the results of the proposed approach in 
relation to two methods according to selected criteria. 

 
Table. 1. The percentage improvement in the results of fuzzy model with comparison to others methods 

 
 
Table. 2. The averaged number of stock outs occurred regarding to compared methods 
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5. Summary 

The approach presented in this paper and the performed simulations illustrate that the classical method of 
determining the inventory level are inefficient and ineffective where random factors in the form of a large 
uncertainty in demand, lead time, etc. impact the inventory control system. On the basis of the received results, the 
proposed approach brought results that were better by a dozen or so percent compared to the other two classical 
methods according to the adopted estimation criteria. For the stock-out number criterion, the proposed fuzzy 
solution turned out to be a little worse than one of the methods being compared. This is dictated by the large number 
of deliveries for the combined re-order point and re-order cycle method, which is associated with far higher stocking 
and stock-carrying costs. Further work will be focused on attempts to include an additional uncertainty factor in the 
form of a limited supply of goods from suppliers and further tests of the method using a greater number of data sets. 
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