
International Conference on Computing, Communication and Automation (ICCCA2015)

ISBN:978-1-4799-8890-7/15/$31.00 ©2015 IEEE 908

Test Case Selection for Regression Testing of applications using
Web Services based on WSDL Specification changes

Prerna Singal Anil K Mishra Latika Singh
CSE/IT Dept, CSE/IT Dept, CSE/IT Dept,

ITM University, Gurgaon ITM University, Gurgaon ITM University, Gurgaon
prernasingal@yahoo.com anilkrmishra@itmindia.edu latikasingh@itmindia.edu

Abstract— there is much enthusiasm around web services in
today’s world. Web Services take the advantage of internet to
communicate between two electronic devices connected via a
network. Testing a Web Service is a challenge as the Service
Requester does not have the source code and somehow needs to
fully test the impact of changes on his application. Regression
testing verifies the integrity of the application and makes sure
that the changes have not introduced new software errors. Our
approach involves the parsing of the WSDL XML file to extract
information regarding the operation name, input message and
output message. Both the original and changed XML files for the
web service are parsed to extract their respective information
from the port type and message element of WSDL. Then, we
generate a hash table form the extracted information for both the
original and delta WSDL. We pass the hash tables to a
Comparator as input, which then compares the hash tables and
generates the operation changes as output. In the last step test
cases are selected for regressing testing of the changed web
service based upon the changes in operations provided by the
comparator.

Keywords—Web Services; Regression Testing; Hash Table;
WSDL.

I. INTRODUCTION
There is much enthusiasm around web services in today’s

world. Web Services take the advantage of internet to
communicate between two electronic devices connected via a
network. Web Service is essentially a software system whose
function is to support interoperable machine-to-machine
interaction for transmitting data in a network [1]. They are
standardized web applications which publish their
specification in the UDDI directory that interact with other
web applications for the purpose of exchanging data. Web
services use five main standards to communicate over the
network: Web Services Description Language (WSDL) [3],
Extensible Mark up Language (XML), Hyper Text Transfer
Protocol (HTTP), Simple Object Access Protocol (SOAP) [2]
and Universal Description, Discovery, and Integration
(UDDI).

Web Service has a Service Requester and a Service
Provider. The application software which requests data is
called a Service Requester, and the application software that
would process the Requester’s request and provide the data is
called the Service Provider. The source code for the web

service is with the Service Provider. Service Requester has
only the WSDL. So, whenever a change occurs in the web
service, retesting of web service is required. Testing is
challenge for the Service Requester as he does not have the
source code and needs to fully test the impact of changes on
his application. Web services do not have a Graphical User
Interface. Instead they use a programmable interface for
exchange of messages [7].

Web Services evolve over time as any other software
application. Likewise, we need to perform Regression testing
whenever there is change in the Web Service. Regression
testing is done to ensure that the changed version of the Web
Service is working as desired and it is still performing all the
operations correctly. Regression testing verifies the integrity
of the application and makes sure that the changes have not
introduced new software errors [6]. Regression testing of Web
Services poses a greater challenge of providing maximum test
coverage to the integration with the application ensuring
minimum number of test cases with minimal cost of appraisal
and risk.

[4] Ha and Park have Proposed an ontological technique
where they apply user level Quality of Service (QoS) that
provides two different levels to serve Web service with proper
quality by contribution value. Till date, great effort has been
put into the research of testing Web Services [7] for
integration with other applications. Regression Testing of Web
Services is one such area which needs to be researched and
improve the efficiency and time of testing. Many of the
existing approaches for Regression testing of Web Services
are based on Code based testing. They have their limitations as
the Service Requester does not have the source code for the
Web Service to be tested. A specification based approach of
testing of web services has been proposed by Masood and
Nadeem [8]. We have extended their approach and suggested
some changes in the way XML are stored in order to ease the
regression test case selection of Web Services.

Specification based approach utilizes the WSDL for a Web
Service for selecting the test cases to be executed to retest the
web service. WSDL is an XML-based interface definition
language. It describes the functionality and operations offered
by a web service. WSDL contains all the details regarding the
operations that can be performed by the web service –

International Conference on Computing, Communication and Automation (ICCCA2015)

909

Operation Name, Port Type, Message Types, Input Message,
Output Message and Binding. Port Type contains the
information regarding the operation names available in the
web service and the messages associated with it. Messages
have the data elements of the operation like parameter names
and their types and the output type of the operation.

Refers to Description

 Finds Points to Describes
 Service Service Service

 SOAP

Fig. 1: Web Service Implementation

Our approach involves the parsing of the WSDL XML file to
extract information regarding the operation name, input
message and output message. Both the original and changed
XML files for the web service are parsed to extract their
respective information from the port type and message
element of WSDL. Then, we generate a hash table form the
extracted information for both the original and delta WSDL.
We pass the hash tables to a Comparator as input, which then
compares the hash tables and generates the operation changes
as output. In the last step test cases are selected for regressing
testing of the changed web service based upon the changes in
operations provided by the comparator.

 Test Cases are associated with the operations in the web
services directly. Our test suite maintains the test cases along
with the operation names. The Regression Test selector
chooses only those test cases where there is a change in the
operation name or related values or added a new operation.
Other test cases for which there is no change in the system
may also be selected for regression testing. This is done to
ensure that the application is behaving as is before the
changes. All parts of the system are covered in the Regression
Testing which ensures safety [10]. The Safe Regression Test
Suite covers all the test cases for the system to be tested
properly. It covers the test cases for the parts which have
changed as well as the parts that have not changed in the
system.

Rest of the paper has been written to describe the proposed
approach in detail. It is organized as follows: Section II is
dedicated to literature and Section III outlines the details of
the proposed approach. Section IV provides a conclusion for
the paper and Section V includes any further directions for
research and discussion.

II. RELATED WORK
Web services evolve with the change in technology and

industry practices. As the changes occur, Regression testing
becomes an important and very expensive activity in order to
ensure that these changes will not disrupt the existing
functionalities of the Web application software system.
Regression testing can be:

1. Code Based: Code based techniques consider the source

code changes made in the application software. Test cases
are selected based on changes made in the code for the
application. Thus, code based techniques become very
specific to the programming language used to develop the
source code.

2. Model Based: These techniques generate regression test
cases by looking into different system models. Most of
the model based techniques are based on Unified
Modelling Language (UML) models.

3. Specification Based: These techniques are based on the
specification and changes in features provided by the
customer. Regression Testing is done to ensure that all the
specifications as laid by the customer are met and the
system is safe.

Ruth et al. Based their research on web services made in

JAVA. They proposed a safe regression testing technique for
such services. Application under test was analysed for static
and dynamic analysis of code. A control flow Graph (CFG)
based on the JAVA Code and named it Java Interclass Graph
(JIG). Then, JIG is created for both the original and the new
code. A comparison is made between the two JIGS’ and
potential dangerous edges are identified. Finally, test cases are
selected based on the dangerous edges selected. They have
validated the approach with a simulation tool used to identify
the dangerous edges [12].

Ruth et al. extended their work on JAVA specific web
services to all the web services in general. They used a similar
framework for safe regression testing for generic web services.
A Control Flow Graph (CFG) was created for all the web
services under test. Then, a comparison is done between the
CFG for the old and new web service to highlight the changes
in the Web Service. They also proposed to publish test cases
[13] along with the WSDL specification, which they find
could be helpful in selection of test cases for regression
testing.

Penta, et al. proposed a toolkit that generated XML
encoded test cases for Regression Testing [7]. Test Cases were
used as a Contract between the system Integrator and the
Service Provider. Applications based on services have
dynamicity as an important factor. The main aim of the
proposed approach is to perform selection of test cases during
running state of the application which is using the services.

To achieve a safe regression testing technique, some
assertions are made on Quality of Service (QoS) and some

Client (built in any
language like
.NET, J2EE)

UDDI

Web Service

WSDL

International Conference on Computing, Communication and Automation (ICCCA2015)

910

scenarios. They did not consider the specification changes in
their approach. The toolkit is used to analyse JUNIT Test
Suites and then XML encoded test suites are generated out of
it [7].

During this phase of research, all the regression testing
techniques were mostly code based. Model based regression
testing techniques for web services are also proposed where
models were created to identify the changes and impact of
these changes on the application. Models function to describe
the service interface. Finite state automatons are employed for
external behavior. For establishing data dependencies,
bipartite dependency graph is created. In this graph methods
and classes are represented by nodes. Then an algorithm for
test case selection is proposed [14].

Bai et al. Researched further into the WSDL
Specification. They produced test data on the basis of
operations specified in the WSDL specification of the Web
Services. They also took into consideration the sequence of
operations in the Web Service. WSDL Interfaces were
analyzed to generate test data for testing. Their approach does
not concentrate on the regression testing of Web Services.

Another study used the WSDL Specification approach to
perform regression testing of web service based applications.
WSDL specification was used to select the test cases for
regression testing [8]. WSDL specification XML is parsed and
data type changes are selected. Then, tree is generated out of
the parsed XML. Tree is generated for both the original and
the changed Web Service. Then, a comparison is made
between the trees and test cases are selected using a regression
test selector. This selector uses boundary value analysis for
identifying the test cases. They have built an automated tool to
support their approach.

Masood and Nadeem later extended their approach to
include the port type element for identifying the changes in the
specification WSDL. Port Type element contains the operation
name, input message and output message of the specification
WSDL. A tree is created for both the original and changed
WSDL. A comparison between the trees is made to select the
test cases to be included in the regression test suite.

Our approach takes the port type element from the
specification WSDL [8] and then creates a hash table for both
the original and changed WSDL. Then, a comparison between
the hash tables gives the changes in operation names for the
web service. Based upon the operation changes identified, test
cases are selected to be included in the regression testing.

III. PROPOSED APPROACH
Software Regression Testing is used to identify

unintentional bugs or errors that may have cropped up in the
code as a result of changes made in the application software.
The ease of developing web services and interdependencies
between services and the application increases the pressure on
Web Service Testers to ensure that web services are reliable,
robust, scalable and secure. Safe Regression Testing is

essential in ensuring that web services work as expected
throughout the lifecycle of the Application.

Retesting of modified Web Service using regression testing
techniques could be very costly as we end up testing large
number of test cases. Service Requester does not have the
code, so he has to somehow integrate the changed web service
in the application and test it thoroughly for a Safe behaviour.
Regression testing costs for a web service can be reduced
significantly by identifying the changes in the web service and
selecting test cases accordingly. This approach avoids the
costly creation of new test cases and the useless and not so
productive rerunning of existing test cases when it can be
guaranteed that the unchanged code of web service will
produce the same results as it produced previously.

Our approach utilizes the specification WSDL for
identifying the changes in the web service and consequently
selecting test cases pertaining to the changed part of the
application. WSDL specification contains the web service
description and all the details of the operations it supports.
Important components of WSDL are: Port Type, Binding,
types and messages.

Message: can be input or output. It abstracts the data
definition which is being transmitted.

Operation Name: gives the name of the operation
implemented by the web service.

Input message: gives the expected abstract input parameter
and type information.

Output message: gives the abstract output given by the web
service.

Binding Element: provides operation and message details and
message format.

Port Type: gives all the operations that are part of the web
service. All these operations are performed by the web service.

Type: provides definition of data type. It is a description of
the exchanged message being used by the web service.

Fig. 2: WSDL Port Type

<wsdl:portType name="Service1Soap">
<wsdl:operation name="AddNumbers">

 <wsdl:input message="tns:AddNumbersSoapIn"/>
 <wsdl:output message="tns:AddNumbersSoapOut"/>
</wsdl:operation>
<wsdl:operation name="SubtractNumbers">
 <wsdl:input message="tns:SubtractNumbersSoapIn"/>
 <wsdl:output essage="tns:SubtractNumbersSoapOut"/>
</wsdl:operation>

</wsdl:portType>

International Conference on Computing, Communication and Automation (ICCCA2015)

911

Fig. 3: WSDL Message

We track the changes in the operation name, element name
and type elements of the WSDL. We define the original Web
Service as the base line Web Service. The changed web
service is termed as Delta Web Service. Our approach has
three components XML Parser, comparator and Regression
Test Selector.

XML Parser: The function of the XML parser is to parse the
WSDL XML for both the baseline and delta versions of the
Web Service. XML Parser extracts each element of the WSDL
and stores it in a hash table. Operation name of the Port Type
element forms the key of the hash table. Each operation forms
a unique key for the hash table. All the values related to each
operation namely output, parameter count, element name and
element type is stored in a list. This list forms the value of
each key in the hash table. Every operation key has its own list
of values. Algorithm for the XML parser is given in Fig. 5. It
works on the principle that each operation name in the web
service is unique and can be used as key in the hash table.

Flow of information in the WSDL is as given below [16].

Fig. 4: WSDL Element Relationship
Once the operation name is selected, an empty list is created
for storing all the other relevant information regarding the

operation: output type, parameter count, input parameter name
and input parameter type. This way we are able to store the
information regarding each operation in the WSDL into a hash
table. XML parser is run both for the baseline and delta
WSDL.

Fig. 5: Algorithm for XML Parser

Hash table: Generated hash table has operation name as the
key and values stored as a list for each key. Format for hash
table is shown in Fig. 6.

Key Value

Operation Name

Return type
Parameter count
Input parameter name 1
Input parameter name 1 type
Input parameter name 2
Input parameter name 2 type
.
.
.
Input parameter name N
Input parameter name N type

Fig. 6: Hash Table

<s:element name="AddNumbers">
 <s:complexType>
 <s:sequence>
 <s:element name="number1" type="s:int" maxOccurs="1"
 minOccurs="1"/>
 <s:element name="number2" type="s:int" maxOccurs="1"
 minOccurs="1"/>
 </s:sequence>
 </s:complexType>
</s:element>

Input: WSDL Specification XML

Output: Hash table H

Algorithm: Parse WSDL XML and store it in hash table.

1. Select the <PortType> element of the WSDL specification.
2. Select the <operation> element under the <PortType>

element. Select the name of the operation and assign it as the
key for the hash table <key, value> pair.
Operation Name is the unique key value for the Hash table.

3. Create an empty List L which will store all the values related
for a particular Key.

4. Select the <input message> element and count the number of
<sequence> elements associated with the <input message>.
This count will give the number of parameters for the
selected operation name.

5. Add the count to the List L.
6. Select the <input message> element and using the input

message name extract the parameter names and their
respective types for the selected operation name.

7. Add the parameter names and their respective values to the
List L.

8. Select the <output message> element and using the output
message name extract the return type for the selected
operation name.

9. Add the return type value to the List L.
10. Link the List L as the value part for the selected operation

name key in the Hash table.
11. Repeat Steps 2-10 for all the <operation> elements in the

WSDL.

International Conference on Computing, Communication and Automation (ICCCA2015)

912

Comparator: Once we have the hash tables for the baseline
and Delta WSDL, we pass them to a comparator, which
compares the values based upon operation keys. Comparator
first scans the Delta Hash table. For each operation key that
also exists in the baseline Hash table, the set of values are
compared. In case the values match nothing is done. Case
where the values do not match, corresponding operation key is
stored in a list. This process is repeated until we have
traversed all the keys in the Delta Hash Table.

Fig. 7: XML Comparator

In case, no corresponding match for the operation key is found
in the baseline hash table, it is stored in a separate list.

 Now, baseline hash table is traversed. We look for any
operation name that is not present in the delta hash table.
These are the operations which are no longer available in the
changed Web Service. Any reference to them should be
removed from the application and application be tested
thoroughly. All the test cases pertaining to these obsolete
operations should be removed or archived from the current
testing suite.

Regression Test Selector: We have a baseline testing suite
where each test case run is associated with an operation name.
Changes in the operation keys from the comparator are used to
select, add, modify and remove the test cases from the
baseline test suite. This forms our delta test suite. We can have
different situations based upon the operation changes.

1. Change in values related to Operation Key: All the test

cases related to the operation key are reviewed and
modified if required. Regression testing is done to ensure
that the web service behaviour is the same as was before
the changes.

2. No change in Operation Key: Test Cases related to the
operation key may not be run, and included as it is in the
delta test suite.

3. Operation Key Added: New Test Cases have to be
created for the operation key and tested thoroughly as per
the expected behaviour. These test cases will also be
included in the delta test suite.

4. Operation Key deleted: All the test cases related to the
operation key are removed from the test suite. As the web
service no longer performs the operation, application will
need to be changed and tested for any references to the
obsolete operation.

Now, Regression Testing can be performed based on the delta
test suite. We already have the list of operation name changes
and each test run is associated with the operation name. We
can selectively run only those test cases which are associated
with the modified operations in the web service. This will
ensure a complete and efficient regression testing of the
system.

This enlists a comprehensive approach towards maintaining
and selecting a regression test suite.

IV. CONCLUSION
In this paper we presented a specification based test case

selection for regression testing of web services. Our approach
uses the specification WSDL and parses its elements into a
hash table. Research has shown that, in some situations, hash
tables are more efficient and fast than search trees or any other
table lookup structure like dictionary.

Time

Complexity
in Big O
Notation

Hash Table

Binary Tree

Average

Worst

Average

Worst

Space O(n) O(n) O(n) O(n)

Search O(1) O(n) O(log n) O(n)

Insert O(1) O(n) O(log n) O(n)

Delete O(1) O(n) O(log n) O(n)

Fig. 8 Time complexity of Hash table and Binary Tree

We have extended the approach of Masood and Nadeem

and used hash table to store the WSDL XML instead of an
operation tree. Use of hash table makes the comparator
algorithm much simpler. Also, based on the time complexity
hash table on an average perform better than search trees. The
regression test selector uses the operation changes identified
by the comparator. This forms the basis of selecting the test
cases for the delta web service from the baseline web service.
Hence, provides a safe regression test selection approach.

Input:
 Baseline Hash table H
 Delta Hash table H’
Output:
 List Of keys from the <key, value> pair with value changes L1
 List of keys added in the hash table H’L2
 List of keys deleted from the hash table H’L3

Algorithm:

1. For each key opkey in delta hash table H’, Repeat step 2.
2. If hash table H contains opkey

2.1 Compare the List of values associated with the opkey.
2.2 If all the values do not match, add the opkey to List L1

 Else
 Add the opkey to List L2

3. For each key oldkey in hash table H, Repeat step 4.
4. If hash table H’ does not contain oldkey

4.1 Add the oldkey to List L3

International Conference on Computing, Communication and Automation (ICCCA2015)

913

V. FUTURE RESEARCH
In future we plan to enhance our work by automating

the test generation and selection process for regression
testing based on the output from the comparator. Our
research is based on the operation name as the key for the
hash table assuming each operation to be unique. We can
consider using a composite key for the hash table for
increasing the efficiency of the hash table.

REFERENCES
[1] K. Gottschalk, H. Kreger, J. Snell and S. Graham, “Introduction to Web

Services Architecture”, IBM Systems Journal, NO 2, VOL 41, pp. 170-
177, (2002)

[2] Simple Object Access Protocol (SOAP) 1.2, Part 2, “World Wide Web
Consortium” - Adjuncts: (2007), http://www.w3.org/TR/soapl 2-partO/

[3] Web Services Description Language (WSDL) 2.0, part 1: “World Wide
Web Consortium” - Core Language (2007) ,
http://www.w3c.org/TR/wsdl20/

[4] . Ha and H-S. Park, “QoS based Client Information for Semantic Web
Service” - International Journal of Software Engineering and
Applications, Vol. 3, No. 1 (2009)

[5] M-H. Lee, C-J.Yoo and O-B. Jang, “Embedded System Software
Testing Based on SOA for Mobile Service” - International Journal of
Advanced Science and Technology, Vol.1 (2008)

[6] R. Binder, “Testing Object-Oriented Systems: models, patterns and
Tools”, ISBN-10: 0321700678, Addison-Wesley Professional; Edition 1,
ISBN-13: 978-0321700674 (2000)

[7] M. D. Penta, G. Esposito, M. Bruno, G. Canfora and V. Mazza, “Web
Services Regression Testing and Test and Analysis of Web Services”,
Barresi, L., Nitto, E.D. (eds.) “Test and Analysis of web Services”, pp.
205-234. Springer, Heidelberg (2007)

[8] T. Masood, A. Nadeem and G. S. Lee, “A safe Regression Testing
Technique Based on WSDL Specification” - Software Engineering
Business Continuity and Education Communications in Computer and
Information Science, Springer Berlin, Heidelberg (2011)

[9] T. Masood, A. Nadeem and S. Ali, “An automated approach to
regression testing of web Services based on WSDL operation changes” –
Emerging Technologies(ICET), IEEE 9th International Conference 2013

[10] XML Schemas - Part 2, “Data types - World Wide Web Consortium”,
http://www.w3.org/TR/xmlschema-2/

[11] P. C. Jorgensen, “Software Testing: A Craftsman's Approach”, second
ed., LLC, CRC Press, 2002.

[12] M. Ruth, F. Lin and S. Tu., “Applying Safe Regression Test Selection
Techniques to Java Web Services”, 1, 10 - (2006)

[13] M. Ruth, S. Tu, S. Oh, A. Loup, B. Horton, O. Gallet and M. Mata,
“Towards Automatic Regression Test Selection for Web Services”, 31st
Annual International Computer Software and Applications Conference,
July 2007 24-27, Beijing, China.

[14] T. A. Khan and R. Heckel., “A Methodology for Model based
Regression Testing of Web Services”, Academic and industrial
Conference - Practice and Research Techniques, pp. 123-124, (2009)

[15] X Bai, W Dong, WT Tsai, Y Chen, “WSDL-based Automatic Test Case
Generation for Web Services Testing”, IEEE International Workshop on
Service-Oriented System Engineering (SOSE), Planned Parenthood.215-
220. IEEE Computer Society, (2005), Los Alamitos

[16] http://download.oracle.com/otn_hosted_doc/jdeveloper/1012/web_servic
es/ws_wsdlstructure.html

