
Data Storage and Retrieval with RPL Routing
Pietro Gonizzi, Gianluigi Ferrari

Department of Information Engineering
University of Parma

Parco Area delle Scienze 181/A
Parma, Italy

Email: pietro.gonizzi@studenti.unipr.it, gianluigi.ferrari@unipr.it

Paolo Medagliani, Jérémie Leguay
Thales Communications and Security

160 Bd de Valmy
Colombes Cedex, France

Email: {paolo.medagliani, jeremie.leguay}@thalesgroup.com

Abstract—In scenarios like the surveillance of isolated areas,
when the border node of a network does not have a permanent
connection with the Internet, Wireless Sensor Networks (WSNs)
are calling for resilient in-network data storage techniques which
minimize the risk of data loss. The efficiency of these techniques
can be largely improved exploiting information on the status of
the network, such as that used by routing protocols. In particular,
one of the most used protocol in Internet of Things (IoT) scenarios
is the IPv6 Routing Protocol for Low power and lossy networks
(RPL). In this paper, we propose a redundant distributed data
storage and retrieval mechanism to increase the resilience and
storage capacity of a RPL-based WSN against local memory
shortage. We evaluate our approach in the Contiki operating
system through extensive analysis with the Cooja simulator.
Index Terms—distributed data storage; RPL; data replication;

data retrieval; Contiki; Cooja.

I. INTRODUCTION

In contrast to conventional network data storage, storing
data in Wireless Sensor Networks (WSNs) represents a chal-
lenge because of the limited power, memory, and communi-
cation bandwidth of WSNs. Recently, sensors have reached
higher capabilities, in terms of processing speed and local
storage, than in the past years [1], making them more attractive
for in-network storage deployments.

Typically WSNs are composed of a set of unattended nodes,
deployed to sense the surrounding environment, and a sink
node in charge of collecting data measurements and relaying
them to a management entity. There are several reasons which
may prevent a sensor node from transmitting data to the sink
right after acquisition. For instance, sensor nodes may not
always be able to reach the sink node due to intermitting link
conditions or duty-cycle operations at the nodes. In addition,
when applications do not require real-time collection, storing
data units and sending aggregate data bursts can contribute to
reduce the amount of radio transmissions, thereby increasing
the lifetime operation of the WSN. Illustrative applications
include habitat monitoring, such as tracking animal migrations
in remote areas [2], studying weather conditions in national
parks [3], etc. Such scenarios require to collect and store as
much data as possible between two consecutive data retrievals
performed by an external agent. However, storing data on the
sensor node leads to local memory overflow if data retrieval
is not timely performed by the sink. To avoid data dropping

or overwriting, sensor nodes can cooperate with each other by
sharing acquired data.

Node failure is also a critical issue in WSNs. Periodic inac-
tivity (e.g., for energy saving purposes), physical destruction,
and (software) bugs are likely to appear in WSNs, leading
to data loss. Thus, redundancy by means of data replication
(i.e., by storing copies of the same data onto various nodes)
contributes to increasing the resilience of the WSN.

In this study, we extend the work presented in [4], where
only distributed storage (and no data retrieval) is considered.
We propose a redundant distributed data storage and retrieval
mechanism to increase the resilience and storage capacity
of a RPL-based WSN against local memory shortage. RPL,
an IETF standard for IPv6 routing in low-power WSNs, is
a Distance Vector routing protocol that builds a Destination
Oriented Directed Acyclic Graph (DODAG) rooted at one
sink (DAG root) [5]. We evaluate our approach in the Contiki
operating system using the Cooja [6] simulator. In particular,
we show how RPL can be used for robust and energy-efficient
distributed data storage and retrieval.

The paper is organized as follows. Section II is dedicated to
related works. An overview of RPL is presented in Section III.
Section IV is devoted to the design of the data distribution
and retrieval mechanisms. Section V presents the performance
results. Finally, Section VI concludes the paper.

II. RELATED WORK

Various schemes to efficiently store and process sensed data
in WSNs have been proposed in the past years [7]. In a
fully distributed data storage approach, all nodes participate
in sensing and storing in the same way. All nodes, first, store
their sensor readings locally and, once their local memories
have filled up, they delegate storage to other available nodes.
A first significant contribution in this direction is given by
Data Farms [8]. The authors propose a fully distributed data
storage mechanism with periodical data retrieval. They derive
a cost model to measure energy consumption and show how
a careful selection of nodes offering storage, called donor
nodes, optimizes the system capacity at the price of slightly
higher transmission costs. They assume the network has a tree
topology and each sensor node knows the return path to the
sink node, which periodically retrieves data.
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Data replication consists in adding redundancy to the sys-
tem by copying data at several donor nodes (within the WSN)
to mitigate the risk of node failure. A scoring function for
suitably choosing a replicator node is proposed in [9]. The
function is influenced by critical parameters such as the num-
ber of desired replicas, the remaining energy of a replicator
node and the energy of the neighbors of the replicator node.
Authors in [10] propose ProFlex, a distributed data storage
protocol for replicating data measurements from constrained
nodes to more powerful nodes.
Data retrieval consists in forwarding the collected sensed

data of the WSN to a central base station for further pro-
cessing. The Collection Tree Protocol (CTP) is probably the
routing mechanism most frequently used for multi-hop fixed
data retrieval in WSNs [11]. The strengths of CTP are (i) its
ability to quickly discover and repair path inconsistencies and
(ii) its adaptive beaconing, which reduces protocol overhead
and allows the use of small radio duty cycles. Dozer [12] is
a data retrieval protocol aiming at achieving very low energy
consumption. It builds a tree structure to convey data to the
sink, enriched with a Time Division Multiple Access (TDMA)
scheme at the MAC layer to synchronize the nodes.

With respect to related works, our study goes beyond. First,
we encompass, with a fully distributed mechanism, both data
replication and distributed storage. Second, we show how RPL
can allow the design of a resilient data placement as well as an
efficient data retrieval scheme. To the best of our knowledge,
this is the first work addressing data storage and retrieval
mechanisms on top of RPL.

III. RPL OVERVIEW
RPL [5] has recently emerged as the standard for routing

in low-power IPv6 WSNs. It is based on a DODAG anchored
at one or more nodes (DAG root(s)). Each node computes its
rank in the RPL tree. This quantity describes the depth of
the node in the DODAG. To build and maintain the topology,
RPL nodes periodically exchange DODAG Information Object
(DIO) messages, in order to propagate routing information
downward in the tree. This kind of structure is particularly
suitable for multipoint-to-point traffic, where the DAG root is
the destination of all data packets.

In support of point-to-multipoint and point-to-point traffic,
RPL defines an additional control message, denoted as Desti-
nation Advertisement Object (DAO) message, used to populate
the routing tables of parent nodes in the DAG (i.e., nodes with
lower rank), in order to route packets in the down direction.
Routes are computed according to an Objective Function (OF)
and a given set of metrics and constraints of interest.

IV. REDUNDANT DATA STORAGE AND RETRIEVAL
In our scenario, nodes of the WSN, upon joining a RPL

DODAG, keep on collecting data (acquired with a given
sensing rate). In order to prevent data losses, data is replicated
in several nodes (possibly including the generating node). This
consists in copying and distributing replicas of the same data
to other nodes with some available memory space. Information

Symbol Description Unit
N Number of RPL nodes scalar
Bi Node i’s buffer size, i ∈ {1, . . . , N} scalar
ri Node i’s sensing rate, i ∈ {1, . . . , N} s−1

mhddown minimum hop distance (in the down direc-
tion) at which a node with some available
space can be found

scalar

mhdup minimum hop distance (in the up direction)
at which a node with some available space
can be found

scalar

Tadv Period of memory advertisement (from each
node)

s

R Maximum number of replicas per sensing
data unit

scalar

T Period of data retrieval (from the DODAG
root)

s

TABLE I
MAIN SYSTEM PARAMETERS

about memory availability is periodically broadcasted, by each
node, to all direct neighbors.

Data retrieval is performed by an external agent that pe-
riodically connects to the DAG root and gathers all the data
from the WSN. The main parameters are listed in Table I.
Without loss of generality, we consider a WSN with N fixed
RPL nodes and an additional node, who acts as DAG root
but does not participate in sensing and storage. Therefore, the
overall number of nodes in the WSN is N +1. The i-th node
has a finite local buffer of size Bi (dimension: [data units])
and sensing rate ri (dimension: [data units/s]).

Each node broadcasts, without acknowledgement and every
Tadv (dimension: [s]), its memory status to all nodes within
direct transmission range (i.e., 1-hop neighbors). Each memory
advertisement consists of 6 fields relative to the sending
node: (i)the RPL rank of the node; (ii) value of sensing
rate; (iii) updated available memory space; (iv) an aggregate
that indicates the status of nodes’ memories in the down
direction in the DODAG; (v) an analogous value for the up
direction; and (vi) a sequence number. Each node maintains
a table which records the latest memory status received from
neighbor nodes. Upon reception of a memory advertisement
from a neighbor, a node updates its memory table, using the
sequence number field to discard multiple receptions or out-
of-date advertisements. The aggregate of the status of node
memories in the down direction in the DODAG is given by
the minimum hop distance (mhddown parameter) at which a
node with some available space can be found. This distance
is computed as follows: if a node detects that at least one of
its children (i.e., neighbors with higher RPL rank) has some
space locally, it sets this distance to 1. Otherwise, a parent
increments by 1 the value of the minimum distance given by
its children. Once the distance reaches a maximum value, a
node assumes that there is no available memory in the down
direction of the DODAG. Similarly, the status of the nodes’
memories in the up direction is computed in the same way, but
in the inverse direction of the DODAG; in this case, it is given
by the minimum hop distance upward (mhdup) parameter.

An illustrative scenario is shown in Fig. 1. In Fig. 1(a), node
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Fig. 1. Messages exchanged for memory advertisements. (a) Memory
availability is announced by node 3, at 1 hop in its down direction; (b) Node
1 updates mhddown to 1 as it becomes aware of a closer node with some
available memory.

3 transfers a memory advertisement, to node 1, saying that it
has no available space but there is one of its 1-hop children
with available space, as stated by mhddown. Node 1, which has
no available memory, then sets mhddown to 2, because it has
received the information that the closest node with available
memory is at 2-hop distance. Then, as shown in Fig. 1(b),
node announces that it has available space. Consequently, node
1 becomes aware that there is a closer node with available
space, so it updates its mhddown to 1.

The proposed distributed storage mechanism is fully de-
centralized, in the sense that all nodes play the same role.
It consists in creating at most R copies of each data unit
generated by a node and distributing them across the network,
storing at most one copy per node. The copies should be stored
as closely as possible to the DAG root to reduce the energy
consumption of the following retrieval phase. Each copy is
referred to as replica.

Consider node i ∈ {1, . . . , N}. At time t, the node gener-
ates, upon sensing, a data unit. The memory table of node i

contains one entry per direct neighbor. Node i selects from its
memory table the neighbor node, called donor, with the largest
available memory space and the most recent information.
Moreover, priority is given to those donors which are parents
of node i in the tree, i.e., nodes with lower rank. If no parents
can be selected, node i looks for a child in the tree, i.e., a
node with higher RPL rank, providing that such node has
some available space. If all neighbors have no space locally,
then node i checks if one neighbor at least has a neighbor
(at 2 hops from node i) with some available space, in the up
direction and/or in the down direction of the DODAG. In this
case, again, priority is given to nodes in the up direction. If
there is no suitable neighbor in the memory table, there is
no possibility to distribute replicas of the data unit across the
network. In this case, only one copy can be stored in the local
memory of node i, provided that i has some space locally.

If a donor node can be selected, node i sends to it a copy
of the data unit, specifying how many other copies are still to
be distributed in the WSN. According to the principle outlined
above, the number of required copies is set to either R− 1 (if
node i can store the original data locally) or R (if node i’s local
memory is full). Upon reception of the copy, the donor node
stores the copy in its memory, if it has some space locally, and
selects the next donor node among its neighbors, discarding the
sending node and the source node from the candidate nodes.
The next donor is chosen with the same rule, prioritizing nodes

Fig. 2. Hop-by-hop replication in the case of R = 3 desired replicas. Data
is distributed to nodes in the down direction of the RPL DODAG as the
memories of the parents are full.

closer to the DAG root. This allows replicas to spread well
throughout the DODAG. At this point, the donor sends the
copy to the next chosen donor node, decreasing the number
of required copies by 1. The replication process continues
recursively until either the last (R-th) copy is stored or stops
when one donor node cannot find any suitable next donor node.
In the latter case, the final number of copies actually stored
in the WSN is smaller than R. Note that, if a donor cannot
find a next neighbor with a lower RPL rank (i.e., closer to the
DAG root), the replica may follow a different reversed path
along the DODAG, and retake the original direction later.

In Fig. 2, an illustrative example with R = 3 desired replicas
is shown. Nodes always try to distribute replicas to parents in
the up direction of the DODAG, e.g., nodes with a lower rank.
As the network saturates, data is distributed towards nodes
with higher rank, i.e., in the down direction of the DODAG.

As for data retrieval, retrieval requests are sent periodically
by the DAG root and propagated to all nodes of the DODAG.
The data retrieval takes place, upon reception of the request,
from each node towards the DAG root, following the default
RPL path towards the root. Such many-to-one traffic pattern,
if not carefully handled, can cause (i) many collisions and
(ii) high unbalanced and inefficient energy consumption in the
whole network. To reduce these risks, a replica of a given data
item is sent only if it is the closest to the DAG root, amongst
all the stored replicas of that data item.

V. PERFORMANCE RESULTS

The proposed distributed storage and retrieval mechanisms
have been implemented in Contiki 2.5 and evaluated in Cooja,
a Java-based WSN simulator [6]. The simulated scenario,
depicted in Fig. 3, is composed of N = 60 storing nodes,
placed in a rectangular grid, and an additional node, who acts
as DAG root. Each storing node inside the grid communicates
with 4 direct neighbors. Moreover, to simulate real conditions,
the node interferes with some extra nodes: a collision occurs if
a node and at least one amongst its neighbors or its interfering
nodes transmit a packet at the same time. For example, node
41 has 4 neighbors: nodes 34, 40, 48, and 42, respectively. The
interfering nodes, shown between the two circles, are nodes:
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Fig. 3. Scenario evaluated in Cooja. 60 storage nodes are deployed in a
regular grid. Each node has 4 direct neighbors. Node 1 is the DAG root. The
network has a total size equal to 13 hops.

33, 35, 47 and 49, respectively. Note that nodes along the
borders have less neighbors than the inside ones.

The interval between two consecutive data retrieval is T =

10 min. The sensing period of the nodes is an integer number
chosen randomly and independently in the range [1,9] s. All
nodes have the same buffer size, equal to B = 100 data units.
The memory advertisement period Tadv is set to 30 s. We adopt
the Expected Transmission Count (ETX) as RPL metric. In
particular, the ETX metric minimizes the number of expected
transmissions to reach the DAG root.
Impact of the Number of Replicas: Four possible values

for the number R of replicas have been considered: 1, 3, 5,
and 7, respectively. Note that the case with R = 1 is without
replication, i.e., only the original copy is stored.

Regarding the spatial distribution of replicas, Fig. 4 shows
the average hop distance reached by the redundant copies,
from the owner of the original one, for various values of R.
Our results show that consecutive replicas tend to move farther
and farther from the source node along the DODAG. While the
mechanism proposed in [4] was inefficient in terms of storage
spreading (in fact, the average hop distance saturated around
2), the current mechanism, thanks to RPL, can lead to a more
resilient data preservation in the presence of a failure of an
area involving several neighboring nodes.
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Fig. 4. Average hop distance reached by the k-th replica, as a function of
k. k varies between 1 and 3 (R = 3), 1 and 5 (R = 5), 1 and 7 (R = 7),
respectively. The distance is calculated from the position of the first replica.

At this point, it is of interest to evaluate the data placement
throughout the WSN over time. As discussed previously, the
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Fig. 5. Percentage of memory occupancy varying the hop distance from the
DAG root, at different time instants. Memories of nodes closer to the DAG
root saturate faster. The number of replicas R is set to 7.

mechanism distributes replicas prioritizing donor nodes closer
to the DAG root. Fig. 5 shows the average saturation level of
the memories of the nodes at different hop distances from the
DAG root, for several observation instants. It can be noticed
that the portion of the DODAG closer to the root fills the
memories faster. This can be of help in the data retrieval phase,
as data needs to follow a shorter path to reach the DAG root.

In Fig. 6(a), the amount of unique stored data (i.e., copies
are not accounted for) is shown, as a function of time. Without
redundancy (R = 1), the amount of unique stored data reaches
the network storage capacity C = N ×B = 6000 data units.
In the presence of redundancy (R > 1), several copies of each
data unit are distributed in the WSN and, therefore, a smaller
amount of unique data is stored.

As for data retrieval, in the case with R > 1, less data is
delivered to the DAG root, since only the closest replica is
sent. On the other hand, with R = 1, all N ×B = 6000 data
units are delivered to the sink; this increases the amount of
many-to-one traffic, and, consequently, the risk of collisions.
To reduce the impact of collisions, data units are transmitted,
from each node towards the DAG root, one at a time. The
interval between two consecutive transmissions is denoted as
I (dimension: [s]). Intuitively, a shorter interval may speed up
the retrieval process, but it may also increase the collisions’
probability and, therefore, the percentage of data loss at the
DAG root. On the other hand, longer values of I may increase
the amount of retrieved data at the sink, penalizing the latency
of the retrieval phase.

In Fig. 6(b), the amount of retrieved data at the DAG root
is shown, as a function of time, for various values of R. The
interval I is set to 2 s in this case. As expected, the amount
of retrieved data decreases with R, since there is more unique
data in the system when no redundancy is required. However,
it can be observed that, with R = 1, only a small fraction,
i.e., about 50% of the stored data C = N ×B, is successfully
retrieved; the rest is lost because of collisions. For higher
values of R, the corresponding percentage of retrieved data
increases significantly. For instance, in the case with R = 7,
about 2000 data units are retrieved, which corresponds to
approximately 80% of the total amount of unique data.

Collisions are influenced not only by R, but also by I .
Fig. 6(c) shows that, with no replication (R = 1), the amount
of retrieved data significantly increases for higher values of I .
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Fig. 6. Stored and retrieved data considering memory size equal to 100 data units, N = 60 storage nodes, and a memory advertisement period of 30 s; (a)
unique stored data; (b) retrieved data for several values of R, with I = 2 s; (c) retrieved data for several values of I , with R = 1.

To summarize, the percentage of retrieved data amongst the
total unique stored data in the system is shown in Table II, for
various combinations of R and I .

I = 1 s I = 2 s I = 4 s I = 8 s
R = 1 33% 50% 68% 82%
R = 3 49% 66% 95% 100%
R = 5 50% 74% 95% 100%
R = 7 55% 80% 100% 100%

TABLE II
PERCENTAGE OF RETRIEVED DATA.

VI. CONCLUSIONS
This paper has addressed the problem of redundant data

distribution and retrieval for WSN-based observation systems.
A redundant distributed data storage mechanism, built on top
of RPL, has been proposed in order to increase the resilience
and storage capacity of a WSN against node failure and
local memory shortage. The performance has been evaluated
extensively through simulations. The mechanism lends directly
to the implementation a complimentary data retrieval scheme,
whose performance has been evaluated as well. Our results
show clearly a trade-off between storage redundancy (which
depletes the total available storage memory) and retrieval
efficiency (in terms of percentage of retrieved data).

Future research activities will include the use of other
parameters in the replication strategy, such as the energy con-
sumption of the nodes or the reachability of nodes, especially
if they operate a low-power MAC layer with duty-cycles
(e.g., ContikiMAC or X-MAC). We also envision to study
dynamic reconfigurations of node behaviors (e.g., sampling)
and communication layers (e.g., transmitting power, duty-
cycle) to meet replication demands with minimum energy
cost. Finally, we would like to evaluate performance of the
mechanism on real testbeds.
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