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The portfolio selection problem is usually considered as a bicriteria optimization problem
where a reasonable trade-off between expected rate of return and risk is sought. In the
classical Markowitz model the risk is measured with variance, thus generating a quadratic
programming model. The Markowitz model is frequently criticized as not consistent with
axiomatic models of preferences for choice under risk. Models consistent with the preference
axioms are based on the relation of stochastic dominance or on expected utility theory. The
former is quite easy to implement for pairwise comparisons of given portfolios whereas
it does not offer any computational tool to analyze the portfolio selection problem. The
latter, when used for the portfolio selection problem, is restrictive in modeling preferences
of investors. In this paper, a multiple criteria linear programming model of the portfolio
selection problem is developed. The model is based on the preference axioms for choice
under risk. Nevertheless, it allows one to employ the standard multiple criteria procedures to
analyze the portfolio selection problem. It is shown that the classical mean-risk approaches
resulting in linear programming models correspond to specific solution techniques applied
to our multiple criteria model.
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1. Introduction

The portfolio selection problem considered is based on a single period model
of investment. At the beginning of the period, the investor allocates capital among
various securities, assigning a nonnegative weight to each security. During the period,
each security generates a random rate of return so that at the end of the period, the
capital has been changed by the weighted average of the returns. In selecting security
weights, the investor faces a set of linear constraints, one of which is that the weights
must sum to one.

Following the seminal work by Markowitz [12], the portfolio selection problem
is usually modeled as a bicriteria optimization problem where a reasonable trade-off
between expected rate of return and risk is sought. The Markowitz model is frequently
criticized as not consistent with axiomatic models of preferences for choice under risk
(Bell and Raiffa [1]). Models consistent with the preference axioms are based on the
relation of stochastic dominance or on expected utility theory (Levy [9]). The former
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is quite easy to implement for pairwise comparisons of given portfolios whereas it
does not offer any computational recipe to analyze the portfolio selection problem.
The latter when used for the portfolio selection problem is restrictive in modeling
preferences of investors.

In the classical Markowitz model the risk is measured with variance thus generat-
ing a quadratic programming model. Following Sharpe [18], many attempts have been
made to linearize the portfolio selection problem (cf. Speranza [19] and references
therein). In this paper we develop a multiple criteria linear programming model of
the classical portfolio selection problem where the finite set of securities is considered
and for each security the expected return is defined with a finite discrete distribution
(e.g., by historical data). The model is based on the preference axioms for the choice
under risk.

Let J = {1, 2, . . . ,n} denote the set of securities in which one intends to invest
a capital. We assume, as usual, that for each security j ∈ J there is given a vector
of data (rij)i=1,2,...,m, where rij is the observed (or forecasted) rate of return at event
(time) i for security j (hereafter referred to as outcome). Thus we consider discrete
distributions of return defined as m-dimensional lotteries, i.e., by the vectors of m
outcomes corresponding to lots i ∈ I = {1, 2, . . . ,m}. The data forms an m × n
matrix R = (rij)i=1,...,m; j=1,...,n which columns correspond to securities while rows
ri = (rij)j=1,2,...,n correspond to outcomes. Further, let x = (xj)j=1,2,...,n denote
the vector of decision variables (security weights) defining a portfolio. To represent
a portfolio the decision variables must satisfy a set of constraints which define the
feasible set Q. The simplest feasible set is defined by the requirement that the decision
variables must sum to one, i.e.,

Q =

{
x = (x1,x2, . . . ,xm)T:

n∑
j=1

xj = 1, xj > 0 for j = 1, 2, . . . ,n

}
.

The investor usually faces a set of additional side constraints. Hereafter we will assume
that Q is a general LP feasible set given in the canonical form as a system of linear
equations with nonnegative variables1

Q =
{

x = (x1,x2, . . . ,xm)T: Ax = b, x = 0
}

, (1)

where A is a given p×n matrix and b = (b1, . . . , bp)T is a given RHS vector. Hereafter
we call vector x ∈ Q a portfolio.

1 In the paper we use the following notation for vector inequalities:

x′ = x′′⇔ x′j > x′′j for j = 1, 2, . . . ,n,

x′ > x′′⇔ (x′ = x′′ and x′′ 6= x′
)

,

x′ > x′′⇔ x′j > x′′j for j = 1, 2, . . . ,n.
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Each vector x generates a vector of outcomes y = Rx = (r1x, r2x, . . . , rmx).
Vectors y we refer to as achievement vectors. An achievement vector y is attainable
if it expresses outcomes of a portfolio x ∈ Q (i.e., y = Rx for some x ∈ Q).

The portfolio selection problem can be considered as an optimization problem
with m uniform objective functions fi(x) = rix =

∑n
j=1 rijxj . In the vector form it

can be written as

max{Rx: x ∈ Q}, (2)

where Q denotes the feasible set (1). Model (2) only specifies that we are inter-
ested in maximization of all objective functions. In order to make it operational, one
needs to assume some solution concept specifying what it means to maximize mul-
tiple objective functions. The standard multiple criteria optimization starts with an
assumption that the criteria are incomparable. It leads to the concept of the efficient
(Pareto-optimal) solutions. In our portfolio selection problem the objective functions
are uniform and their values can be directly compared. In fact, we are interested in
comparing distributions of outcomes within the achievement vectors rather than the
achievement vectors themselves. Moreover, a solution concept should take into ac-
count risk aversion. Therefore, model (2) cannot be considered a standard multiple
criteria optimization problem. Nevertheless, by utilizing the results concerning the
ordering of achievement vectors and several related ideas, it is possible to obtain a
linear multiple criteria optimization problem which serves in a surrogate role. That is,
by seeking efficient solutions of this new problem, we find solutions of the portfolio
selection problem (2) which are optimal with respect to various risk averse preferences
consistent with the standard axioms for the choice under risk. It allows one to employ
the standard multiple criteria procedures to solve the portfolio selection problem (2).

The paper is organized as follows. In the next section we use the standard axioms
for the choice under risk to define the solution concept of equitably efficient solutions
of the portfolio selection problem (2). We build a linear multiple criteria model such
that its efficient solutions coincide with equitably efficient solutions of the portfolio
selection problem. In section 3 we analyze the classical mean-risk approaches which
lead to the linear programming models for the portfolio selection problem. We show
that they can be viewed as specific solution techniques applied to our multiple criteria
model. Further, in section 4 we analyze the ordered weighting approach which by
varying the weights allows to identify any equitably efficient solution of the portfolio
selection problem (2). This approach leads to linear programming problems with a
large number of constraints. However, as shown in section 5 the corresponding dual
problems can be effectively solved by the simplex method with the column generation
technique.

2. The model

The solution concepts are defined by properties of the corresponding preference
model. We assume that solution concepts depend only on evaluation of the achievement
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vectors (outcomes) while not taking into account any other solution properties not
represented within the achievement vectors. Thus, we can limit our considerations to
the preference model in the space of achievement vectors. The preference model is
completely characterized by the relation of weak preference (Vincke [21]), denoted
hereafter with �. Namely, the corresponding relations of strict preference � and
indifference ∼= are defined by the following formulas:

y′ � y′′⇔
(
y′ � y′′ and y′′ 6� y′

)
,

y′ ∼= y′′⇔
(
y′ � y′′ and y′′ � y′

)
.

The standard preference model related to the Pareto-optimal solution concept
assumes that the preference relation � is reflexive:

y � y, (3)

transitive: (
y′ � y′′ and y′′ � y′′′

)
⇒ y′ � y′′′, (4)

and strictly monotonic:

y + εei � y for ε > 0, i = 1, 2, . . . ,m, (5)

where ei denotes the ith unit vector in the criterion space. The last assumption ex-
presses that for each individual objective function more is better (maximization). The
preference relations satisfying axioms (3)–(5) are called hereafter rational preference
relations. The rational preference relations allow us to formalize the Pareto-optimal
solution concept with the following definitions. We say that achievement vector y′

rationally dominates y′′ (y′ �r y′′), iff y′ � y′′ for all rational preference relations �.
We say that feasible solution x ∈ Q is an efficient (Pareto-optimal) solution of the
multiple criteria problem (2), iff y = Rx is rationally nondominated.

The relation of weak rational dominance �r may be expressed in terms of the
vector inequality

y′ �r y′′ ⇔ y′ = y′′.

As a consequence, we can state that a feasible solution x0 ∈ Q is an efficient solution
of the multiple criteria problem (2), if and only if, there does not exist x ∈ Q such that
Rx > Rx0. The latter refers to the commonly used definition of the efficient solutions
as feasible solutions for which one cannot improve any criterion without worsening
another (Chankong and Haimes [2], Steuer [20]). However, the axiomatic definition
of the rational preference relation allows us to introduce additional properties of the
preferences related to the principles of choice under risk.

While dealing with the uniform criteria, we assume that the preference model is
impartial (anonymous, symmetric), i.e.,

(yτ (1), yτ (2), . . . , yτ (m)) ∼= (y1, y2, . . . , ym) (6)
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for any permutation τ of I . Further, to take into account that the investor is risk
averse, the preference model should satisfy the Pigou–Dalton principle of transfers.
The principle of transfers states that a transfer of small amount from an outcome to
any relatively worse-off outcome results in a more preferred achievement vector, i.e.,

yi′ > yi′′ ⇒ y− εei′ + εei′′ � y for 0 < ε < yi′ − yi′′ , i′, i′′ ∈ I. (7)

The preference relations satisfying all axioms (3)–(7) we will call hereafter equitable
rational preference relations.

Requirement of impartiality (6) and the principle of transfers (7) do not contradict
the multiple criteria optimization axioms (3)–(5). Therefore, we can consider equitable
multiple criteria optimization (Ogryczak [14]) based on the preference model defined
by axioms (3)–(7). The equitable rational preference relations allow us to define the
concept of equitably efficient solution, similar to the standard efficient (Pareto-optimal)
solution defined with the rational preference relations. We say that achievement vector
y′ equitably dominates y′′ (y′ �e y′′), iff y′ � y′′ for all equitable rational preference
relations �. We say that a portfolio (feasible solution) x ∈ Q is equitably efficient, (is
an equitably efficient solution of the multiple criteria problem (2)) if and only if there
does not exist any x′ ∈ Q such that Rx′ �e Rx. Note that each equitably efficient
solution is also an efficient solution but not vice versa.

According to the theory of majorization (Marshall and Olkin [13]), the relation
of weak equitable dominance �e can be expressed in various ways with algebraic
inequalities. Namely, the following proposition is valid.

Proposition 1. For y′, y′′ ∈ Rm each of the three following conditions is equivalent
to y′ �e y′′:

(1) for all z ∈ R
m∑
i=1

(
z − y′i

)
+
6

m∑
i=1

(
z − y′′i

)
+

, (8)

where the operator (·)+ denotes the nonnegative part of a number;

(2) for all continuous increasing concave functions u
m∑
i=1

u
(
y′i
)
>

m∑
i=1

u
(
y′′i
)
; (9)

(3) for k = 1, 2, . . . ,m

k∑
i=1

θi
(
y′
)
>

k∑
i=1

θi
(
y′′
)
, (10)

where θi(y) denote increasingly ordered coefficients of vector y, i.e., θ1(y) 6
θ2(y) 6 · · · 6 θm(y) and there exists a permutation τ of set I such that θi(y) = yτ (i)
for i = 1, 2, . . . ,m.
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Condition (8) defines the (second degree) stochastic dominance relation (cf. Whit-
more and Findlay [22]). Condition (9) is employed in the expected utility theory (cf.
Fishburn [3], Levy [9]). Thus the relation of equitable dominance is completely consis-
tent with the stochastic dominance and expected utility theory. This guarantees that by
looking for various equitably efficient solutions of problem (2) we are able to identify
optimal portfolios with respect to various risk averse preferences.

In this paper we focus on condition (10) which is related to the so-called dual
theory of choice under risk (Yaari [24]). Using the cumulative ordering map Θ̄(y) =
(θ̄1(y), θ̄2(y), . . . , θ̄m(y)), where

θ̄i(y) =
i∑

k=1

θk(y), (11)

the condition (10) can be rewritten in terms of vector inequality

y′ �e y′′ ⇔ Θ̄
(
y′
)
= Θ̄

(
y′′
)
. (12)

Thus equitable dominance is equivalent to rational dominance of achievement vectors
transformed by the cumulative ordering map Θ̄. Hence, condition (10) allows us to
express the portfolio selection problem (2) with the equitably rational preferences as a
standard multiple criteria program with objective functions modified by the cumulative
ordering map Θ̄(Rx).

Corollary 1. Portfolio x is an equitably efficient solution of problem (2), if and only
if it is an efficient solution of the multiple criteria problem

max
{(
θ̄1(Rx), θ̄2(Rx), . . . , θ̄m(Rx)

)
: x ∈ Q

}
. (13)

The objective functions in a multiple criteria problem can be divided by positive
constants without affecting the set of efficient solutions. For better understanding of
the multiple criteria problem (13) for portfolio selection, one may consider normalized
objective functions θ̄i(y)/i for i = 1, 2, . . . ,m. Quantities θ̄i(y)/i define partial means
of the first i coefficients in the ordered achievement vector Θ(y), i.e., the means of
the i smallest outcomes in y. Note that the first objective θ̄1(y)/1 represents then the
minimum outcome ymin and the last objective θ̄m(y)/m represents the expected (mean)
outcome µ(y) = 1

m

∑m
i=1 yi. Thus the maximization of the expected return and the

maximization of worst possible outcome are single objectives in our multiple criteria
model. The complete set of m criteria allows us to model all risk averse preferences
consistent with axioms (3)–(7).

In income economics, the Lorenz curve (cf. Kendall and Stuart [5], Gastwirth
[4]) is a popular tool to explain inequalities. In the context of income distribution, the
Lorenz curve is a cumulative population versus income curve. Exactly, all individuals
are ranked by income, from poorest to richest. For each rank, we compute the pro-
portion of income earned by all individuals at this rank and all ranks below this rank.
The relationship between the proportions of population and income defines the Lorenz
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Figure 1. Θ̄(y) and absolute Lorenz curves.

curve. A perfectly equal distribution of income has the diagonal line as the Lorenz
curve. All other distributions generate convex Lorenz curves below the diagonal line.
If the curve corresponding to distribution A falls below the curve corresponding to
distribution B, then distribution A is considered as more unequal than the the latter
one.

Note that the definition of values θ̄i(y) for i = 1, 2, . . . ,m is similar to the
construction of the Lorenz curve for the population of m outcomes. Vector Θ̄(y)
can be viewed graphically with the Lorenz-type curve connecting point (0,0) and
points (i/m, θ̄i(y)/m) for i = 1, 2, . . . ,m. In the case of two achievement vectors
y′, y′′ ∈ Y with the same positive total of outcomes θ̄m(y′) = θ̄m(y′′) (the same
positive mean), the inequality Θ̄(y′) > Θ̄(y′′) is equivalent to the dominance y′ over
y′′ in the sense of Lorenz curves. In the case of positive mean, the Lorenz curves
may be considered the graphs of vectors 1

µ(y) Θ̄(y). Graphs of vectors Θ̄(y) take the
form of unnormalized convex curves (figure 1), the absolute Lorenz curves. Note that
in terms of the Lorenz curves no achievement vector can be better than the vector of
equal outcomes. Relation (12) takes into account also values of outcomes. Vectors
of equal outcomes are distinguished according to the value of their outcomes. They
are graphically represented with various ascent lines in figure 1. With the preference
relation (12), an achievement vector of large unequal outcomes may be preferred to
an achievement vector with small equal outcomes.

The individual objective functions of problem (13) are concave piece-wise linear
function of achievement vector y = Rx. They can be written in the form

θ̄i(y) = min
τ∈Π

( i∑
k=1

yτ (k)

)
,

where Π denotes the set of all permutations τ of the index set I . Thus, our portfo-
lio selection problem (13) can be expressed as the following multiple criteria linear
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program:

maximize (z1, z2, . . . , zm) (14)

subject to x ∈ Q, (15)

yi = rix for i = 1, 2, . . . ,m, (16)

zi 6
i∑

k=1

yτ (k) for τ ∈ Π, i = 1, 2, . . . ,m. (17)

Multiple criteria linear program (14)–(17) is equivalent to problem (13) as stated
in the following proposition (Kostreva and Ogryczak [8]).

Proposition 2. A triple (x0, y0, z0) is an efficient solution of (14)–(17), if and only if,
y0 = Rx0, z0 = Θ̄(y0) and x0 is an efficient solution of problem (13).

Corollary 2. A triple (x0, y0, z0) is an efficient solution of (14)–(17), if and only if,
y0 = Rx0, z0 = Θ̄(y0) and x0 is an equitably efficient solution of the portfolio selection
problem (2).

Corollary 2 guarantees that by looking for various efficient solutions of the mul-
tiple criteria linear program (14)–(17), we are able to identify solutions of the portfolio
selection problem (2) which are optimal with respect to various risk averse preferences.
Thus the problem (14)–(17) is a linear multiple criteria model of the portfolio selection
problem.

3. Bicriteria approaches

Efficient solutions of the multiple criteria problem (2) can be generated with
simple scalarizations of the problem. Most of them are based on the sum of individual
outcomes

max

{
m∑
i=1

rix: x ∈ Q
}

, (18)

or on the maximin approach

max
{

min
i=1,...,m

rix: x ∈ Q
}
. (19)

Scalarization (18) always generates efficient solutions as the corresponding preference
relation is a rational preference relation (it maintains the properties of reflexivity,
transitivity and strict monotonicity). The maximin scalarization (19) generates efficient
solutions except in the case of alternative optimal solutions. That means, the optimal
solution of (19) can be (rationally) dominated only by another optimal solution. Thus
the optimal set of (19) contains an efficient solution and the unique (in the criterion
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space) optimal solution is efficient. Scalarization (18) is equivalent to maximization
of the expected outcome whereas scalarization (19) corresponds to maximization of
worst outcome. Both the corresponding preference relations are impartial but they do
not satisfy the principle of transfers. Therefore, scalarizations (18) and (19), in the
general case, may generate solutions which are not equitably efficient.

Corollary 1 allows one to generate equitably efficient solutions of (2) as efficient
solutions of problem (13). Note that scalarization (18), maximizing the expected
outcome, corresponds to maximization of the last (mth) objective in problem (13).
Similarly, the maximin scalarization (19) corresponds to maximization of the first
objective in (13). Thus, in the case of m = 2, the set of equitably efficient solutions is
equal to the set of efficient solutions of the bicriteria problem with objectives defined
as the minimum and the sum of the original two objectives. Certainly it is not true
in the portfolio selection problem where m is larger. In the general case of arbitrarily
large m, the following corollary is valid.

Corollary 3. Except for portfolios with identical mean and worst outcome, every
efficient solution to the bicriteria problem

max

{(
min

i=1,...,m
rix,

m∑
i=1

rix

)
: x ∈ Q

}
(20)

is an equitably efficient solution of the portfolio selection problem (2).

Bicriteria problem (20) may be considered a mean-risk approach with the risk
measure %(y) defined as the maximum (downside) deviation (Young [28])

∆(y) = max
i=1,...,m

(
µ(y)− yi

)
=

1
m

m∑
i=1

yi − min
i=1,...,m

yi =
1
m
θ̄m(y)− θ̄1(y). (21)

An important advantage of mean-risk approaches is the possibility of a pictorial trade-
off analysis. Having assumed a trade-off coefficient λ between the risk an the mean,
one may directly compare real values of µ(y) − λ%(y). The following proposition
justifies such an analysis for risk defined as the maximum deviation (21).

Proposition 3. Except for portfolios with identical mean and maximum deviation,
every portfolio x ∈ Q that is maximal by µ(Rx) − λ∆(Rx) with 0 < λ < 1 is an
equitably efficient solution of the portfolio selection problem (2).

Proof. Let 0 < λ < 1 and x0 ∈ Q be maximal by µ(Rx)− λ∆(Rx). Note that

µ(Rx)− λ∆(Rx) = λθ̄1(Rx) +
1− λ
m

θ̄m(Rx). (22)

Hence, x0 is an efficient solution of the bicriteria problem (20) and, due to corollary 3,
x0 is an equitably efficient solution of the portfolio selection problem (2). �
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The maximum deviation is a very pessimistic risk measure related to the worst
case analysis. It is in some manner very “rough” as it does not take into account the
distribution of outcomes other than the worst one which causes that only two objective
functions θ̄i(y) from (13) are used. There are risk measures taking into account all the
quantities θ̄i(y).

Konno and Yamazaki [7] introduced the mean-risk model using the absolute
deviation

δ(y) =
1

2m

m∑
i=1

∣∣µ(y)− yi
∣∣ =

1
m

∑
i:yi<µ(y)

[
µ(y)− yi

]
(23)

as the risk measure. The absolute deviation can be expressed in terms of θ̄i(y) as
follows:

δ(y) =
1
m

∑
i:θi(y)<µ(y)

[
µ(y)− θi(y)

]
=

1
m

max
i=1,...,m−1

[
i

m
θ̄m(y)− θ̄i(y)

]
. (24)

It leads to the following assertion.

Proposition 4. Except for portfolios with identical mean and absolute deviation, every
portfolio x ∈ Q that is maximal by µ(Rx) − λδ(Rx) with 0 < λ < m/(m− 1) is an
equitably efficient solution of the portfolio selection problem (2).

Proof. Let 0 < λ < m/(m− 1) and x0 ∈ Q be maximal by µ(Rx)− λδ(Rx). Note
that, due to (24),

µ(Rx)− λδ(Rx) =
1
m
θ̄m(Rx) +

λ

m
min

i=1,...,m−1

[
θ̄i(Rx)− i

m
θ̄m(Rx)

]
= min
i=1,...,m−1

[
λ

m
θ̄i(Rx) +

m− iλ
m2 θ̄m(Rx)

]
.

Thus, x0 is an optimal solution to the maximin scalarization of the multiple criteria
problem:

max
{(
g1(Rx), g2(Rx), . . . , gm−1(Rx)

)
: x ∈ Q

}
(25)

with m− 1 objective functions gi given by the formula:

gi(y) =
λ

m
θ̄i(y) +

m− iλ
m2 θ̄m(y) for i = 1, 2, . . . ,m− 1. (26)

Moreover, both the coefficients in (26) are positive and therefore every efficient solution
of (25) is also an efficient solution of problem (13).

Suppose there exists a portfolio x′ ∈ Q which equitably dominates x0. Then
Θ̄(Rx′) > Θ̄(Rx0) and, due to positive coefficients in (26), gi(Rx′) > gi(Rx0) for
i = 1, 2, . . . ,m−1. On the other hand, mini=1,...,m−1 gi(Rx′) 6 mini=1,...,m−1 gi(Rx0).
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Hence, there exists index i0 such that gi0(Rx′) = gi0 (Rx0) and therefore θ̄m(Rx′) =
θ̄m(Rx0). Thus, µ(Rx′) = µ(Rx0) and δ(Rx′) = δ(Rx0), which completes the proof. �

Yitzhaki [27] introduced the mean-risk model using Gini’s mean (absolute) dif-
ference

G(y) =
1

2m2

m∑
i=1

m∑
j=1

|yi − yj| (27)

as the risk measure. Gini’s mean difference can be expressed in terms of θ̄i(y) as
follows:

G(y) =
1
m2

m−1∑
i=1

[
iθ̄i+1(y)− (i+ 1)θ̄i(y)

]
=
m− 1
m2 θ̄m(y) − 2

m2

m−1∑
i=1

θ̄i(y). (28)

It leads to the following assertion.

Proposition 5. Every portfolio x ∈ Q that is maximal by µ(Rx)− λG(Rx) with 0 <
λ < m/(m− 1) is an equitably efficient solution of the portfolio selection problem (2).

Proof. Let 0 < λ < m/(m− 1) and x0 ∈ Q be maximal by µ(Rx)− λG(Rx). Note
that, due to (28),

µ(Rx)− λG(Rx) =
2λ
m2

m−1∑
i=1

θ̄i(Rx) +
m− λ(m− 1)

m2 θ̄m(Rx). (29)

Hence, in the case of 0 < λ < m/(m− 1), function µ(Rx) − λG(Rx) is a linear
combination with positive weights of the objective functions θ̄i(Rx) for i = 1, 2, . . . ,m.
Therefore, x0 is an efficient solution of the multiple criteria problem (13) and, due to
corollary 1, x0 is an equitably efficient solution of the portfolio selection problem (2). �

The three risk measures, we have considered, lead to parametric linear program-
ming problems:

max
{
µ(Rx)− λ%(Rx): x ∈ Q

}
, (30)

while looking for a mean-risk compromise. We have shown that in the case of 0 < λ <
1 they can be considered scalarizations of the multiple criteria problem (13). It can be
illustrated in the Lorenz-type diagram we considered in the previous section (figure 1).
Recall that vector Θ̄(y) can be viewed graphically with the absolute Lorenz curve
connecting point (0,0) and points (i/m, θ̄i(y)/m) for i = 1, 2, . . . ,m, where the last
point (for i = m) is (1,µ(y)). Note that in our model the risk-free achievement vector
with mean value µ(y) has all the coefficients equal to µ(y) and its absolute Lorenz
curve is the ascent line connecting points (0, 0) and (1,µ(y)). Hence, the space between
the absolute Lorenz curve (i/m, θ̄i(y)/m) and its ascent line represents the dispersion
(and thereby the riskiness) of y in comparison to the deterministic outcome of µ(y).
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Figure 2. Θ̄(y) and risk measures.

We shall call it the dispersion space. Both size and shape of the dispersion space are
important for complete description of the riskiness. Nevertheless, it is quite natural to
consider some size parameters as summary characteristics of riskiness. As shown in
figure 2, all three risk measures, we have considered, represent some size parameters of
the dispersion space. Note that vertical diameter of the dispersion space at point i/m is
given as δi(y) = i

m2 θ̄m(y)− 1
m θ̄i(y). Hence, for the absolute deviation, due to (24), we

get δ(y) = maxi=1,...,m δi(y). That means, δ(y) represents the largest vertical diameter
of the dispersion space. Similarly, for the maximum deviation, due to (21), we get
∆(y) = mδ1(y). Thus, ∆(y) represents the projection of δ1(y) onto the vertical line at
i = m or the largest vertical diameter of the corresponding triangular envelope of the
dispersion space. Gini’s mean difference, due to (28), satisfies G(y) = 2

m

∑m−1
i=1 δi(y).

That means, G(y) is twice the area of the dispersion space. This explains why for this
mean-risk approach we get the strongest result in the sense that every optimal solution
of the corresponding problem (30) with 0 < λ 6 1 is equitably efficient (proposition 5).
Similar strong result one can get using a combination of Gini’s mean difference with
other risk measures thus enriching the corresponding preference model. In particular,
the following assertion follows from propositions 3 and 5.

Corollary 4. Every portfolio x ∈ Q that is maximal by µ(Rx)− λ1G(Rx)− λ2∆(Rx)
with λ1 > 0, λ2 > 0 and λ1 +λ2 6 1 is an equitably efficient solution of the portfolio
selection problem (2).

4. Ordered weighted aggregation

In the case of efficiency, one may use the scalarization (18) with weighted ob-
jective functions to generate various efficient solutions. In fact, it provides a complete
parameterization of the efficient set for multiple criteria linear programs. In the case of
equitable multiple criteria programming, one cannot assign various weights to individ-
ual objective functions, as that violates the requirement of impartiality (6). However,
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due to corollary 1, the weighting approach can be applied to problem (13) resulting in
the scalarization:

max

{
m∑
i=1

wiθ̄i(Rx): x ∈ Q
}
. (31)

Note that, due to the definition of map Θ̄ with (11), the above problem can be expressed
in the form with weights w̄i =

∑m
j=iwj (i = 1, 2, . . . ,m) allocated to coefficients of

the ordered achievement vector Θ(Rx). Such an approach to multiple criteria optimiza-
tion was introduced by Yager [25] as so-called Ordered Weighted Averaging (OWA).
Since its introduction, the OWA aggregation has been applied to many fields as fuzzy
logic controllers (Yager and Filev [26]) and in decision making under uncertainty
(Segal [17]).

When applying the OWA aggregation to our portfolio selection problem (2) we
get:

max

{
m∑
i=1

wiθi(Rx): x ∈ Q
}
. (32)

Proposition 6. A portfolio x0 ∈ Q is an equitably efficient solution of the portfolio
selection problem (2), if and only if, there exist strictly decreasing and positive weights
wi, i.e.,

w1 > w2 > · · · > wm−1 > wm > 0, (33)

such that x0 is an optimal solution of the corresponding OWA problem (32).

Proof. Problem (32) with weights wi can be expressed in the form

max

{
m∑
i=1

w′iθ̄i(Rx): x ∈ Q
}

,

where coefficients w′i are defined as w′m = wm and w′i = wi − wi+1 for i =
1, 2, . . . ,m − 1. If (33) holds, then w′i > 0 for i = 1, 2, . . . ,m. Thus, due to
corollary 1, each optimal solution of (32) is an equitably efficient solution of (2).

Further, we need to show that for each equitably efficient solution x0 ∈ Q there
exist strictly decreasing and positive weights wi (i.e., weights satisfying (33)) such
that x0 is an optimal solution of the corresponding OWA problem (32). Due to propo-
sition 2, if x0 is an equitably efficient solution of (2), then (x0, Rx0, Θ̄(Rx0)) is an
efficient solution of multiple criteria linear program (14)–(17). Thus, from the theory



156 W. Ogryczak / Linear programming model for portfolio selection

of multiple criteria linear optimization (Steuer [20]), there exist positive weights w̄i
(i = 1, 2, . . . ,m) such that (x0, Rx0, Θ̄(Rx0)) is an optimal solution of the problem

max

{
m∑
i=1

w̄izi: (15)–(17)

}
.

Due to positive weights w̄i, the above problem is equivalent to the problem

max

{
m∑
i=1

w̄iθ̄i(Rx): x ∈ Q
}

which, by definition of the map Θ̄ with (11), can be expressed as the OWA problem
(32) with weights wi =

∑m
j=i w̄j (i = 1, 2, . . . ,m). Moreover, weights wi satisfy the

requirement (33). Thus, there exist strictly decreasing and positive weights wi such
that x0 is an optimal solution of the corresponding OWA problem (32). �

From proposition 6 it follows that, by looking for the OWA optimal solutions
for various decreasing and positive weights, we are able to identify various equitably
efficient solutions of problem (2) and thereby to find portfolios optimal with respect to
various risk averse preferences. Moreover, any portfolio optimal with respect to some
risk averse preferences can be found as the optimal solution of the OWA problem (32)
with some weights satisfying (33). Note that the mean-risk approach with the maximum
deviation ∆(y) (21) as the risk measure, due to (22), may be viewed as the OWA
aggregation (32) with weights: w1 = (1 + (m− 1)λ)/m and wi = (1− λ)/m for
i = 2, . . . ,m. Hence, for the trade-off coefficient 0 < λ < 1 all the weights are positive
but w2 = w3 = · · · = wm which causes that not all optimal solutions are equitably
efficient. Similar, the mean-risk approach with Gini’s mean difference G(y) (27) as the
risk measure, due to (29), may be viewed as the OWA aggregation (32) with weights
wi = (m+ (m− 2i+ 1)λ)/m2 for i = 1, 2, . . . ,m. Hence, for the trade-off coefficient
0 < λ < m/(m− 1) the weights are positive and strictly decreasing (33) which causes
that every optimal solution is equitably efficient. However, wi−wi+1 = 2λ/m2 for all
i = 1, 2, . . . ,m− 1. Thus this mean-risk approach, in terms of the OWA aggregation,
considers only weights decreasing by a constant step. Therefore, not all equitably
efficient solutions can be found in this way. In the next section we analyze in details
a solution procedure for the OWA problems with arbitrary weights satisfying (33).

As the limiting case of the OWA problem (32), when the differences among
weights wi tend to infinity, we get the lexicographic problem:

lexmax
{(
θ1(Rx), θ2(Rx), . . . , θm(Rx)

)
: x ∈ Q

}
, (34)

where first θ1(Rx) is maximized, next θ2(Rx) and so on. Problem (34) represents
the lexicographic maximin approach to the original multiple criteria problem (2). It
is a refinement (regularization) of the standard maximin scalarization (19), but in the
former, in addition to the smallest outcome, we maximize also the second smallest
outcome (provided that the smallest one remains as large as possible), maximize the
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third smallest (provided that the two smallest remain as large as possible), and so on.
The lexicographic maximin solution is known in the game theory as the nucleolus of
a matrix game (Potters and Tijs [16]). In the case of linear objective functions and
convex feasible set, there exists a dominating objective function which is constant on
the entire optimal set of the maximin problem. Therefore, similar to the nucleolus of a
matrix game, the lexicographic maximin solution of problem (2) can easily be found by
sequential optimization with elimination of the dominating functions. This approach
has been recently used for linear programming problems related to multiperiod resource
allocation (Klein et al. [6]) and for linear multiple criteria problems (Marchi and Oviedo
[11]).

Due to (11), problem (34) is equivalent to the problem

lexmax
{(
θ̄1(Rx), θ̄2(Rx), . . . , θ̄m(Rx)

)
: x ∈ Q

}
which can be considered the standard lexicographic optimization applied to prob-
lem (13). As the lexicographic optimization generates efficient solutions, thus due to
corollary 1, we get the following assertion.

Corollary 5. The optimal solution of the lexicographic maximin problem (34) is an
equitably efficient solution of the portfolio selection problem (2).

The lexicographic maximin solution is unique with respect to the ordered achieve-
ment vectors Θ(Rx). It can be considered in some sense the “most equitable solution”
or “the most risk averse portfolio”. Note that one may wish to consider the multiple
criteria problem (13) as an equitable problem (with an equitable rational preference
relation). In such a situation we should apply corollary 1 to problem (13). It results in
the problem with doubly cumulative ordered criteria which again may be considered
as equitable. As the limit of such an approach we get the lexicographic maximin
problem (34). One may wish to look for the “least equitable solution” applying re-
verse lexicographic maximization to the problem (13), i.e., solving the lexicographic
problem:

lexmax
{(
θ̄m(Rx), θ̄m−1(Rx), . . . , θ̄1(Rx)

)
: x ∈ Q

}
, (35)

where first θ̄m(Rx) is maximized, next θ̄m−1(Rx) and so on. While the lexicographic
maximin (34) is a refinement of the standard maximin approach (19), the problem (35)
is a lexicographic refinement of the scalarization (18). Note, that in the lexicographic
optimization problem dividing objectives by constants does not affect the solution
and θ̄i(y)/i represents the mean of i largest coefficients in the achievement vector y.
Therefore, problem (35) is a refinement of maximization of expected return and we
refer to it as the lexicographic mean problem. As the lexicographic optimization
generates efficient solutions, from corollary 1, we get the following assertion.

Corollary 6. The optimal solution of the lexicographic mean problem (35) is an eq-
uitably efficient solution of the portfolio selection problem (2).
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By using the basic properties of the lexicographic optimization and the equity
θi(y) = θm−i+1(−y), the lexicographic mean problem can be rewritten as the lexico-
graphic problem

lexmax
{(
θ̄m(Rx), θ1(−Rx), θ2(−Rx), . . . , θm−1(−Rx)

)
: x ∈ Q

}
.

Hence, the lexicographic mean problem (35) can be implemented as the the lexico-
graphic maximin approach to problem with negated outcomes and the feasible set
defined by all the portfolios with the maximal expected return. Thus, similar to prob-
lem (34), the lexicographic mean solution of problem (2) can easily be found by
sequential optimization.

5. Solution technique

The ordering operator Θ used in the OWA aggregation is nonlinear and, in general,
it is hard to implement. Note, however, that for weights wi satisfying (33), for any
permutation τ of I the following inequality holds:

m∑
i=1

wτ (i)yi >
m∑
i=1

wiθi(y). (36)

Thus, the OWA aggregation is a concave piecewise linear function

m∑
i=1

wiθi(y) = min
τ∈Π

(
m∑
i=1

wτ (i)yi

)
, (37)

where Π denotes the set of all permutations τ of I . It leads us to the following
sufficient and necessary optimality conditions for the OWA aggregations.

Proposition 7. If a portfolio x0 ∈ Q is an optimal solution of the linear problem

max

{
m∑
i=1

wirτ̄ (i)x: x ∈ Q
}

, (38)

where weights wi satisfy (33) and τ̄ is such a permutation that

rτ̄ (1)x0 6 rτ̄ (2)x0 6 · · · 6 rτ̄ (m)x0, (39)

then x0 is an optimal solution of the corresponding OWA problem (32).

Proof. If for x0 ∈ Q satisfying (39) there exist strictly decreasing and positive weights
wi such that x0 is an optimal solution of the linear problem (38), then

m∑
i=1

wiθi
(
Rx0) =

m∑
i=1

wirτ (i)x0 >
m∑
i=1

wirτ (i)x >
m∑
i=1

wiθi(Rx)
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for each x ∈ Q. Thus x0 is an optimal solution of the corresponding OWA problem
(32). �

Proposition 8. A portfolio x0 ∈ Q such that for some permutation τ̄

rτ̄ (1)x0 < rτ̄ (2)x0 < · · · < rτ̄ (m)x0 (40)

is an optimal solution of the OWA problem (32) with strictly decreasing and positive
weights wi (i.e., weights satisfying (33)), if and only if, x0 is an optimal solution of
the corresponding linear problem (38).

Proof. Sufficiency of the condition follows from proposition 7. Thus we only need to
prove its necessity. Let x0 ∈ Q be an optimal solution of the OWA problem (32) with
some strictly decreasing and positive weights wi (i.e., weights satisfying (33)). We will
show that x0 satisfying (40) is also an optimal solution of the corresponding problem
(38) with the same weights. If not, then there exists x1 ∈ Q such that

∑m
i=1wir

τ (i)x1 >∑m
i=1 wir

τ (i)x0. Note that due to convexity of the feasible set Q, for any 0 < ε < 1
vector xε = (1−ε)x0 +εx1 is a feasible solution and

∑m
i=1 wir

τ (i)xε >
∑m

i=1 wir
τ (i)x0.

Moreover, there exists ε0 > 0 such that for all 0 < ε < ε0

rτ (1)xε < rτ (2)xε < · · · < rτ (m)xε.

Hence, for sufficiently small positive ε

m∑
i=1

wiθi
(
Rxε

)
=

m∑
i=1

wirτ (i)xε >
m∑
i=1

wirτ (i)x0 =
m∑
i=1

wiθi
(
Rx0),

which contradicts optimality of x0 for the OWA problem. �

Recall that in our portfolio selection problem the feasible set Q is given in the
canonical form as (1). Equation (37) allows us to express the corresponding OWA
problem (32) as the following linear program:

maximize z (41)

subject to Ax = b, (42)

y− Rx = 0, (43)

z −
m∑
i=1

wτ (i)yi 6 0 for τ ∈ Π, (44)

xj > 0 for j = 1, 2, . . . ,n. (45)

It is an LP problem with n+m+ 1 variables and p+m+m! constraints. In problem
(41)–(45) the ordering operator Θ is replaced with m! linear inequalities (44). It
generates a large number of constraints but all the inequalities (44) are defined by
permutations of the single vector of weights wi.
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While solving an LP problem with the simplex method a smaller number of
constraints than variables is preferred since it results in a smaller dimension of the
basis and thereby in the lower computational complexity. Therefore, for the simplex
approach it is much better to deal with the dual of (41)–(45) than the original problem.
Introducing the dual variables: u = (u1, . . . ,up), v = (v1, . . . , vm) and t = (tτ )τ∈Π
corresponding to the constraints (42), (43) and (44), respectively, we get the following
dual:

minimize ub (46)

subject to uA− vR = 0, (47)

vi −
∑
τ∈Π

wτ (i)tτ = 0 for i = 1, 2, . . . ,m, (48)∑
τ∈Π

tτ = 1, (49)

tτ > 0 for τ ∈ Π. (50)

The dual problem (46)–(50) has m! columns corresponding to variables tτ . How-
ever, these columns can be handled implicitly with the column generation scheme.
Note that each column corresponding to tτ has the unit coefficient in row (49) and
coefficients −wτ (i) in rows (48). Thus there is no reason to keep them explicitly. We
only need to identify the best column during the pricing and to generate the selected
column for pivoting.

During the course of the simplex method, having the current basis B we have
defined the current primal basic solution (u0, v0, t0) and the current dual basic solution
(the dual multipliers) (x0, y0, z0). The reduced cost for variable tτ is given by the
formula

d(tτ ) =
m∑
i=1

wτ (i)y
0
i − z0 for τ ∈ Π.

Due to (36), the solution to the pricing problem minτ∈Π d(tτ ) is given by permutation
τ̄ such that its inverse τ̄−1 nonincreasingly orders y0, i.e., y0

τ̄−1(1) 6 y0
τ̄−1(2) 6 · · · 6

y0
τ̄−1(m) where τ̄−1(τ̄ (i)) = i for i = 1, 2, . . . ,m. In the case of all different coefficients

in vector y0, there is unique such permutation τ̄ and the uniquely defined incoming
column. When some coefficients are equal, then we get a group of columns where the
weights are permuted within the subsets of indices corresponding to equal coefficients
y0
i . We may take then a linear combination of these columns with positive scaling

factors totaling to 1 (e.g., all equal). We are permitted to do it as such a combination
column corresponds to the combination of inequalities (44) which can be added to the
primal without affecting the solution.

We have run initial computational experiments using 1994 data from the Warsaw
stock market. Exactly, we analyzed the set of 21 securities. With a rather straightfor-
ward implementation of the simplex method with column generation we easily solved
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problems for m varying from 10 to 20. In all the runs the number of simplex steps did
not exceed 500 while in average it was close to 200. Further experiments on various
data sets are necessary to justify if the simplex method can be used for medium-scale
OWA problems. Certainly, the large-scale portfolio selection problems require an-
other solution technique applied to the corresponding OWA problems or a different
aggregation technique applied to the linear multiple criteria model.

6. Conclusions and further research

Following the pioneering work of Sharpe [18], many attempts have been made to
linearize the portfolio selection problem. There were introduced several risk measures
which lead to linear programming mean-risk models. In this paper we have developed
a multiple criteria linear programming model of the portfolio selection problem. The
classical linear programming mean-risk approaches turn out to be specific aggregation
techniques applied to our multiple criteria model. The model is based on the preference
axioms for the choice under risk. Therefore, by looking for various efficient solutions
of the multiple criteria linear program, we are able to identify solutions of the portfolio
selection problem which are optimal with respect to various risk averse preferences.
Nevertheless, the model allows one to employ the variety of standard multiple criteria
procedures to analyze the portfolio selection problem.

In the paper we have focused on the classical and widely known weighting ap-
proach to multiple criteria optimization. It results in linear programming problems with
large number of constraints. However, the medium-size problems can be effectively
solved by the simplex method with the column generation technique when applied to
their duals. The weighting approach is a fundamental technique in the multiple criteria
optimization. Nevertheless, it is not very effective for an interactive decision support
(Steuer [20]). Therefore, further research is necessary on possible use of other multiple
criteria approaches to the portfolio selection problem.

For the interactive decision support very useful are the so-called aspiration based
techniques of multiple criteria optimization (Lewandowski and Wierzbicki [10]) orig-
inated from the reference point method (Wierzbicki [23], Steuer [20]). The reference
point method, similar to goal programming, uses aspiration levels to define the decision
maker preferences (Ogryczak and Lahoda [15]) but it is completely consistent with
the rational model of preferences and therefore always generates an efficient solution.
The reference point method, when applied to our multiple criteria model, results in an
interactive technique of the reference distribution which seems to be a very attractive
technique for decision support in the portfolio selection. The optimization problems
to be solved for a specific reference distribution are very similar to those considered
in the weighting approach.
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