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A B S T R A C T

Cloud Computing is developed as a new wave of ICT technologies, offering a common ap-

proach to on-demand provisioning of computation, storage and network resources that are

generally referred to as infrastructure services. Most of currently available commercial cloud

services are built and organized reflecting simple relations between single provider and cus-

tomers with the simple security and trust model. New architectural models should deliver

multi-provider heterogeneous cloud services environments to organizational customers rep-

resenting multiple user groups. These models need to be enforced by consistent security

services operating in virtualized multi-provider cloud environment. They should incorpo-

rate complex access control mechanisms and trust relations among cloud actors. In this

paper, we analyze cloud services provisioning use-cases and propose an access control model

for multi-tenant cloud services using attribute-based access control model. We also extend

the model for Intercloud scenarios with the exchanging tokens approach.To facilitate attribute-

based policy evaluation and implementing the proposed model, we apply an efficient

mechanism to transform complex logical expressions in policies to compact decision dia-

grams. Our prototype of the multi-tenant attribute-based access control system for Intercloud

is developed, tested and integrated into the GEYSERS project. Evaluations prove that our

approach has a good performance in terms of numbers of cloud resources and numbers of

clients.
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1. Introduction

Cloud Computing is effectively used to improve scalability, avail-
ability, elasticity and security of IT management in many
application areas. It adopts advantages of many technologies
such as virtualization, service-oriented architecture, and Utility
computing to allow customers and providers to cut costs on
system deployments and operations. Many studies and best
practices documents related to clouds deployment, design, de-
velopment, operations and management have been proposed
to incorporate above technologies (Dillon et al., 2010; Foster

et al., 2008; Fox et al., 2009; Hogan et al., 2011; Höfer and
Karagiannis, 2011; Mell and Grance, 2011). Clouds in such ap-
proaches enable users’ data to store on share virtualized cloud
infrastructures, which are on-demand provisioned at provid-
ers’ facilities. The virtualized infrastructures capacities can be
elastically scaled up and down depending on varying users’
demands. Cloud providers build up their systems based on the
multi-tenant architecture (Chong et al., 2006; Garcia-Espin et al.,
2012; Guo et al., 2007; Mell and Grance, 2011). Thus, security
in general as well as access control for cloud service manage-
ment should be aware of the multi-tenancy pattern in this
architecture.
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In cloud resource management, resources in cloud are vir-
tualized and managed in a common resource pool (Chong et al.,
2006; Garcia-Espin et al., 2012; Ghijsen et al., 2013; Hogan et al.,
2011; Mell and Grance, 2011). Depending on the stage in its life
cycle, the resource may be administrated by one or multiple
entities in the the multi-tenancy pattern:

• At the initial stage, resources are managed by the pro-
vider, who is the economic and management owner of
available idle resources.

• When a tenant subscribes set of cloud resources, their eco-
nomic and administrative ownerships will be transferred
exclusively to this tenant during subscribed period.

• The subscribed tenant may want to allow accesses from its
users, or due to collaboration requirements, share part of
its resources to another trusted tenant with specific con-
ditions like allowed actions, time, location.

• The trusted tenant in turn can manage the shared re-
sources by defining access control policies for its users, or
share to another one.

A use-case of multi-tenancy pattern could be as follows: a
cloud provider offers cloud services to commercial compa-
nies (tenants) in which their employees can access subscribed
cloud resources (e.g., storage, Virtual Machine (VM), data-
bases, spreadsheets, etc.) during subscribing time.The provider
should guarantee isolations between subcribed resources of
tenants. On the other side, tenants may want to collaborate
with each other by sharing resources. The commercial
firm C, wants to audit its finance statements. It signs the
contract with the auditing firm A to allow A’s consultants
can read-only to parts of C’s resources during a specific
time-frame.

According to Hogan et al. (2011), cloud services relies mainly
on virtualization, multi-tenant architecture, elasticity and di-
versity of accesses.The characteristics of multi-tenancy pattern
bring distinctions between Cloud Computing and previous dis-
tributed systems. For this reason, access control for clouds
should be designed to support such scenarios.

The on-demand self-service and rapid elasticity proper-
ties in clouds (Mell and Grance, 2011) requires that the access
control design must handle dynamic changes of entities as well
as fine-grained authorization. For example, a typical cloud In-
frastructure as a Service (IaaS) service provides different plans
(e.g., storage size, speed, computing powers, bandwidth, life-
time, etc.) to customers in which the number of subscribers
could reach thousands. Each of them can then manage hun-
dreds of end-users. In these cases, numerous resource objects
are provisioned over time with dynamic identifiers. Besides,
clouds must handle accesses from users using diversity of
clients in both types and numbers (e.g., mobile devices, laptops,
workstations).

Traditional access control models are designed to manage
accesses from subjects to objects with specific operations via
authorization statements. A trivial statement is a triple of
〈subject, object, operation〉, in which the 〈object, operation〉 is known
as a permission. Role-based Access Control (RBAC) approaches
(ANSI, 2004; Ferraiolo et al., 2001; Sandhu et al., 1996) were in-
troduced with roles as an abstraction layer decoupling subjects
and permissions. RBAC was supported to apply in different

areas, from stand-alone, enterprise-level or cross-enterprise ap-
plications. However, even the design purpose of RBAC is to large
enterprise systems with even hundreds or thousands of roles
and users in tens thousands (Sandhu et al., 1999), such systems
may have problems on scalability in role and object explo-
sions (Franqueira and Wieringa, 2012; Kuhn et al., 2010). Analysis
in Franqueira and Wieringa (2012) estimates that RBAC should
be used for systems with static structure where roles and hi-
erarchy are clearly defined; entities individuality and locality
are limited; and managed objects are stable. Large-scale cloud
services management systems often have dynamics of provi-
sioned pooling objects, varieties of entities and sophisticated
fine-grained authorization regarding dynamical context-
specific attributes, in which RBAC approaches may not be
suitable.

To overcome limitations of RBAC systems, Attribute-based
Access Control (ABAC) was identified with the central idea that
access can be determined based on present attributes of objects,
actions, subjects and environment in the authorization context
(Hu et al., 2014; Jin et al., 2012; Yuan and Tong, 2005). The ABAC
can be used to model RBAC as well as other traditional access
control models (Jin et al., 2012) The fine-grained authoriza-
tion feature of ABAC makes it more flexible and scalable than
RBAC. Thus, ABAC is mostly suitable for cloud management
services.

However, using large numbers of attributes in ABAC and the
elasticity of clouds produce challenges in management and de-
ployment. The complexity of attributes criteria in rules and
conflict resolutions may arise during applying ABAC in access
control for large-scale systems like cloud. ABAC implementa-
tion like eXtensible Access Control Markup Language (XACML)
standard (OASIS, 2013) only limits at defining a general ABAC
policy language but without indicating how to integrate with
system resource information models for attribute manage-
ment. There is also no related work on ABAC defining required
constraints in policy composition and management for mul-
tiple authorities in multi-tenant systems.

With all such challenges and motivated by cloud and
Intercloud scenarios analyses (GEANT, 2010; GEYSERS, 2010; Ngo
et al., 2011, 2012), as well as related work on access control for
clouds (Amazon, 2013; Bernal Bernabe et al., 2012; Bethencourt
et al., 2007; Calero et al., 2010; Goyal et al., 2006; Jin et al., 2014;
Sahai and Waters, 2005; Tang et al., 2013), we introduce the
Multi-tenant Attribute-based Access Control (MT-ABAC) ap-
proach which formalize the ABAC applied for the multi-
tenancy pattern. It not only aims to provide a scalable and
flexible resources and entities management of the ABAC, but
also contains related policy constraints facilitating delega-
tions and collaborations among tenants and users in multiple
levels. The extended model is applied for Intercloud sce-
narios with the exchanging tokens approach for fine-grained
dynamic trust establishment.To facilitate attribute-based policy
evaluation and implementing the proposed model, we apply
an efficient mechanism to transform complex logical expres-
sions in policies to compact decision diagrams. Our prototype
of the multi-tenant access control system for Intercloud is de-
veloped, tested and integrated into the GEYSERS project.
Evaluations demonstrate that our system has good perfor-
mance in terms of number of cloud resources, clients and
policies.
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The rest of the paper is organized as follows. Section 2
reviews the related work on access control for clouds, Attribute-
based Encryption (ABE) and distributed authorizations. Section
3 contains Preliminaries on the cloud information models and
the basic ABAC. These materials are used to formulate our pro-
posed approach in Section 4. The proposed model is then
analyzed and validated in Section 5. Section 6 discusses a
mechanism to efficiently manage contexts in our model. We
also extend our model for Intercloud scenarios in Section 7.
After that, Sections 8 and 9 contain our design, implemenation
and evaluation of the prototype in the GEYERS project. Finally
Section 10 concludes our paper.

2. Related work

A number of approaches and contributions in access control
for cloud service management have been proposed. Based on
the Common Information Model (CIM), authors in Bernal
Bernabe et al. (2012) and Calero et al. (2010) proposed a RBAC
model integrating with the cim. In this work, an authoriza-
tion statement defined as the 4-tuple of 〈issuer, subject, privilege,
resource〉 is written as a rule using Semantic Web Rule Lan-
guage (SWRL) (Horrocks et al., 2004). The rule is then reasoned
by a DL Reasoner to transform into RDF statements. Bernal
Bernabe et al. (2012) illustrated that it is possible to use pro-
posed model to support RBAC features for users of a tenant.
Inter-tenant collaborations are represented by sharing context
information, so the trustee can define authorization state-
ments. However, they do not support multiple level delegations
among tenants as well as granularity of inter-tenant trusts is
limited. Besides, if cloud systems scale up with number of re-
sources or subjects (tenants and users), complexities of policies
with number of authorization statements, the DL reasoner
mechanism could be the potential bottleneck when number
of RDF statements may explode. Moreover, by utilizing an OWL
DL implementation (SWRL) as the access control language, the
expressiveness and flexibility of the policy language is limited
comparing to other policy languages like XACML.

The Multi-tenant Role-based Access Control (MT-RBAC) (Tang
et al., 2013) extended the basic RBAC with a set of models in-
cluding administration features. Beside regular intra-tenant
permission and role assignment operations, the cross-tenant
collaborations are performed by sharing roles.The truster tenant
can define either all roles to trustee tenants (MT-RBAC0), the
same public roles to all trustees (MT-RBAC1), or separated public
roles to different trustees (MT-RBAC2). In turn, the trustee can
perform two administrative operations: (i) user assignment (UA)
to its users and (ii) role hierarchy on the shared roles. The pro-
totype was carried out using the attribute-based policy language
XACML with the RBAC profile extension. Even though MT-
RBAC resolved problems of access control for multi-tenancy
by using RBAC, it suffered existing issues of RBAC on scalabil-
ity and flexibility. The proposed model also did not contain
constraints as in our approach to protect isolation and prevent
policy confliction.

Jin et al. (2014) extended the ABAC model from Jin et al. (2012)
to IaaS scenarios. In their model, entities were classified into
cloud root user who can manage Virtual Infrastructure (VI) and

tenants; tenant root user who can configure attribute profile
and manage tenant admin users; tenant admin users in a
tenant can manage tenant regular users and finally tenant
regular users who can operate on cloud resources. Using the
policy language defined in Jin et al. (2012), the prototype was
integrated with an OpenStack system. Although the ap-
proach used ABAC in applying for multi-tenant scenarios, its
model is not aware of policy confliction problems in multi-
tenancy when multiple entities can define policies. Thus, they
also did not contain isolation and grant constraints for poli-
cies as in our approach, which would resolve the policy
confliction problems. In addition, their model also did not define
collaborations between tenants.

To protect data in outsourced environments like clouds, ABE
research (Bethencourt et al., 2007; Goyal et al., 2006; Sahai and
Waters, 2005) was proposed for security of outsourcing storage,
while homomorphic encryption (Brakerski and Vaikuntanathan,
2011; Smart and Vercauteren, 2010) was proposed to secure
computation on hostile systems. In the key-policy ABE ap-
proach (KP-ABE) (Goyal et al., 2006), request attributes were
associated to ciphertexts, and policies were associated to users’
keys. The ciphertext-policy ABE (CP-ABE) scheme (Bethencourt
et al., 2007) provided a mechanism that allows creating users’
keys based on their attributes, and attribute-based policies to
protect data are associated in ciphertexts. The ABE schemes
were extended and applied to secure data on cloud storage ser-
vices (Li et al., 2013; Yu et al., 2010). Although the homomorphic
encryption may provide confidentiality in outsourcing com-
putation, its applications on cloud were still limited due to the
complexity and performance overhead (Naehrig et al., 2011).
All these cryptographic mechanisms can be seen as the AEF
in the ISO 10181-3 access control framework (ISO, 1996), while
our work focuses on access control decision components.There-
fore, ABE and homomorphic encryption are orthogonal with
our proposal.

Amazon AWS Identity and Access Management (IAM)
(Amazon, 2013) is the integration of an identity management
system and an access control mechanism. Upon subscribing
to an Amazon AWS product, each customer is assigned an AWS
tenant account. All operations on AWS products are then bound
to this account. Amazon IAM provides a mechanism to create
and manage multiple users binding to the AWS tenant account.
Using JSON-style authorization policies storing at the IAM side
or attaching at the AWS product side, the IAM could control
user activities on AWS resources. To guarantee security re-
quirements on confidentiality and integrity, users are allocated
their own security credentials to access AWS resources.
However, supporting policy language in Amazon IAM is not very
expressive with simple attribute-based policies with limited
RBAC features. Cross-account access is defined by creating an
IAM policy of the trustor account to the trustee account. The
trustee then can delegate these privileges to its users. It does
not support multiple-level cross-account collaborations.

OAuth authorization framework (D. Hardt and Recordon,
2012) enables a third-party to access a HTTP resource by ap-
proval of the data owner via tokens. It provides a workflow
protocol for distributed authorization currently applied in
various cloud-based services such as Google APIs and Twitter
APIs. However, OAuth 2.0 does not used any cryptographic
mechansism but relies its security based on HTTPS, which is
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not flexible in scenarios when clients using proxies or cannot
have direct connections with the resources.

Compared to the related work, our proposal resolves the
access control problems for multi-tenancy more complete.
We formalize the ABAC in the multi-tenant model with iso-
lation and grant constraints, that prevent policy conflict
problems. Our approach also supports flexible collaborations
between tenants with multiple levels of delegation. Our ex-
tended model for Intercloud uses the token exchange approach
designed for MT-ABAC which synchronizes constraints and
applies cryptographic mechanisms to solve the distributed
authorization with delegation constraints issues, which is
more suitable for our approach than the current OAuth 2.0
framework.

3. Preliminaries

To solve mentioned challenges in access control for cloud re-
source management systems, our MT-ABAC contains the
following features:

• Support diversity of subjects: different entities are able to
compose policies to manage their objects, including the
cloud provider, subscribed tenant and shared tenants.

• Fine-grained access control based on the ABAC model.
• Flexible inter-tenant collaborations that allows tenants to

share subscribed cloud resources in multiple levels.
• Dynamic constraints applied to policy management for mul-

tiple authorities: we define isolation and grant constraints
to check if updated policies are compliant to the multi-
tenant policy management properties.This guarantee would
improve system performance when no conflict occurs during
evaluation run-time. Previous works done by Calero et al.,
2010; Bernal Bernabe et al., 2012; Tang et al., 2013; Jin et al.,
2014 are not aware of this feature.

• Policy generation for dynamic objects: In cloud systems, pro-
visioned cloud resources are the objects of authorization.
Their identifiers are generated during provisioning phases
and released at the end of the subscription. The cloud pro-
vider needs to define authorization statements for such

objects automatically according to the on-demand self-
service property. Our model is defined to integrate with the
resource information model that can be used to generate
policies from predefined policy templates binding with cloud
service plans.

In following sections, firstly we introduce an information
model used to manage cloud resources in our scenarios in the
GEYSERS project (GEYSERS, 2010) and the basic ABAC model.
Based on the basic ABAC, we propose our MT-ABAC model in
Section 4.

3.1. Information model for virtual cloud infrastructure

Cloud resources management for both physical and virtual
aspects requires a well description for modeling, discovery, com-
position, monitoring and synchronization. For such purposes,
we use the Infrastructure and Network Description Language
(INDL) (Ghijsen et al., 2013) to model cloud resources. The on-
tology of IaaS cloud layer is briefly illustrated in Fig. 1. INDL
could model Virtual Resources (VRs) implemented on physi-
cal devices in different stages (e.g., abstracted, reserved and
instantiated) that belong to different cloud providers. The VI
is the composition built up from different types of general VRs.
It enables on-demand provisioning and elastic scaling of re-
source capabilities.

Because the cloud information model such as INDL could
represent the extensibility and flexibility of cloud resources con-
figuration in run-time life cycles, integration of the access
control with the information model permits the policies can
be updated automatically upon such on-demand provision-
ing changes. For example, a cloud provider requires that upon
subscribing an IaaS plan, the tenant could perform or manage
(i.e., allows its users to act on behalf) on provisioned VMs and
network links (e.g., instantiate, reconfigure, monitor), but not
exceeding tenant’s subscribed capabilities. This requirement
can be done either by implementing directly inside the cloud
management system, or decoupled the configuration with
access control policies. The latter option using policies to
manage capabilities of the tenant is more flexible due to any
changes in the plan can reflex easily by configuration updates,
not implementation changes.

Fig. 1 – Overview of Information Model for Cloud Infrastructure Resources.
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3.2. Attribute-based access control

ABAC definitions has been described in different forms, but in
general access is determined based on matches between spe-
cific attribute values of the subject, resource and environment
conditions (Hu et al., 2014; Takabi et al., 2010).The policy imple-
mented in ABAC is the mechanism that represents the mapping
from the attribute values to authorization decisions and it is
only limited by expressiveness of the computational language.

The ABAC concepts from Hu et al. (2014) and Yuan and Tong
(2005) will be applied in our approach:

Definition 1 (ABAC concepts). The ABAC has the following
concepts:

• Subject is the active entity to request access on a resource.
In our model, the subject can either be a provider, a tenant,
or a user of a tenant. A subject S is characterized by set of
attributes. They may include subject’s identifier, name, or-
ganization, etc. Let A A As s sn1 2, ,… be value sets (or domains)
of subject’s attributes, the set of subjects S is defined as the
subset of the Cartesian product of k subject’s attribute
domains:

S A A As s sk⊆ × × ×1 2 … (1)

Each subject s ∈ S is a tuple of subject attribute values:
s a a as s sk= ( )1 2, ,… , a As si i∈ , i ∈ [1, k].

• Resource is the cloud object that needs to be protected. It
could either be in the idle state managed by the provider,
or reservation and deployment states and managed by a
tenant. A resource is referred by its identifier attribute.
However, due to cloud provisioning systems, the identifier
of a resource is unknown prior provisioned to the sub-
scribed tenant. In typical ABAC models, actions on a resource
often depend on the resource’s characteristics. So without
loss of generality, action attributes can be seen as attri-
butes of the resources. Similar to the subject, the set of
resources is defined as:

R A A Ar r rl⊆ × × ×1 2 … (2)

in which A i lri, ,∈[ ]1 is the domain of a resource’s attribute.
A resource r ∈ R is a tuple of attribute values:
r a a a a Ar r r r rn i i= ( ) ∈1 2, , ,… .

• Environment conditions: attributes such as date, time, system
security level, location, etc. are grouped as the environ-
ment attributes. The set of environment conditions is
defined as:

E A A Ae e em⊆ × × ×1 2 … (3)

in which A i mei, ,= [ ]1 is the domain of an environment’s at-
tribute. An environment condition e ∈ E is a tuple of attribute
values: e a a ae e em= ( )1 2, ,… , a Ae ei i∈ .

• Authorization request: an authorization request x is a tuple
of attribute values sent by the subject entity s to the Policy

Decision Point (PDP) asking for access to the resource r
under environment condition e. The set of requests X is
defined as:

X S R E

s r e s S r R e E

= × ×
= ( ) ∈ ∈ ∈{ }, , , ,

(4)

• Policy: attribute-based policies are represented by a policy
language, that has the semantic as the first-order logic. A
policy contains a predicate function mapping from autho-
rization request domain X in Eq. (4) to the decision domain:

f X Y N: ,� { } (5)

with ‘Y’ and ‘N’ representing permitted and denied decisions.
In this formula, the predicate function f defines a n-ary rela-
tion of authorization request X.

There are different attribute-based policy languages that can
be used in ABAC systems (Amazon, 2013; OASIS, 2013). In our
model in Section 4, we propose the authorization statement
as the abstraction of policy. The implementation in Section 6
discusses on how to apply XACML to transformation policies
into authorization statements.

Proposed model

3.3. Multi-tenant attribute-based access control model

In this section, we propose our attribute-based access control
model with multi-tenancy properties, (hereinafter referred to
as MT-ABAC) for cloud resource management. Compared to the
general ABAC, it decouples subjects into providers, tenants and
users of tenants, as well as defines constraints for multi-
tenant management.

In our model, each cloud provider p is an autonomous
system that manages a set of tenants, a set of users and a set
of resources. Interactions between multiple autonomous
systems (i.e., multi-providers) are discussed in Section 7.

Fig. 2 represents the relationships between subjects in the
cloud management systems that supports multi-tenancy
properties.

Provider Context

hasPerm

assertedBy

Permission

Environment

Resource

Policy fP

definesissues

Tenant

hasSubj

User

Policy fT issues

Context

defines assertedBy

hasSubj

hasPerm

Fig. 2 – Multi-tenant access control model for cloud
infrastructure resources.
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The multi-tenant access control model has the following
concepts:

3.3.1. Provider
Let P ⊆ S be the set of providers who can provide resources in
the multi-tenant system. A provider p ∈ P is the subject to assign
cloud resources to tenants. It is in charge of provisioning and
composing the cloud resources from VR. The cloud provider
uses the information model to provision and scale cloud re-
sources to tenants, at the same time regulate tenants’
operations according to its information model.

3.3.2. Tenant
Denoted T ⊆ S be set of tenants who can subscribe resources
in the multi-tenant system. The tenant t ∈ T is the subject to
manage subscribed cloud resources with the following
operations:

• Define policies to determine which of its users can access
on managed resources.

• Delegate policy management to another tenant on the speci-
fied resource via delegation mechanism.This feature is used
in the inter-tenant collaboration.

When a tenant subscribes resources from a provider, they
have the relation TenantOf which is defined as follows:

TenantOf T P⊆ × (6)

With this relation, the set of tenants of the provider p ∈ P
is denoted as T(p) or Tp:

T p t T tTenantOf p( ) = ∈{ }

3.3.3. User
Let U ⊆ S be the set of all users who consumes resources in
the multi-tenant system. In our model, P, T and U have the fol-
lowing properties:

S P T U= ∪ ∪

P T U∪( ) ∩ = 0

The relation UserOf defines the set of users of a tenant:

UserOf U T⊆ × (7)

Given a tenant t ∈ T, its users is denoted as
U t u U uUserOf t( ) = ∈{ } .

The set of users of a provider p is denoted as:

U p U t
t T p

( ) = ( )
∈ ( )
∪ (8)

3.3.4. Resource
Let R be set of all resources as in Eq. (2). A set of resources owned
by either a tenant or provider defined by the relation:

ResourceOf R T P⊆ × ∪( ) (9)

A tenant t ∈ T has its subscribed resource
R t r R rResourceOf t( ) = ∈{ } . A provider p ∈ P manages their
idle resources R p r R rResourceOf p( ) = ∈{ }. According to the ex-
clusive resource ownership in multi-tenant systems, ∪x, y ∈ T
∪ P we have:

R x R y x y( ) ∩ ( ) = ⇔ ≠0 (10)

3.3.5. Permission
Let P be the set of permissions defined as:

P R E⊆ × (11)

Each permission is a tuple r e P,( ) ∈ represented by a set of
attributes identifying a resource with its action, and specific
environment condition attributes.

3.3.6. Context

Definition 2 (authorization statement). Authorization state-
ment is the assertion to say that the issuer i ∈ S authorizes
subject s ∈ S on a permission (r, e). It is denoted as authz(i, s,
(r, e)).

The authorization statement has the transitive property
(Crampton and Khambhammettu, 2006) as follows:

authz s s r e authz s s r e authz s s r e1 2 2 3 1 3, , , , , , , , ,( )( ) ∧ ( )( ) → ( )( ) (12)

Definition 3 (Context). Context is a statement of the issuer i ∈ S
on the approval of set of permissions to the subject s ∈ S. A
statement can be denoted by a tuple (issuer, subject, {permis-
sions}), in which the issuer can be either a provider or a tenant
and the subject can be either a tenant or a user. The formal
definition of the context is described in Eq. (15).

We classify the following contexts:

• Authorization context (AC) is issued by a tenant to a user:

AC T U n⊆ × × P (13)

• Delegation context (DC) is issued by either a provider to its
tenant or a tenant to another tenant:

DC P T T n⊆ ∪( ) × × P (14)

Formally, the context is defined as:

C AC DC

T U P T T n

= ∪
⊆ × ∪ ∪( ) ×( ) × P

(15)

Given a context c ∈ C, we denote I c( ) as the issuer of c,
S c( ) as the subject of c and P c( ) as the set of permissions
in c.

According to definition 2, given a context c i s c= ( )( ), , P , we
have:

∀( ) ∈ ( ) ( )( )r e c authz i s r e, , , , ,P (16)
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Let ℛ(c) be set of resources referred in the context c. For-
mally, it is defined as:

R Pc r r R r e c( ) = ∈ ∃( ) ∈ ( ){ }, , (17)

3.3.7. Authorization request
The request x s r e X= ( ) ∈, , is defined in Eq. (4).

Given a context c, the request x is authorized by a c if and
only if:

s c

r e c

= ( )
( ) ∈ ( )

⎧
⎨
⎩

S

P,
(18)

According to (16), we see that it is equivalent to the autho-
rization statement authz c s r eI ( ) ( )( ), , , .

The multi-tenant systems have multiple authorities in which
each can define policies freely. According to Eq. (15) in our
model, providers and tenants can create contexts (i.e., define
policies). So it is possible that some contexts from different
issuers may be conflicted and their decisions are contra-
dicted which makes the system inconsistent. In our MT-
ABAC, we resolve this problem by defining the delegation model,
trusted contexts and constraints.They guarantee that at a given
state, the system always returns the consistent decision for
an authorization request.

3.4. Delegations in MT-ABAC

3.4.1. Types of delegation contexts
From Eq. (15), our delegation model defines relations between
authorities in the MT-ABAC, including providers, tenants and
users of tenants as follows:

• Providers can issue delegation contexts to tenants.
• A tenant can issue delegation contexts to other tenants.
• A tenant can issue authorization contexts to users.

We distinguish delegation contexts crampton2006delegation
based on types of issuers and subjects:

• Transfer context (TC): when a provider provisions its cloud
resources to a tenant, it uses the transfer context in which
resources are exclusively allocated to only this tenant. The
tenant and the provider then have the relationship TenantOf
as in Eq. (6). The set of transfer contexts is defined as:

TC x y r e x P y T x r e= ( ){ }( ) ∈ ∈ ( ) ( ) ∈{ }, , , , , , P (19)

• Grant context (GC): when a tenant want to share a part of
its resources to another tenant, it creates a grant context.

GC x y r e x y T P r e= ( ){ }( ) ∈ ( ) ∈{ }, , , , \ , , P (20)

It shows that only tenants without having provider role can
create grant contexts.

From Eqs. (19) to (20), we have the following properties:

TC GC∩ = ∅ (21)

DC TC GC= ∪ (22)

When transferring a resource r ∈ R from the provider to a
tenant t ∈ T, it creates the relation ResourceOf as in (9) between
r and t. So the total resource owned by a tenant t ∈ T is:

R t c
c TC c t

( ) = ( )
∀ ∈ ( )=

R
S,

∪ (23)

Based on the accountable properties in cloud, in which a
subscribed cloud resource is exclusively assigned to a
tenant during a definite lifetime, we need to define a con-
straint on transfer contexts so that a resource cannot be
provisioned to more than one tenant at a specific environ-
ment condition. The isolation constraint will be defined in
Section 4.3.

The multi-tenancy system allows tenants to collaborate via
the inter-tenant operations, i.e., a resource of a tenant can be
accessed by either users of this tenant, or users of another
tenant. The inter-tenant is supported by grant contexts as de-
scribed above. However, to guarantee that a tenant cannot create
grant contexts for resources it does not have permissions, we
define the grant constraint in Section 4.3.

3.4.2. Context relationships
To solve conflicting issues may arise for multiple authorities,
we present relationships between issued contexts. At first, they
are described for a single provider, then are extended to mul-
tiple providers.

Definition 4 (Provider’s trust contexts). In a MT-ABAC system
of a provider p ∈ P with a set of its tenants T(p) and their users

U p U t
t T p

( ) = ( )
∈ ( )∪ , let C p( ) be set of contexts trusted by p. A

context c i s c= ( )( ), , P is trusted by p a k ac p⋅ ⋅ ∈ ( )( )C if and
only if:

∀( ) ∈ ( ) ( )( )r e c authz p i r e, , , , ,P (24)

Lemma 4.1. If c* is a transfer context made by p, it is trusted
by the provider p:

c TC c p c p* * *∈( ) ∧ ( ) =( ) → ∈ ( )I C (25)

Proof. Because c* is the transfer context, we have I c p*( ) = .
According to (16):

∀( ) ∈ ( ) ( ) ( )( )r e c authz p c r e, , , , ,P S* *

So by trust context definition (24), we conclude c* is trusted
by p, or c* ∈ C(p).

The set of all trusted contexts in the MT-ABAC is
denoted as:

C C= ( )
∀ ∈

p
p P
∪ (26)

To manage trust contexts of a provider efficiently, we define
the partial relationship between two contexts:

Definition 5 (Partial trust relationship). The partial trust rela-
tionship PT ⊆ C × C over two trust contexts of provider p is
defined as:
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PT c c c c p c c c ci j i j i j i j= ( ) ∈ ( ) ( ) = ( ) ∧ ( ) ∩ ( ) ≠{ }, , ,C S I P P 0 (27)

Thus the function PT(c) returns all contexts in C(p) that c
partially trusts. Formally:

PT c c p c c PT( ) = ′ ∈ ( ) ′( ) ∈{ }C , (28)

Definition 6 (Tenant privilege scope). The tenant t ∈ T has its
privileges scope:

P P
C S

t c
c c t

( ) = ( )
∀ ∈ ( )=,

∪ (29)

The MT-ABAC delegations allow a tenant t to share its
resources to another one via grant contexts. However, these
contexts are not always trusted, because t may grant permis-
sions on unowned resources. To identify if these contexts are
trusted, the system need to check if all their permissions
belong to the privilege scope of t. If a tenant can grant
any contexts, the system runtime overhead on checking
their trusts is costly. In Section 4.3, we define constraints
at the policy composition stage to prevent such overheads
on runtime stage. These constraints can improve the system
performance.

Fig. 3 presents context trees of the provider p. Transfer con-
texts cp t, 1 , cp t, 2 and cp t, 5 are trusted directly by the provider p.
Each connection represents the trust relationship between con-
texts. A context can be trusted by only one context or multiple
contexts. In the figure, tenant t1 share some resources di-
rectly from its transfer context to t4, so P Pc ct t p t1 4 1, ,( ) ⊆ ( ). In the
other case, the context ct u5 1, created by t5 that combined per-
missions from different contexts cp t, 5 , ct t1 5, and ct t2 5, so ct u5 1, is
partially trusted by those contexts.

3.5. Multi-tenancy constraints

The system state of a provider p ∈ P contains the following in-
formation: C(p), T(p) and U(p).To simplify definitions, we shorten
the system state as Cp p pT U, ,( ). It evolves over time via admin-
istrative operations from the provider and its tenants. In this
section, we define constraints to make sure the MT-ABAC
system state is consistent.

3.5.1. Isolation constraint
The multi-tenancy systems require that tenants should have
security isolation (Guo et al., 2007) on different layers. It can
be achieved by using implicit filter based on the binding
between tenant-id and allocated resources, or with explicit
permission-based access control isolation. Our work support
the later at the conceptual level by the isolation constraint
below.

To guarantee the exclusive resource ownership property in
the multi-tenant system, Eq. (10) should be satisfied. Given x,
y ∈ T, from (23) and (10), we have:

∀ ∈ ( ) =( ) ∧ ( ) =( ) → ( ) ∩ ( ) =c c TC c x c y c c1 2 2 1 2 0, , S S R R (30)

Eq. (30) guarantees that the provider does not transfer a re-
source to more than one tenant. From this condition, we define
the isolation constraint as follows:

Definition 7 (Isolation constraint). Given a system state
Cp p pT U, ,( ) , the constraint canTransfer(c*) on a given transfer

context c* ∈ TC is valid iff:

∀ ′ ∈ ∈ ( ) ={ } ( ) = ∧ ( ) ∈ ∧ ( ) ∩ ′( ) =( )tc tc tc p c p c T c tcp pC I I S R R* * * 0

(31)

in which ℛ(c) are sets of resources referred in contexts c that
is defined in Eq. (17).

3.5.2. Grant constraints
In Fig. 3, it is possible that the tenant t5 issues to t3 a context
containing out-of-scope privileges of t5 itself (e.g., the write
permission on a t1’s folder, while t1 only allows t5 to read
from it). Therefore, the context ct t5 3, is untrusted. If there are
many untrusted contexts in practical, the authorization
process becomes more complex, that affects the system
performance.

To prevent this problem, we define the grant constraint ap-
plying to the policy composition of tenants (i.e., when a tenant
adds, removes or updates its policies) to make sure no context
is untrusted. Although this constraint will increase policy com-
position checking overhead, the authorization evaluation
process of the system will improve.

Definition 8 (Grant constraints). Given a system state Cp p pT U, ,( )
and a context c* with i c s c* * * *= ( ) = ( )I S, , the grant constraints
are defined as:

• If c* ∈ AC: the constraint anGrantAC(c*) is valid iff:

i T s U i c ip* * * * *∈( ) ∧ ∈ ( )( ) ∧ ( ) ⊆ ( )( )P P (32)

• If c* ∈ GC: the constraint canGrantGC c*( ) is valid iff:

i T s T i s c ip p* * * * * *∈( ) ∧ ∈( ) ∧ ≠( ) ∧ ( ) ⊆ ( )( )P P (33)

For a given context c* ∈ AC ∪ GC, the grant constraint can
be written as canGrant(c*).

Fig. 3 – An example of context relationships.
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The complexity of the algorithm to determine if the context
c meets the grant constraint depends on the subset checking
operation P Pc i* *( ) ⊆ ( ).

Lemma 4.2. Given a system state Cp p pT U, ,( ) and a context
c* ∈ AC ∪ GC. The context c* is trusted by the provider p if and
only if it satisfies the grant constraints.

c AC GC canGrant c c p* * *∈ ∪( ) ∧ ( ) ↔ ∈ ( )C (34)

Proof. For the “if” direction: the context c* can either be an au-
thorization context or grant context. In both cases, we have
P Pc i* *( ) ⊆ ( ) . So that:

∀( ) ∈ ( ) → ( ) ∈ ( )r e c r e i, ,P P* *

According to (29):

∀( ) ∈ ( ) ∃ ′ ∈ ( ) ( ) ∈ ′( )( ) ∧ ′( ) =( )r e c c p r e c c i, , , ,P C P S* * (35)

From the definition of the trust context (24) applied to c′,
we have:

′ ∈ ( ) → ∀( ) ∈ ′( ) ′( ) ( )( )c p r e c authz p c r eC P I, , , , , (36)

However, based on the definition of the authorization context
(16), we have:

∀( ) ∈ ′( ) ′( ) ′( ) ( )( )r e c authz c c r e, , , , ,P I S (37)

Using the transitive property (12), from (36) and (37), we have

∀( ) ∈ ′( ) ′( ) ( )( )r e c authz p c r e, , , , ,P S (38)

Replace i c* = ′( )S to (38) and combine with (35):

∀( ) ∈ ( ) ( )( )r e c authz p i r e, , , , ,P * * (39)

Based on the trust context definition (24) applied to (39):

∀( ) ∈ ( ) ( )( ) → ∈ ( )r e c authz p i r e c p, , , , ,P C* * * (40)

For the “only if” direction: according to privilege scope
definition (29):

P P
C S

i c
c p c i

*
*

( ) = ( )
∀ ∈ ( ) ( )=,

∪

Because c* ∈ C(p), we have P Pc i* *( ) ⊆ ( ).
If c* is an authorization context, we have i T s U ip* * *∈( ) ∧ ∈ ( )( ),

so the canGrantAC(c*) is valid.
If c* is a grant context, we have i T s Tp p* *∈( ) ∧ ∈( ), so the

canGrantGC(c*) is valid.
In other words, the canGrant(c*) is valid.

3.6. MT-ABAC operations

We differentiate two phases in the access control: policy com-
position phase and authorization evaluation phase. The first
occurs when the provider allocates resources to tenants or a
tenant composes policies for its users. The later is for autho-
rization request evaluations from users to consume cloud
resources.

The system state Cp p pT U, ,( ) of a provider p ∈ P evolves over
times via administrative commands from the provider p and
its tenants Tp. Assume that ′ ′ ′( )Cp p pT U, , is the new state after an
administrative command, Table 1 summaries these com-
mands as follows:

The algorithm 1 is to remove a context c and update Cp.
In the authorization evaluation phase, the MT-ABAC evalu-

ates a request x from a user by finding an authorization context
in C so that the request x is authorized by c as defined in Eq.
(18).

4. Analysis

In this section, we prove that our system is consistent: given
a system state Cp p pT U, ,( ), after any administrative opera-
tions, the new system state ′ ′ ′( )Cp p pT U, , always maintains the
property that all contexts in C’p are trusted:

∀ ∈ ′ ( ) ∀( ) ∈ ( ) ′( ) ( )( )c p r e c authz p c r eC P I, , , , , , (41)

For the operations addTenant, removeTenant, addUser,
removeUser, the set of contexts does not change: ′ =C Cp p , so (41)
is valid.

Table 1 – Administrative commands for MT-ABAC system.

Command Condition Update

addTenant(t) t Tp∉ ′ = ∪ { }T T tp p

removeTenant(t) � C I Sc c t c tp∈ ( ) = ∨ ( ) =( ) ′ = { }T T tp p \
addUser(t, u) t T u U tp∈ ∧ ∉ ( ) ′ ( ) = ( ) ∪ { }U t U t u
removeUser(t, u) t T c c up p∈ ∧ ∈ ( ) =( )� C S ′ ( ) = ( ) { }U t U t u\
transfer(tc) tc TC canTransfer tc∈ ∧ ( ) ′ = ∪ { }C Cp p tc
grant(c) c AC GC canGrant c∈ ∪( ) ∧ ( ) ′ = ∪ { }C Cp p c
removeContext(c) c p∈C removeContext cpC ,( )
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For the transfer(tc) operation, ′ = ∪ { }C Cp p tc . Because tc∈TC,
according to Lemma 4.1, tc is trusted by p, and (41) is valid.

For the grant(c) operation, ′ = ∪ { }C Cp p c . According to Lemma
4.2, c is trusted by p then (41) is also valid.

For the removeContext(c*) operation, the algorithm 2 is to re-
calculate all contexts c that partially trusted by c*. It removes
the common permissions shared between c and c*, so makes
c* and c do not have any relationship: c ∉ PT(c*). The updated
context of c therefore is still trusted by p. The updating process
continues recursively until no context in C p( ) has any share
permission with c* or PT c*( ) = 0 . So this algorithm guaran-
tees that all updates contexts are trusted by p.

The consistency of our system guarantees that in the au-
thorization phase, given a system state Cp p pT U, ,( ) and an
authorization request x s r e= ( ), , , the evaluation process is valid:

∃ ∈ ( ) ( )( ) ( )( )c authz c s r e authz p s r ep* *C I �, , , , , , ,

The proof is simple. Because c* ∈ Cp, from definition (24), we
say that authz p c r e, , ,I *( ) ( )( ). Using the transitive property in
(12), we conclude:

authz c s r e authz p c r e authz p s r eI I* *( ) ( )( ) ∧ ( ) ( )( ) → ( )( ), , , , , , , , ,

5. Mechanism to manage contexts
in MT-ABAC

In cloud systems with high-scale of resources and tenants, ap-
proaches using attribute-based policies such as XACML (OASIS,
2005, 2013) have the advantage of high expressiveness of policy
composition. However, there’s no efficient mechanism in terms
of performance to evaluate and manage these policies. Tang
et al. (2013) used traditional XACML implementation in
SunXACML (2015) with limited results. Calero et al. (2010) and
Bernal Bernabe et al. (2012) used Semantic Web Rule Lan-
guage (SWRL) and a DL reasoner engine to evaluate policies,
which were not mainly designed as an authorization policy

engine. Jin et al. (2014) used the PolicyEngine evaluating poli-
cies defined in Jin et al. (2012). However they did not describe
how to implement the engine. Their experiments did not
mention on how complex the policies or random requests,
which can significantly affect the evaluation performance.

In Ngo et al. (2015), we have proposed a new mechanism
called Multidatatype Interval Decision Diagram (MIDD) to solve
such issues on the expressive attribute-based policies, which
is proved to have performance advantage. In this section, we
apply the MIDD mechanism to manage contexts of the MT-
ABAC model.

5.1. Decision diagrams

According to the Boole–Shannon expansion, a multi-variable
logical function f D D D Booleann: 1 2× × →… can be decom-
posed to partial functions which are free from a variable xi:

f X h P f
P D

x x
i

i
i
P( ) = ( ) ∧

∈ ( )
∨
P

(42)

in which h Pxi ( ) represents a function returning 1 if xi ∈ P, oth-
erwise 0. P is a partition range of variable xi. This function can
be represented by a decision diagrams as in Fig. 4:

Xi

ffxi
fxxi

P1

f(X)

P1 P2
Pk

...ffxi
fxxi

P2
ffxi
fxxi

Pk

Fig. 4 – A sample Boole–Shannon decision diagram.
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However, the XACML language that we apply in MT-ABAC
has more complex function signatures.The Match, AllOf, AnyOf
and Target elements have the signature in Eq. (43), while Rule,
Policy and Policyset elements have the signature in Eq. (44).

f D D D Vn M: 1 2× × →… (43)

with V T F INM = { }, , is the domain of match values in (OASIS,
2013) as in Table 2.

f D D D Vn R: 1 2× × →… (44)

The V P D N IN IN INR P D PD= { }, , , , , is the decision rule domain
as in Table 3:

Eqs. (43) and (44) can be represented by the graph struc-
ture MIDD and Multi-datatype Interval Decision Diagram for
XACML (X-MIDD) respectively. A X-MIDD example is illus-
trated in Fig. 5. In Ngo et al. (2013) and Ngo et al. (2015) we
developed algorithms to transform policies into such data struc-
tures for evaluations. It’s also be used for constraint checking
defined in 4.3 in the next section.

5.2. Context structure

In Section 4, we propose the context concept representing au-
thorization statements of policies. In this section, we use
X-MIDD as the mechanism to implement this concept.

According to definitions in Section 4.1, a context
I S X XR E, , : ,P = ( ){ } contains the issuer c#I, the subject c!S

and set of permissions c.P. The issuer can either be the pro-
vider or a tenant, the subject identifies a tenant or a user. Set
of permissions P contains list of attribute vectors (XR,XE) to
indicate which resource can be touched (the XR) in the
equivalent condition (XE). We define a context data structure
that have:

• Issuer identifier: is an attribute value or set of attribute values
referring to the provider or tenants. In our attribute profile
for INDL, the provider and tenants have their unique iden-
tifiers, so they can be stored here.

• Subject identifier: contains set of subject attributes (e.g.,
subject-id, subject-role in XACML attribute profile).

• Permissions: are stored in a X-MIDD structure. It has its vari-
able order, in which subject attributes are at the high level
in the tree, resource and environment attributes are at
deeper levels, leaf nodes contains permit decisions. The
X-MIDD has multiple paths from root to its leaf nodes, each
path is an authorization statement.

We use XACML as the policy language for tenants, and a
subset of XACML as the policy language of the provider. It is
also possible to transform and combine a XACML policy-tree
of the provider or a tenant into a X-MIDD (Ngo et al., 2013).
Then the result X-MIDDs can represent issued contexts.
We need to manage these contexts using constraints in
Section 4.3.

5.3. Operations

According to Section 4, the context has the following
operations:

• Function anTransfer(tc): it implements the Eq. (31)
• Functions canGrantAC(c), canGrantGC(c) in Formulas (32) and

(33) are illustrated in the algorithm 2.
• Request authorization: given a request x and a context c,

check if c authorizes x. It can be done by traveling from the
root of the context’s X-MIDD, if it can reach the leaf node,
then the request is authorized.

5.4. Complexities

Given a system with |T| tenants, each defines two policy-
trees, one for its users called intra-tenant policy-tree and the
other for tenant sharing called inter-tenant policy-tree.The pro-
vider p issues policies to tenants, which can be combined to
a single policy-tree. Because each policy-tree can be trans-
formed into a X-MIDD (Ngo et al., 2013), the size of the trusted
contexts C is (2|T| + 1).The complexity of the algorithm canGrant
in the worst case is O 2 1T c+( ) ⋅( ) with |c| is the number of
paths from the root of X-MIDD in the context c.

Table 2 – XACML evaluation values for elements: Match,
AllOf, AnyOf, Target and Condition.

Evaluation values Annotations

Matched T
No-matched F
Indeterminate IN

Table 3 – XACML decision values for Rule, Policy and
Policyset elements.

Decision values Annotations

Permit P
Deny D
NotApplicable N
Indeterminate{P} INP

Indeterminate{D} IND

Indeterminate{PD} INPD

Act 
(N)

time

{vr1, vr5}

[Monitor-state]

{Start, Pause,
 Stop}

P, O1

[d1,d2]

Res-id 
(N)

Fig. 5 – X-MIDD representing authorization statements.
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6. Extended MT-ABAC for multiple providers

6.1. Problem statement

The model MT-ABAC solves multi-tenant access control prob-
lems in a single security domain with a cloud provider. For
Intercloud scenarios, a provider could play as a tenant of
another provider to utilize its cloud resources. This paradigm
can be illustrated in GEYSERS (2010) and Ngo et al. (2012) where
the Virtual Infrastructure Provider (VIP) can collect VRs from
set of Physical Infrastructure Providers (PIPs) to compose the
VI. In this section, our model is extended to support Intercloud
scenarios by arrange in hierarchy as follows:

• There are set of cloud providers: pi ∈ P, each of them runs
the model in Section 4.

• When a provider pa subscribes cloud resources from set of
providers p p p pb b b bk= { }1 2, ,… , pa becomes the tenant of pbi ,
thus can manage these resources with its own policies.

• The pa can also transfer permissions to its tenants. Permis-
sions either targets to local pa resources, or the remote
resources at a provider p pb bi ∈ .

• Any pbi may be a tenant of other providers, so the chain
of providers can be extended.

In such scenarios, we need to solve the challenge of dis-
tributed authorization in multiple domains with fine-grained
authorization. A request from pa domain may need to be au-
thorized at two domains, first at pa domain with relevant pa

tenants’ policies, then at pbi domain with the policy issued by
pbi to pa. The possible approaches to synchronize and collect
decisions are either exchanging tokens or exposing policies
between domains. The exchanging token approach needs to

deal with token management issues, including storing, syn-
chronization, revocation and overhead of using tokens. In
Intercloud paradigm, exchanging policies approach may dis-
close tenants’ Service Level Agreements (SLAs) out of the
provider’s domain while still has similar issues with token man-
agement (Pham et al., 2010). This section proposes a token
mechanism that solves token management problems with low
overhead on the system performance.

6.2. Constraints in distributed authorization

The potential problem in distribute authorization is the con-
flicting decisions between domains, resulting to the high
rejection requests rate at remote domains and increasing
system overhead. Preferably, denied requests should be an-
swered as soon as possible at their local domains, rather
than at a remote domain in the chain of distributed authori-
zation. It can be solved by establishing grant constraints
between the policies at tenant side pa with policies at the pb

provider sides.
In the above scenario, the provider pbi issues a policy with

the context cai for the provider pa. At the pa, instead of con-
texts created by pa, contexts ca i ki =1… become the root context.
All contexts created by pa must be confined by the root con-
texts. It can be excepted for local resources Xr physically owned
by pa. To synchronize contexts cai between pbi and pa, we base
on the SLA describing subscribing resources between them. Ac-
cording to the information model (Ghijsen et al., 2013), the SLA
request is described by INDL semantic concepts and synchro-
nized upon provisioning and re-planning. We then can use
SPARQL and policy generation techniques to extract con-
strained contexts and update to the trusted root list, which is
similar to policy generation in Section 4.
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6.3. Exchanging tokens in Intercloud

The distributed authorization workflow can be the push
sequence as in Fig. 6. It requires that the user needs to have
an access token to verify it’s allowed to access the resources
at remote provider pbi ’s domain. The grant token is initially
issued by the first provider in the chain pa as the consent by
pa to subsequent provider pbi . The pbi must validate the
token issuer pa, then evaluate the request attribute embed-
ded inside the token against its policies. If the decision is
positive and the target resource is located in its local domain,
pbi issues an access token allowing the user to access it.
Otherwise, if the target resource is located at another domain,
pb issues another grant token to the user for further distrib-
uted authorization process. In this sequence, the
communication between authorization services at providers
is relayed through the user via exchanging grant tokens and
access token.

6.3.1. Grant token
The grant token needs to have the following information:

• Request content approved by the issuer, who allows the
request to act on behalf of the issuer: it usually is the vector
of attributes including issuer’s subject attributes.

• The approval proof of the issuer: this proof can be en-
forced by the digital signature mechanism of the issuer,
either based on a digital signature using public cryptogra-
phy or a message authentication code algorithm using
symmetric cryptography.

• The lifetime limitation.
• The proof-of-procession of the user, so the issued access

token is not a bearer token and only targets for the user.
It’s either the user’s public key, or the session shared secret
key generated by the user.

For the public key cryptography approach, we propose
the grant token issued by pa and returned to the user u as
follows:

X X X X

m X t pk

granttoken SK sk m

p r e

u

p

a

a

: , ,

:

: ,

= { }
=

= ( )
(45)

with SK sk mpa,( ) is the annotation that the message m is signed
by secret key skpa of the provider pa. The X X Xp r ea, , are vectors
of attributes of subject, resource and environment respec-
tively. The pku is the user’s public key, t is the lifetime and X
is the vector of attribute request containing pa’s attributes. This
grant token allows user to request on behalf of pa to the remote
domain at pb.

For the symmetric key cryptography approach, the grant
token has the following information:

m X t k

hmac MAC K m

ek E K k

granttoken X t

u

p p

p p u

a bi

a bi

:

: ,

: ,

:

,

,

=
= ( )

= ( )
= eek hmac{ }

hmac MAC K mp pa bi
: ,,= ( ) (46)

with Kp pa bi, is the shared secret key between the provider pa and
pbi ; MAC is a message authentication code algorithm; ku is
the session key of the user; ek is the encryption of ku by the
Kp pa bi, .

6.3.2. Access token
According to the public key approach in Formula (45), the access
token issued by pbi to the user u is constructed as follows:

accesstoken SK sk tid tpbi
: ,= ( ) (47)

with t is the issuing timestamp, tid is the identifier to the cached
authorization session stored at pbi , which contains access
token lifetime, user’s associated key pku and the involved
attributes X.

With symmetric key approach in Formula (46), the access
token contains following:

accesstoken E k tid t stokenu: ,= ( ) (48)

k k stokenu p ubi, = (49)

with stoken is the secret generated value by pbi shared to the
user. The consequent requests from the user to pbi are signed

with the session key ku pbi, .

After having the access token, user accesses the protected
resource at pbi . Upon receiving user’s request with access
token, the pb’s resource service validates the access token

with either pkbi for public key scheme, or ku pbi, for symmetric

key scheme. If comparison between the request with in-
volved attributes X is positive, the service will serve the
request.

Pa domain

Pbi domain

Pa Authz Service

Pbi Authz Service

Pbi Resource Service

(1) authz request

(2) grant token

(3) grant token

(4) access token
User

(5) request | access token

(8)response

cai

cai

(6) validate 
access token

(7) validation 
decision

Fig. 6 – Exchanging tokens in Intercloud: grant token and
access token.
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7. System design

7.1. DACI architecture and integration

We design the Dynamic Access Control Infrastructure (DACI)
as in Fig. 7 in collaboration with an Intercloud architecture in
GEYSERS project (GEYSERS, 2010). In this architecture, each PIP
runs an instance of the OpenNebula (2013). The VIP plays the
role of Intercloud provider that utilize and aggregate comput-
ing, storage and network resources from set of PIPs to compose
VI services for tenants. To manage cloud resource informa-
tion between providers, the INDL is used to model and share
VRs description.

Each PIP has an instance of OpenNebula (2013) to manage
its VRs. PIP runs a system (known as Lower-Logical Infrastruc-
ture Composition Layer (LICL)) operating on top the OpenNebula
instance via adapters (GEYSERS, 2010) to abstract, control and
monitor virtual resource information. This information is syn-
chronized to the Upper-LICL system at VIP. The VI composed
by VIP could be distributed across different PIPs’ domains, while
the tenant ((Virtual Infrastructure Operator (VIO)) of a VI can
manage it via the VIP as follows:

• The VIO can send a VI request to the VIP, where the request
is analyzed. Based on current available free resources from
registered PIPs, the request is broken down into parts which
will be provisioned at PIPs. The DACI handles the VI request
in reservation phase by the TenantManagement Service, that
generates provider’s delegation policies for a given request.
These policies must satisfy the isolation constraint accord-
ing to Section 4.

• Once the VI is deployed, the VIO can define authorization
policies for its end-users via the TenantAdmin Service. It also
can set which parts of the deployed VI are shared with other
tenants via the tenant’s delegation policies. These poli-
cies are composed in XACML.

• The VIO and its end-users can control VI components via
VR Proxies of Upper-LICL, where authorization intercep-
tors extract request attributes and authorize at DACI against
local tenant’s authorization policies, inter-tenant policies
and provider’s delegation policies. Depending on returned
decisions, the interceptors may reject or permit to process
requests.

While the DACI services are designed to integrate with cloud
management systems in the GEYSERS (2010), it is also

Context resolution 
service

Context DB
Tenant’s 

delegation 
policy DB

Context Handler

Tenant’s 
Authz Policy 

DB

PDP

Tenant DB

Provider’s 
Delegation 
Policy DB

PEP Obligation Service 
(e.g. accounting)

Cloud resource 
service

request response

Authz Interface

TenantMgrSvc 
interface (provider)

Tenant administration 
interface (tenant)

Token service

Token Authority

Policy Generator

TenantAdmin 
Service

Tenant 
Management 

Service

Information Model 
service

End-users

Fig. 7 – Dynamic Access Control Infrastructure with Multi-tenant Access Control.
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possible to use DACI in other cloud management systems by
means of equivalent cloud resource description models.
In such cases, the policy generator component allows
to parse cloud resource descriptions. The integration APIs
with a cloud management system are illustrated in
Table 4.

7.2. Integration MT-ABAC with INDL

7.2.1. Attribute-based policy semantic model
In the MT-ABAC system for clouds, the provider’s policies
need to be generated automatically based on on-demand
resource provisioning, while the tenants’ policies can be
configured later by customers. Thus, we integrate the
MT-ABAC into the cloud information model INDL (Ghijsen
et al., 2013) shown in the Fig. 8, which represents
provider’s policies. Tenants can use other ABAC
languages like XACML to compose their policies without
limitation.

Any authorization requests to the resource must be checked
against these attached policies.

In this INDL extension, the provider’s policy is bounded to
the resource concept via the relationship hasPolicy. Because
of the inheritance of resource types, derived resources have
all policies of their ancestors, leading conflict may arise.
Thus, we define combining operators for joining such

multiple attached policies. However, rather than many com-
bining operators as in XACML where multiple parties can
create conflicting policies, we only need permit-override for
privilege enrichment and deny-override for privilege limita-
tion for inheritance relationships: e.g., the ancestor VirtualNode
concept allows to add a new network interface, and its
descendant node, a VM, allow to instantiate, so the permit-
override operator can be used in this case. Thus, it can be
seen that the provider’s policies in our MT-ABAC utilize a
subset of XACML.

In cloud resource life-cycles, the reservation and instan-
tiation of resources occur automatically based on tenants’
requests. We need a mechanism to create authorization rules
to manage these on-demand resources:

• We define policies for each resource components in a VI,
which forms a policy template.

• The policy template is then used to generate the instanti-
ated policies for deployed cloud resources.

7.2.2. Policy generation from cloud
infrastructure descriptions
In Fig. 2, the provider issues policies for tenants to delegate
permissions on their subscribed resources. These operations
should be performed automatically in the cloud resource
life-cycles, i.e., issuing, updating and revoking policies at the
reservation, re-planning and decommissioning phases, respec-
tively. We propose an automatic mechanism to generate
policies from cloud infrastructure resource descriptions using
INDL as follows:

• Given an infrastructure resource description using INDL
implemented by RDF/OWL technologies, we use SPARQL
queries to obtain detail resource information of the cloud
resources, including resource identifiers, types, owner, as
in Listing 1.

• We define the resource policy template using model in Fig. 8,
which specifies policies could bind to a resource type, as
illustrated in Fig. 9. The policies are retrieved as in
Listing 2.

• We create policies with the subject be the tenant, re-
source identifiers and types along with related actions from
the template. They can be either expressed as the generic
attribute-based policy notation or a policy language stan-
dard like XACML (OASIS, 2013).

Table 4 – DACI Integration APIs.

Phases APIs Description

Reservation reserve(tenantId, res_desc) Generate provider’s policies for given cloud resource description
Deployment deploy(tenantId) Transform policies into contexts and store to the context DB.
Decommission release(tenantId) Remove tenant’s policies and contexts.

Resource

hasPolicy

hasExpression
hasDecision

#Deny

instanceOf

#Permit

instanceOf

combiningOperator

Combining
Operator

#permit-
override

instanceOf
instanceOf

#deny-
override

Logic 
ExpressionDecision

Policy

Fig. 8 – Attribute-based policy model integration with INDL.

ARTICLE IN PRESS

Please cite this article in press as: Canh Ngo, Yuri Demchenko, Cees de Laat, Multi-tenant attribute-based access control for cloud infrastructure services, Journal of Infor-
mation Security and Applications (2015), doi: 10.1016/j.jisa.2015.11.005

15j o u rna l o f i n f o rma t i on s e cu r i t y and a p p l i c a t i on s ■ ■ ( 2 0 1 5 ) ■ ■ –■ ■



#Virtual 
Infrastructure

hasPolicy

#Permitaction-id=
Instantiate-VI

hasDecisionhasExpression

hasPolicy hasPolicyhasPolicyhasPolicy

#VirtualNode

#Virtual
Resource

#Logical
Resource

hasPolicyhasPolicy

hasPolicyhasPolicy

is-a is-a

hasPolicyhasPolicy

decomission-VIreplanning:
Modify-Timeinstantiate-VIreplanning:

Add-VR-IT
replanning:

Modify-VR-IT

combiningOperator

#permit-
override

instantiate-VRget-Available-
VR-Pool

#Resource Pool

is-a

hasPolicyhasPolicy

instantiate-VRoperate-
VR:Stop

operate-
VR:Pause

operate-
VR:Start

remove-
VirtualNetworkI

f

add-
VirtualNetworkI

f

Fig. 9 – Defining policy template sample.
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In Listing 2, the resourcetype parameter is a Resource concept
in the INDL ontology. Queried result is translated into XACML
policies with the equivalent combining operator and logic ex-
pressions. These providers’ policies are then transformed into
the data structure representing root contexts in the next section.

7.3. High performance PDP for tenants policies

Tenant’s policies are isolatedly stored in the Tenant Authz Policy
DB. Upon receiving a request from Context Handler, the PDP
service loads equivalent tenant’s policies for evaluation.To gain
high performance throughput, we use SNE-XACML engine (Ngo,
2014) to transform regular XACML policies into X-MIDD data
structure with much improved throughput compared to other
PDP engines.

We create a pool of PDP instances, each for a tenant policy
root. By this way, our design is scalable if we plan to extend
PDP in different machines.

7.4. Context resolution and token exchange

The Context resolution service implements the multi-tenant
access control model by extracting delegation policies of pro-
viders and tenants to contexts and storing them in the Context
DB. It finds the trust context for a given request from Context

Handler. If the trust context has its issuer at a different domain
(a PIP), it can either do one of following:

• Proxy method: The VIP creates a VR proxy to send com-
mands to PIP. It’s transparent to end-users. This method is
implemented in LICL testbeds. This is the direct approach
and acceptable with low control and management traffics
because they are centralized and routed via VIP to differ-
ent PIPs’ domains.

• Push method: The VIP creates a grant-token and relays via
end-users to send commands to PIPs as in Section 7.3. In
general Intercloud services, when the control and manage-
ment traffics from users to underlying providers are high,
this approach is more scalable.

7.5. Tenant policy administration

A tenant can define its end-users authorization policies as well
as inter-tenant delegation policies via policy administration APIs
as in Table 5.

Whenever tenants want to add or update policies, the grant
constraint in Section 4 is checked to make sure no violation
happens. Thus, it reduces the authorization overhead by lim-
iting inconsistent decisions.

Table 5 – Tenant Policy Administration APIs.

Type APIs Description

Intra-tenant addPolicy(policyId, p) Add new policy to the tenant’s store.
updatePolicy(policyId, p) Update an existing policy
deletePolicy(policyId) Delete an existing policy

Inter-tenant setTrust(trustee, p) Set a new trust relationship between current tenant and trustee.
updateTrust(trustee, p) Update an existing relationship between current tenant and trustee.
removeTrust(trustee, p) Remove an existing relationship between current tenant and trustee.
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8. Implementation and evaluation

8.1. Implementation overview

We develop DACI components as OSGi bundles on Java 1.7. The
public DACI interfaces are REST web services based on JAX-
RS APIs of the Apache CXF. In our testbed, components in a
DACI instance are deployed on the Apache ServiceMix envi-
ronment (Ser, 2013). Policies for tenants and providers are stored
in a Redis key-value database system (Red, 2013) with sepa-
rated key identifiers for each tenant. It guarantees the isolation
of policy management among tenants.

The policy generator module uses Jena OWL engine (Jen,
2013) to parse input VI descriptions in INDL (Ghijsen et al., 2013)
and the attribute-based policy template to generate XACML poli-
cies as described in Section 8.2.2. They are stored as provider’s
policies for equivalent VI.

We use SNE-XACML engine (Ngo et al., 2013) as the core PDP
to evaluate intra-tenant policies in the AuthzService compo-
nent. For inter-tenant policies and provider’s policies, the
ContextService component transforms into the context objects,
each is composed from a MIDD data structure and the poli-
cy’s issuer attributes. These context objects are stored
persistently and used for context validation purposes.

In our testbed, we build a VM representing the VIP role and
two VMs for two different PIPs. Each DACI instance in a PIP’s
VM is registered with the VIP’s DACI instance as a tenant. For
testing purpose, we generate sample VI datasets with differ-
ent VI sizes as in Table 6, each VI is one of the following types:

• Type 1: a storage component connected to a VM via a virtual
triangular topology network of three virtual routers.

• Type 2: two storage components having network links to a
VM.

• Type 3: two VMs having network links to a share storage
component.

These VI descriptions are used to generate provider del-
egation XACML policies.We simulate the inter-tenant operations
by generating inter-tenant policies to share resources between
tenants, i.e., tenant ti shares a resource to tenant ti+1 . For intra-
tenant policies for each tenant, we generate the default policy
indicating that the subjects belong to admin group of the tenant
having all permissions. In practical, inter-tenant and intra-
tenant policies are managed by the tenant via the TenantAdmin
interface.

The DACI for a provider is deployed in a VM with two virtual
cores and 4096MB RAM. It runs a ServiceMix instance for DACI
and a local Redis server for storing policies.

We use different numbers of Policy Enforcement Points (PEPs)
sending requests to the DACI server via the AuthzSvc RESTful
interface.They run simultaneously on different machines from
the DACI VM, each sends 100 independent requests. The ex-
ecution times of PEP are measured to calculate the average
value.

8.2. Token implementation

Our exchanging token approach is implemented in the
TokenService of the DACI. The service has a public/private key-
pair used for issuing and validating tokens. Upon registration,
each tenant is bound with a separate public/private key-pair
used for Intercloud communication scenario as described in
Section 7. In our key management implementation, we choose
the RSA algorithm with 2048 bits key length. For digital sig-
nature used in issuing tokens, we define the token structure
in XML schema and use the XML digital signature standard
(XML, 2008) implemented in the Apache XML security library
(Apa, 2013). We choose RSASSA-PKCS1-v1.5 signature scheme
with SHA-1 algorithm (RSA, 2003). DACI uses Bouncy Castle v1.49
(Bou, 2013) as the Java cryptographic provider.

We deploy DACI instances with TokenService in separate VMs
having two virtual cores and 4096 MB RAM. Each VM repre-
sents a cloud provider running DACI with the sample datasets
in 7 as in Section 4.

In our inter-provider test scenarios, we have two DACIs for
Pa and Pb providers, in which Pa subscribes resources of the Pb

as described in Section 7.1. PEPs at the user side of the Pa send
requests to access to the resource at Pb, so DACI of the Pa needs
to evaluate its local policies prior issuing grant-tokens for further
authorization at Pb. Compared to the intra-provider scenario
in the previous section, the token issues and validations in-
crease overhead of the original DACI system.

8.3. Evaluation results

Fig. 10 shows the performance result for the single provider
scenario, where the AuthzService on DACI performs authori-
zation evaluation on provider local resources and does not issue
tokens.We observe that throughputs are affected by the number

Table 6 – VI Datasets.

#VI #Prov.
rules

#Inter-tenant
rules

#Intra-tenant
rules

Total
rules

100 401 394 501 1296
300 1217 394 1517 3128
500 2001 500 2501 5002
800 3211 800 4011 8022
1000 3955 1000 4955 9910
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Fig. 10 – Single Cloud provider performance evaluation.
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of managed VIs differently. The throughput in VI-100 sce-
nario is higher 12%–40% comparing to other scenarios. For
scenarios VI-300, VI-500 and VI-1000, with the same number
of PEPs, their throughputs are stable. It means that our pro-
totype is scalable for number of resources.

In other aspect, the result also shows that using high number
of PEP for a given dataset in VI-300, VI-500 or VI-1000 can gen-
erate enough requests to saturate the AuthzSvc message queue.
We measure the AuthzSvc service can handle from 1400 to 1600
requests/s. In our prototype, we do not apply enterprise service
patterns like distributed load balancing for web services or de-
cision caching, so with these techniques, the performance will
be expected to be better.

From our experiments, the performance tests show that on
average, the response time for an authorization request with
issuing grant-token is 320 ms, which is significantly slower than
the response time in the intra-provider scenario. The over-
head here mostly comes from the digital signing tokens with
RSA 2048 bits key-length for every issued token and the XML
messages serialization/deserialization. Therefore, we are de-
veloping a hybrid key management scheme in which tenants
and providers use shared secret keys in communications, which
are established and refreshed periodically based on the public/
private key-pairs. The symmetric key scheme using message
authentication code could improve the system performance
significantly comparing to the public key scheme.

9. Conclusion

In this paper, we presented a multi-tenant attribute-based
access control model for cloud services in which the access
control model is integrated with the cloud infrastructure in-
formation description model. Our approach not only can
generate provider delegation policy automatically from cloud
resource descriptions but also can support multiple levels of
delegations with high flexibility for inter-tenant collabora-
tions. Constraints were defined to guarantee consistent and
correctness of semantic policy management. We utilized de-
cision diagram mechanisms to attribute-based policy evaluation,
which also facilitated the implementation of the proposed
context in our model. The prototype was developed, tested and
integrated into the GEYSERS project.The evaluation results dem-
onstrated that our prototype has good performance in terms
of number of cloud resources, clients and policies.

We also extended the MT-ABAC for distributed, multiple col-
laborative cloud providers in hierarchy to support Intercloud
scenarios with exchanging tokens approach. In future work,
we will improve key management model for Intercloud using
combining public-key and symmetric cryptography, which could
improve the system performance in the Intercloud commu-
nications using tokens. We are planning to develop adapter
layers between our DACI system using INDL with popular cloud
management systems like OpenStack, CloudStack or Eucalyp-
tus, thus could integrate the DACI with these systems. Regarding
authorization policy language, beside XACML in XML profile,
we plan to support others as well as supporting our DACI with
legacy on-premise authorization systems.
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