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Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-
Permeable Ion Channels in Pain Signaling. Physiol Rev 94: 81–140, 2014;
doi:10.1152/physrev.00023.2013.—The detection and processing of painful stimuli
in afferent sensory neurons is critically dependent on a wide range of different types of
voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to

name a few. The functions of these channels include the detection of mechanical and chemical
insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation
of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord
neurons that project to pain centers in the brain. Long-term changes in ion channel expression and
function are thought to contribute to chronic pain states. Many of the channels involved in the
afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the
mere generation of electrical activity. In this article, we provide a broad overview of different
calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
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I. INTRODUCTION

Acute pain is an essential sensory input that protects individ-
uals from harmful environmental stimuli such as heat, extreme
cold, chemical irritants, and mechanical tissue damage (803,
956). Nociception alerts us to internal threats such as infec-
tions, broken bones, and torn tendons. Without the ability to
feel acute pain, there would be little stopping an individual
from continuing to engage in harmful behavior. This is exem-
plified in patients with congenital insensitivity to pain (CIP), a
condition that has been linked to several different genes (214)
and which has been featured in popular literature, perhaps
most notably in the form of villain Ronald Niedermann in
Stieg Larsson’s novel The Girl Who Played with Fire. Just like
the Niedermann character, real life CIP patients are unable to
feel acute pain, while maintaining a normal sensation of touch
(214). Children with CIP are at risk of self-mutilation without
realizing the associated tissue damage (124). An intriguing

report on a group of six Pakistani children (aged 6 to 14 yr)
further highlights the dangers associated with CIP. These chil-
dren were completely insensitive to pain associated with phys-
ical injury (204) and, as a result, had endured a host of physical
injuries such as burns and fractures. All six Pakistani children
shared a null mutation in the Nav1.7 sodium channel, thus
losing all ability to sense thermal and mechanical pain (204).
CIP patients that survive childhood can lead productive lives, but
constant vigilance is necessary for protecting against injury.

In contrast to acute, nociceptive pain, there are chronic pain
conditions that do not appear to fulfill a useful physiological
function, such as inflammatory and neuropathic pain (912).
These painful conditions are often difficult to manage and
negatively impact not only the patient’s quality of life (704),
but the associated reduced ability to work also results in an
economic burden that is conservatively estimated to be $600
billion in the United States alone (419). It thus remains a high
priority to identify novel analgesics that target chronic (unde-
sired) pain, while sparing an individual’s ability to detect nox-
ious stimuli. Chronic pain involves changes in expression
and/or function of a number of different types of ion channels
in peripheral pain-sensing neurons and the central nervous
system (CNS) (912) including upregulation of N-methyl-D-
aspartate receptors (NMDARs)andvoltage-gatedcalciumchan-
nels among many others (954). Numerous ion channels contrib-
ute to the detection and processing of pain signals. A subset of
these channels are permeable to calcium ions (266), which in turn
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mediate a host of cell signaling functions such as the release of
neurotransmitters (644), the activation of calcium-dependent en-
zymes (330), and calcium-dependent changes in gene expression
(249,640,946).Thusaberrantcalciumsignaling isakeystepthat
alters activity of neural networks engaged in the modulation of
pain; changes in these networks form the cellular underpinnings
of chronic pain. Here, we review the role of calcium-permeable
ion channels in the detection, transmission, and processing of
pain signaling in the primary afferent pain pathway.

II. ANATOMY OF THE AFFERENT PAIN
PATHWAY

Pain signaling is initiated by the detection of noxious stimuli
through specialized primary nociceptors located in peripheral
endings within the skin and in internal organs. The cell bodies
of these neurons are contained within the dorsal root ganglia
(DRG) or in the trigeminal ganglia (for cephalic sensory inner-
vation), whereas their nerve terminals are localized in the su-
perficial layers (laminae I and II) of the dorsal horn of the
spinal cord (for DRG) or in the brain stem (for trigeminal
ganglia) (67). In humans, 29 pairs of DRG (at each vertebral
level) and 1 pair of trigeminal ganglia contain sensory neurons.
These neurons have a peculiar morphology with a pseudo
unipolar axonal projection arising from the cell body and bi-
furcating in two branches: one very long projection targets the
peripheral receptive fields, and a second projection connects to
the CNS in the spinal cord or brain stem (835) (FIGURE 1).
Therefore, the vast majority of the afferent neuron is com-
prised of axonal structures (more than 99% of the cell mem-
brane; Ref. 236). The distal parts detect external stimuli that
give rise to action potentials propagating along the axonal
fibers up to central synapses in the CNS. The role of the sen-
sory neuron cell body in coding sensory information is less
defined (236). More globally, peripheral sensory neurons con-
vey a diversity of sensory modalities including pain and itch,
discriminative touch, and perception of body muscle tension
(proprioception). The classification of sensory fiber subtypes
depends both on their function [i.e., conduction velocity (CV)]
and on their anatomical features (such as axonal fiber size and
myelination; Refs. 274, 275, 697, 1024). Fast-conducting A�
and A� fibers (CV: A� 70–120 m/s, A� 70–30 m/s) have large
calibers (5–20 �m) and a large cell body (�40 �m). They are
heavily myelinated and correspond to proprioceptive neurons
(A�) and proprioceptive and tactile neurons (A�). Some sub-
classes of A� fibers also support nociceptive signals (246, 281).
Lightly myelinated A� fibers, with a slower CV (12–30 m/s)
and a smaller diameter (2–5 �m) and cell body size (30–40
�m), convey tactile and nociceptive information. Finally,
slow-conducting C fibers (CV 0.5–2 m/s) with unmyelinated
thin axons (0.4–1.2 �m) and small soma size (�25 �m) are
mainly involved in detecting pain and itch signals, but also
participate in light touch related to tickling (447, 1024). Stud-
ies using skin-nerve preparations (727, 1023) or in vivo single-
unit recording of peripheral nerve axons with microneurogra-
phy (727, 771, 894, 1023) further highlight their diversity. To

mirror these functional data gathered over the years, detailed
description of the anatomy of the distal and central nerve
endings required novel technical approaches. The use of genet-
ically modified mice for specific labeling of fiber subtypes al-
lowed researchers to address this issue, revealing that the
structural organization of distal fibers in the skin (958) and the
central fibers in the dorsal horn of the spinal cord (532) is
extremely complex. Thus, based on these criteria, nociceptive
neurons encompass a highly heterogeneous population of neu-
rons with respect to their morphological, anatomical, and elec-
trophysiological properties (507, 580, 726).

Over the past few years the molecular characterization of no-
ciceptive neurons has been intensively explored, revealing that
a number of factors/markers define specific subsets of neurons.
For example, nociceptive neurons in the adult animal have
been classified into two major categories according to their
expression of neurotrophin receptors: 1) neurons dependent
on the neurotrophin nerve growth factor (NGF) that express
TrkA receptors and 2) neurons responsive to members of the
glial-derived neurotrophic factor (GDNF) family that express
Ret receptors (613, 614). These populations are even more
diverse than just two ensembles, since they originate from
distinct lineages during development with early and late TrkA
or Ret neurons (50, 562). Therefore, subcategories can be
separated by distinct molecular markers. Among these mark-
ers the TrkA-positive neurons express calcitonin gene-related
peptide (CGRP) and substance P (SP) and are thus referred to
as peptidergic nociceptors. In contrast, nonpeptidergic nocice-
ptors are mainly comprised of Ret positive neurons (614).
These two classes of neurons anatomically project to distinct
laminae in the dorsal horn with TrkA fibers innervating the
outermost region (lamina I) and the Ret fibers innervating
distinct layers of lamina II (507, 532, 613). In addition, these
two populations are not homogeneous and contain distinct
cytological markers that reflect their specific roles in detecting
sensory information. For example, the Ret-positive cells con-
tain a population of neurons that express cell surface glycol
conjugates that are specifically recognized by isolectin B4 (IB4)
from Griffonia simplicifolia (613). A specific subgroup of Ret-
positive and IB4-negative cells corresponds to low-threshold
mechanoreceptive C fibers that specifically express tyrosine
hydroxylase and the vesicular glutamate transporter VGlut3
(532, 767). A number of studies have revealed that small no-
ciceptive IB4 positive and negative neurons play distinct roles
in pain (245, 809, 964). Going forward, it will be important
albeit challenging to identify nonoverlapping molecular mark-
ers of the different subpopulations of sensory neurons and link
these to specific pain responses or tactile sensations.

Some of the markers associated with specific afferent fiber
populations include calcium-permeable ion channels reviewed
here. The cold/menthol receptor TRPM8 (689) and the heat/
vanilloid receptor TRPV1 (138) segregate into nonoverlap-
ping classes of nociceptors, although TRPV1 and TRPM8 co-
expression has been observed in cultured neurons (237). The

BOURINET ET AL.

82 Physiol Rev • VOL 94 • JANUARY 2014 • www.prv.org

on July 3, 2014
D

ow
nloaded from

 



Processing and plasticity
in spinal dorsal horn

Spinothalamic and
spinoparabrachial tracts

Action potential
propagation

Stimulus detection by
sensory nerve endings

Parabrachial

Thalamus

Cortex

Limbic

Brain Pain Networks

Dorsal root ganglion

Synaptic
transmission
to the CNS

TrkB (+): Aδ fibers
Touch/Nociception

TrkA (+) and c-Ret (+): Aδ fibers
Nociception/Touch/Itch

TrkC (+): Aα−β fibers
Proprioception/Touch/Nociception

FIGURE 1. Ascending pain neuraxis. Pain sensing neurons in the peripheral nervous system have their soma
located in the dorsal root ganglia (DRG). These neurons have a peripheral axon innervating the distal territories
(skin, viscera, etc.) where they detect painful stimuli leading to an action potential that travels along the fibers
up to the DRG and then to the first relay in the dorsal spinal cord. Sensory neurons within the DRGs are diverse
and can be separated based on the expression of neurotrophin receptors. The majority are TrkA- and
c-Ret-positive small-diameter sensory afferents that correspond to unmyelinated C-fibers mainly involved in
nociception. TrkB- and TrkC-positive myelinated larger diameter afferents correspond to A-� and A-�/� fibers,
respectively. They convey touch and proprioception signals, although both of these subclasses contain noci-
ceptive neurons. The sensory information is processed locally in neuronal circuitry within the dorsal horn of the
spinal cord before being sent to the thalamus to convey nociceptive information. Following thalamic filtering, the
information is sent to the cortical structures of the pain matrix.
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mustard oil receptor TRPA1 and the purinergic receptor P2X3
are predominantly expressed in IB4-positive neurons (55,
109). Neurons that express low voltage-gated calcium chan-
nels appear to be negative for �-opioid receptor expression
(963). Altogether, this illustrates that calcium-permeable
channels can be useful markers of specific primary afferent
fiber types.

Multiple other signaling proteins such as Mrgpr/SNSR class G
protein-coupled receptors (GPCRs) are largely expressed in a
mutually exclusive fashion (553). As another molecular twist
of diversity, distinct splice variants of a single gene can be
specifically expressed within a subpopulation of sensory neu-
rons. It has been demonstrated for example that for the N-type
calcium channels encoded by the Cav2.2 subunit, the expres-
sion of the exon 37a variant is restricted to nociceptive neu-
rons and acts as a molecular switch that tailors the channel
toward specific roles in pain perception and modulation by
GPCRs (25, 36, 82). Deciphering how these subpopulations of
nociceptive neurons are molecularly specified and functionally
diversified will greatly expand the understanding of pain biol-
ogy, but this also represents a challenge in many laboratories
working on molecular pain physiology.

The spinal cord dorsal horn is the essential CNS sensory pro-
cessing hub connecting the periphery to the brain. In this no-
ciceptive pathway, dorsal horn neurons integrate inputs from
peripheral nociceptors, local interneurons, and descending
projections and transmit processed signals to the brain pain
network (851) (FIGURE 1). Neurons in the superficial layers of
the dorsal horn (laminae I and II) primarily receive nocicep-
tive-specific inputs through high-threshold A�- and C-fiber
primary afferents. Lamina I and II neurons display consider-
able heterogeneity in molecular, functional, and morphologi-
cal properties and can be divided into subpopulations based
on their morphological, biochemical, and electrophysiological
profiles (338). Excitatory and inhibitory interneurons pre-
dominate in lamina I and II, while a subset of lamina I neurons
project directly to brain pain centers which include the lateral
parabrachial area, the periaquedecutal grey matter, and the
thalamus. Within deeper laminae of the dorsal horn (lamina
V), wide dynamic range neurons respond to both innocuous
and noxious inputs and project to brain pain networks
through the spinothalamic tract. Combining recently devel-
oped optogenetic approaches with spinal cord imaging and
recording techniques has the potential to unlock remaining
mysteries regarding how innocuous and noxious sensory in-
formation is processed within the complex synaptic circuitry
of the spinal cord dorsal horn during normal and pathological
pain conditions.

III. MAJOR TYPES AND KEY ANIMAL
MODELS OF PAIN

As stated above, nociceptive pain is primarily a protective
mechanism. Acute pain is therefore a physiological phenome-

non that does not involve abnormal expression of ion channels
and receptors. It has been investigated in clinical studies in-
volving human patients, and in animal models with the use of
pharmacological strategies, and gene knockout or overexpres-
sion experiments in rodents or simpler organisms, such as
Drosophila or zebrafish (518, 519, 555, 864). Testing of acute
pain responses can be achieved through application of a range
of stimuli (electrical, thermal, mechanical, or chemical) that
can be more or less controlled in time and intensity. Cutaneous
somatic or cephalic nociception (stimulation of skin nerve end-
ings) is by far the most widely used approach to investigate
acute pain in animals, but visceral pain has also been explored
through stimulation of nerve endings in hollow organs (gas-
trointestinal tract, bladder) (174, 325). Acute reactions due to
excessive nociceptive pain can be induced by thermal and me-
chanical stimuli, or via chemical stimuli such as subcutaneous
Formalin injection (559, 632) and by application of chemical
agonists of ion channels that are involved in the detection of
nociceptive signals (for example, capsaicin, mustard oil, acid).
In the case of the Formalin test, the behavioral consequence of
this strong tonic nociceptive stimulation is a biphasic response
reflecting the initial stimulation of peripheral nociceptive sen-
sory neurons, and a delayed second phase linked to a facilita-
tion of dorsal horn responses (central sensitization) produced
by a marked inflammatory reaction (405).

Sensitization of the nociceptive system is a hallmark of inflam-
matory responses. Upon tissue damage due to an injury, a
burn, an infection, or a tumor, inflammatory responses ensue
that alter pain responses. In the short term, sensitization may
serve as a protective process aimed at preserving the injured
part of the body, as an increase in pain intensity would prevent
further damage of the inflamed region through overstimula-
tion. It is important to note that excessive nociceptive stimu-
lation itself gives rise to a phenomenon termed neurogenic
inflammation. Indeed, activation of peripheral sensory termi-
nals by local depolarization, axonal reflexes, or dorsal root
reflexes, releases bioactive substances, including pro-inflam-
matory neuropeptides, SP, and CGRP. These molecules, in
turn, act on peripheral target cells including immune cells (e.g.,
mast cells) and vascular cells (see Ref. 568 for review), leading
to mast cell degranulation, a change in vascular permeability,
and neutrophil infiltration. These neurotransmitters are lo-
cated in lightly myelinated A� and unmyelinated C fibers that
are sensitive to capsaicin and immunoreactive for the TRPV1
channel (198, 701, 822). Therefore, ablation of TRPV1-
positive nociceptive fibers with systemic administration of a
capsaicin analog causes SP and CGRP depletion in peripheral
tissue (290), leading to immunosuppression. SP has been iden-
tified as a particularly important mediator of neurogenic in-
flammation, as it enhances immune cell activation and recruit-
ment, promotes the release of proinflammatory cytokines, and
induces the production of new immune cells (98). SP also
stimulates the release of histamine from mast cells, further
exacerbating inflammatory responses.
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Pain sensitization gives rise to “allodynia” (i.e., perception of
an innocuous stimulus as painful) and “hyperalgesia” (exac-
erbated pain in response to a noxious stimulus). Numerous
factors that are released upon inflammatory reactions [such as
prostaglandins, bradykinin, protons, CGRP, histamine, NGF,
interleukins, tumor necrosis factor-� (TNF-�)] can participate
in this sensitization, and some of these mediators trigger short-
term modulation of effectors including the calcium-permeable
channels reviewed here. This can occur in the form of upregu-
lation of functional channel activity (1015), increased plasma
membrane channel insertion (761), modulation of channel
transcription (575), and possibly many other posttranslational
mechanisms involved in promoting recycling or preventing
degradation of these channels. Distinct models of inflamma-
tion are used in laboratory animals at the level of the skin [e.g.,
subcutaneous delivery of carrageenan or complete Freund’s
adjuvant (CFA) into the paw], the knee joint (CFA monoar-
thritis model), or the gut [such as dextran-sodium sulfate
(DSS)-induced colitis]. Although many animal models have
been developed, they all share a hallmark of sensitization of
primary afferent neurons due to altered ion channel function
(among other factors).

When the nervous system is damaged, the nociceptive circuitry
can become pathological in the sense that it can abnormally
and chronically produce pain in the absence of peripheral
harmful stimuli. These conditions are classified as “neuro-
pathic pain.” Peripheral neuropathic pain (PNP) is the most
common type of neuropathic pain afflicting �8% of the pop-
ulation in Europe and North America. PNP may arise from
nerve trauma, diabetes, postherpetic neuralgia, multiple scle-
rosis, anticancer chemotherapy, or anti-viral therapy. Chronic
pain is the scourge of PNP, and it is the most challenging form
of pain for clinicians to manage. Despite an increasing knowl-
edge in pathophysiology, there remains a dearth of efficacious
treatment options. Even treatments specifically dedicated to
PNP, such as antidepressants or gabapentinoids, are often un-
successful. Although pregabalin is a blockbuster drug, when
given in PNP patients, the analgesic effect is weak (�1.5 to 2
on a 10-point scale). Therefore, there is clearly a need for more
efficacious molecules. A range of neuropathic preclinical mod-
els has been developed in rodents (66). These include trau-
matic alterations of peripheral nerves such as ligatures, tran-
section, and compression, most commonly involving the sci-
atic nerve (83, 227, 476, 478, 769), infraorbital nerve, and
trigeminal nerve roots (913, 984). In addition, metabolic al-
terations (type 1 or 2 diabetes models, Refs. 203, 513) and
administration of toxic compounds such as chemotherapy
treatments and anti-HIV therapy are used as animal models of
neuropathic pain (22, 230, 443, 444, 541, 825). In the case of
the action of toxic drugs such as chemotherapy treatments, the
etiology observed within rodent models is remarkably similar
to what is observed in the clinic. As in inflammatory pain,
neuropathic pain conditions give rise to phenomena such as
allodynia and hyperalgesia, and as discussed below, calcium-
permeable ion channels play important roles in this process.

IV. VOLTAGE-GATED CALCIUM CHANNELS

A. Calcium Channel Subtypes and Molecular
Composition

Voltage-gated calcium channels constitute the predominant
pathway for depolarization-mediated calcium entry into neu-
rons. The calcium channel family consists of a number of
different channel subtypes that can be divided broadly into
two groups based on their voltage dependence of activation:
low voltage activated (LVA) and high voltage activated (HVA)
channels (76, 78, 666). The HVA channel family is more di-
verse and can be further subdivided, based on pharmacologi-
cal and functional properties, into L-, N-, P-, Q-, and R-types
(78, 143). Indeed, these different HVA channel subtypes can
be distinguished by their sensitivities to specific antagonists:
N-type channels are potently blocked by �-conotoxins GVIA
and MVIIA (671, 730), P- and Q-type channels are blocked
with different affinities by the spider toxin �-agatoxin IVA (9,
106, 608), L-type channels are sensitive to both dihydropyri-
dine agonists and antagonists (873), and R-type channels are
inhibited by the spider toxin SNX-482 (648), although SNX-
482-insensitive R-type channels have also been identified in
certain types of neurons (862). Different calcium channel iso-
forms show distinct cellular and subcellular distributions and
fulfill specific functional roles. Initially, N-, P-, and Q-type
calcium channels were thought to be expressed predominantly
on presynaptic nerve terminals (940–942) where they support
the release of neurotransmitters (945). L-type channels sup-
port excitation-contraction coupling in muscle and heart (163,
834, 1018), and in neurons they are often expressed at cell
bodies (368), where they may partake in the activation of
calcium-dependent enzymes and gene transcription (118,
946). However, the exact roles and distributions of each chan-
nel subtypes are neuron subtype dependent, such that most
types of calcium channels are expressed at various subcellular
loci. For example, both N-type and L-type channels can be
expressed in dendrites (486, 1010) and do in fact support a
wider range of functions. These diverse functional roles ulti-
mately pose a challenge when designing new calcium channel
therapeutics with a low risk of side effects.

At the molecular and biochemical level, T-type calcium chan-
nels are formed by a single Cav�1 subunit, a �250-kDa pro-
tein that is comprised of four membrane domains that are
connected by cytoplasmic regions and whose NH2 and
COOH termini are also cytoplasmic (142). Each membrane
domain contains six membrane spanning helices (S1 though
S6) that include a voltage sensor region (141) plus a re-entrant
P-loop motif that lines the pore of the channel and controls ion
selectivity (976). The mammalian genome encodes three dis-
tinct T-type calcium channel �1 subunits, termed Cav3.1,
Cav3.2, and Cav3.3 (205, 520, 695, 696), each of which is
subject to alternate splicing (149, 219, 770) and which show
distinct brain tissue distributions (591). In contrast, HVA
channels are heteromultimeric protein complexes that are
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formed through the assembly of Cav�1, Cav�, and Cav�2�
subunits in a 1:1:1 stoichiometry (143) (FIGURE 2). In addi-
tion, calmodulin appears to be part of all HVA calcium chan-
nel complexes (607). Certain types of HVA channels such as
the skeletal muscle L-type channel also contain a Cav� subunit
(41, 826). The HVA Cav�1 subunits fall into two major fam-
ilies (143). The Cav1 family has four members (Cav1.1
through Cav1.4), all of which encode L-type calcium channels,
whereas the Cav2 family includes Cav2.1 (encoding P- and
Q-types), Cav2.2 (encoding N-type), and Cav2.3 (encoding
R-type). All of the known Cav�1 subunits undergo alternate
splicing, in some cases giving rise to channels with dramati-
cally different functional behavior (23, 543, 775, 830, 837).
This is exemplified in Cav2.1 channels where alternate splicing
in two regions of the channel appears to determine whether a
channel behaves like a P- or Q-type channel (106).

In vertebrates, there are four genes that encode Cav� subunits
(121). These are (with the exception of one palmitoylated
Cav�2 splice variant) cytoplasmic proteins that associate with
the Cav�1 subunit at the domain I-II linker region (706). They
promote membrane expression of the channel by interfering
with ER retention and ubiquitination (26, 916), in addition to

possibly regulating gene transcription independently of cal-
cium channel activity (739). There are also four different types
of Cav�2� subunits (250, 487). They are each single gene
products that are posttranslationally cleaved and then relinked
via a disulfide bond. The �2 portion is an extracellular protein,
whereas the � portion appears to be glycophophatidylinositol
(GPI) anchored to the extracellular leaflet of the plasma mem-
brane (221). Like the Cav� subunit, Cav�2� promotes mem-
brane expression of the Cav�1 subunit, although likely
through a distinct mechanism (865, 982). In addition to regu-
lating membrane trafficking, the coexpression of ancillary cal-
cium channels subunits can also alter the functional and phar-
macological properties of the calcium channel complex, and
may alter its susceptibility to second messenger regulation
(287, 595, 627, 798). The Cav� subunit is encoded by one of
eight different genes and contains four transmembrane helices
(264, 455). Unlike skeletal muscle L-type calcium channels, it
remains unclear whether neuronal calcium channels are in fact
associated with a Cav� subunit.

Primary afferent neurons express multiple types of voltage-
gated calcium channels, including P-, N-, L-, R-, and T-type
Cav�1 subunits, and several of the ancillary calcium channel
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FIGURE 2. Structure and molecular assembly of voltage-gated calcium channels. A: high voltage activated
(HVA) calcium channels are formed through the assembly of Cav�1, Cav�, and Cav�2� subunits. The nature
of the Cav�1 subunits determines the calcium channel subtype. B: membrane topology of calcium channel
subunits that are known targets for analgesics, and localization of key calcium channel antagonist binding sites.
Gabapentinoids such as gabapentin and pregabalin bind to the Cav�2� subunit, whereas classical calcium
channel antagonists such as conotoxins (269, 289) and piperidines (1006) interact with the Cav�1 subunit.
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isoforms (80, 998). Below, we will highlight the roles of these
channel types in pain transmission and their usefulness as tar-
gets for analgesics.

B. Role of N-type Channels in the Afferent
Pain Pathway

N-type calcium channels are almost exclusively expressed in
neuronal tissue (666) and enriched at presynaptic nerve termi-
nals where they trigger the release of neurotransmitters (940,
945) via physical association with the synaptic release machin-
ery (1000). This also applies to terminals of primary afferent
fibers whose synapses are localized in the dorsal horn of the
spinal cord (346). Calcium entry into these synaptic nerve
terminals releases neurotransmitters such as glutamate,
CGRP, and SP (278, 569, 788). Consequently, inhibiting N-
type channel activity results in reduced neurotransmission and
thus analgesia (45). N-type channel knockout mice are hypo-
sensitive to pain (365, 474, 745, 747), and there is only a
relatively mild CNS phenotype in these animals that includes
reduced anxiety levels and reduced alcohol withdrawal symp-
toms (649, 745). Altogether, these findings suggest that N-
type channels are potentially viable drug targets for the devel-
opment of novel analgesics.

Like many of the other calcium channel isoforms, the pore-
forming Cav2.2 �1 subunit undergoes alternate splicing at a
number of different loci (454, 540, 680), including exon 37
which exists as either the exon 37a or the exon 37b variant
(82). Interestingly, channels including exon 37a are almost
exclusively confined to small nociceptive neurons that are pos-
itive for Nav1.7 channels (82). In transient expression systems,
inclusion of exon 37a results in increased whole cell current
density, shifts in the half activation voltage, and altered regu-
lation of channel activity by G proteins and tyrosine kinases
(134, 577, 723). In vivo siRNA knockdown experiments in-
dicate that basal nociception and inflammatory pain are me-
diated by channels containing exon 37a (25). Tactile allodynia
in response to sciatic nerve ligation appears to rely on both
splice variants, whereas in the same animal model, thermal
hyperalgesia is again predominantly dependent on the exon
37a variant (25). Experiments with transgenic mice which ex-
press exclusively exon 37a are more sensitive to morphine-
induced analgesia compared with mice expressing exon 37b
(36). Altogether, these data indicate that channels containing
exon 37a may be a more suitable target for analgesics com-
pared with exon 37b containing channels. In practical terms,
however, selective targeting of exon 37a channels via drugs
poses a significant challenge, as exon 37a differs from exon
37b in only 14 amino acid residues within the cytoplasmic
COOH-terminal tail of the channel (82). It may, however, be
possible to exploit the differences in gating properties of the
two channels via the use of state-dependent inhibitors, as we
outline below.

C. Analgesic Effects of Direct N-type
Channel Inhibitors

One of the distinguishing characteristics of N-type calcium
channels is their sensitivity to �-conotoxin GVIA, a peptide
toxin isolated from the fish hunting mollusk Conus geogra-
phus (672). This 27-amino acid peptide has a rigid backbone
structure due to the formation of three disulfide bonds, and
blocks current flow by occluding the outer vestibule of the
Cav2.2 pore (269, 289, 730). This blocking action is poorly
reversible, but strong membrane hyperpolarizations appear to
favor unblock (288, 805). When delivered intrathecally into
rodents, this peptide elicits potent suppression of pain (240,
673, 766). A structurally related 25-amino acid N-type chan-
nel blocking toxin has been isolated from the Conus magus
snail and is termed �-conotoxin MVIIA (671). As with GVIA,
this peptide causes potent analgesia when delivered intrathe-
cally (107, 148, 766, 928). MVIIA can be synthesized in vitro
and undergoes correct disulfide bond formation and folding,
thus retaining blocking activity (966). This has allowed the
toxin to be used as a therapeutic for treating pain in humans
under the trade name Prialt, and has been approved for use in
humans to treat patients with refractory cancer pain (45, 605,
796, 920). However, because this peptide does not readily
cross the blood-brain barrier, it must be delivered intrathecally
via implantation of a minipump (845, 899). In addition, a
number of side effects of Prialt have been reported, including
dizziness, blurred vision, hypotension, and memory problems
(694, 725), and as a result, this drug has a narrow therapeutic
window (762). This then begs the questions as to why acute
delivery of a selective N-type channel inhibitor can produce
adverse effects, when total knockout of the Cav2.2 protein in
mice yields only a mild phenotype. While it is possible that
MVIIA could have unknown off-target actions, the more
likely explanation is that gene knockout may result in com-
pensation from other synaptic calcium channel subtypes (such
as P/Q-type channels as has been reported in response to
chronic N-type channel block; Ref. 341), whereas acute block
eliminates calcium entry without time for the establishment of
compensatory mechanisms. A series of related peptides from
Conus fulman and Conus catus, �-conotoxins FVIA, CVID,
CVIE, and CVIF also potently inhibit N-type calcium channels
and display antinociceptive effects (8, 87, 524, 527, 625, 788).
CVID has been tested in human trials and appears to have a
larger therapeutic window than Prialt (764).

In addition to their restricted route of delivery, pore-blocking
peptide toxins also have the disadvantage of interacting with
multiple gating states of the N-type channel (288), which is
perhaps not an ideal property for a drug designed to target
excessive neuronal activity. Indeed, some lessons may be
learned from sodium channel blocking anticonvulsants, local
anesthetics, and antiarrhythmic drugs which preferentially in-
teract with inactivated channels, thus selectively targeting hy-
perexcitable cells, while sparing channel activity in normally
functioning tissues (377, 722, 950). It thus stands to reason
that a similar property may be useful towards normalizing the
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function of aberrantly active pain fibers. The drug discovery
sector has been actively engaged in identifying small organic
use-dependent inhibitors of N-type calcium channels. A num-
ber of compounds such as aminopiperidine-sulfonamide
(772), pyrazolpiperidines (810), TROX-1 (3), and cilnidipine
(491) are examples of different classes of small organic state-
dependent inhibitors of N-type channels with efficacy in vari-
ous pain models. A series of rationally designed piperazine
derivatives with strong inhibition of inactivated calcium chan-
nels have also been reported to induce potent analgesia (678,
679, 1003). One of these compounds, Z160, is currently being
evaluated in phase 2 clinical trials in the United States and
shows oral bioavailability as well as strong frequency-
dependent inhibition of N-type channels (678, 679, 1003).

D. Modulation of N-type Calcium Channels
by G Protein-Coupled Receptors

The activity of N-type calcium channels is strongly regulated
by a number of different GPCRs, including opioid, dopamine,

and metabotropic glutamate receptors, among many others
(77, 207, 251, 261, 262, 842). Upon receptor activation, nu-
cleotide exchange on the G� subunit results in a conformational
change in the G��� trimer that generates two independent sig-
naling entities: G�-GTP and G�� (364, 374) (FIGURE 3). In the
case of N-type (and P/Q-type) calcium channels, the G�� sub-
unit (372, 412) physically associates with a binding pocket
formed by the domain I-II linker and NH2-terminal regions of
the �1 subunit of the channel (11, 225, 1001), and this binding
interaction results in the stabilization of the closed state of the
channel (688). As a result, larger depolarizations are required
to open the channel, and channel activity within the physio-
logical voltage range therefore becomes inhibited (77). Upon
strong membrane depolarizations, or in response to rapid
trains of action potentials, the G�� subunits transiently disso-
ciate from the channel, resulting in a temporary disinhibition
(119, 1005). At the whole cell level, G�� effects on N-type
channel activity are seen as a reduction in peak current ampli-
tude, as well as a slowing of the time course of activation, and
an apparent slowing of the time course of inactivation (262).
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FIGURE 3. G protein inhibition of N-type calcium channels. A: activation of opioid receptors by its agonist
morphine results in the binding of G protein �� subunits to the N-type calcium channel Cav�2.2 �1 subunit to
mediate voltage-dependent (VD) inhibition, whereas second messenger pathways activated by G� mediate
voltage-independent (VI) modulation. B: dissection of VD and VI modulation by electrophysiology. Application of
a strong depolarizing voltage pulse prior to a test depolarization (see voltage protocol at the top) results in
partial relief of agonist-induced inhibition of N-type channel currents. The prepulse-sensitive inhibition corre-
sponds to VD modulation, whereas the one that is remaining after the prepulse is VI. In the absence of agonist,
the small enhancement of current activity in response to the prepulse is a reflection of agonist -independent
(tonic) G protein inhibition that is observed with certain types of receptors.
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At the single-channel level, these effects can be primarily at-
tributed to an increased first latency to channel opening (688).
The inhibitory effects of G�� subunits are dependent on a
wide range of factors, including the calcium channel subtype
(N-type channels are more potently inhibited than P/Q-types)
(42, 105, 208), the Cav� subunit isoform (254, 287), and the
G� subunit subtype (287, 318, 436). In addition, other second
messenger pathways such as protein kinase C activity modu-
late the functional effects of G�� (357, 367, 820, 1001). This
heterogeneity in N-type channel modulation by G�� subunits
needs to be considered when interpreting inhibitory actions of
various GPCRs on channel activity in different cells/tissues. In
addition to this voltage-dependent, direct inhibition of N-type
channel activity, the activation of GPCRs can also trigger a
voltage-independent modulation that is linked to G�-medi-
ated signaling and may involve phosphorylation of the chan-
nel by kinases such as tyrosine kinaseandproteinkinaseA(451,
486, 758) (FIGURE 3). For more details on the GPCR modulation
of voltage-gated calcium channels, we refer the reader to a num-
ber of comprehensive review articles (251, 842, 1002).

In the context of pain modulation, the �-opioid receptor
(MOR) is perhaps the most extensively studied receptor sub-
type (947). It is the pharmacological target of morphine, one
of the most potent analgesics (610). MORs act both by acti-
vating G protein-coupled inwardly rectifying potassium
(GIRK) channels in spinal neurons (579), as well as by inhib-
iting presynaptic N-type calcium channels in primary afferent
fibers (367). The resulting reduction in presynaptic calcium
influx is assumed to reduce neurotransmitter release (79, 493).
In addition, opioids may act directly on the neurotransmitter
release machinery (367). Together with reduced excitability of
postsynaptic dorsal horn neurons due to GIRK activation, this
then produces analgesia. In addition, there is a major role of
supraspinal MORs in the analgesic properties of morphine
(241, 335, 756). While highly effective, morphine has a num-
ber of adverse effects including constipation, respiratory de-
pression, and itch, and it can lead to tolerance, dependence,
and abuse (304, 503, 599, 789). Furthermore, prolonged use
of morphine results in the development of tolerance which
remains a major problem in the clinic (947). Other members of
the opioid receptor family [i.e., � (DOR) and �-opioid recep-
tors (KOR)] also inhibit N-type calcium channels (279, 343,
611, 626, 861) and have analgesic properties in various rodent
models of pain (294, 603, 667), with KOR agonists having the
advantage that they may not cause respiratory depression
(294, 305). Knockout mice lacking the DOR show increased
mechanical allodynia, whereas selective activation of these re-
ceptors with the DOR agonist SNC80 elicits analgesia in re-
sponse to both thermal and mechanical pain (323). The KOR
agonist pentazocine (332) is used clinically to treat pain,
whereas to our knowledge there are no DOR agonists that are
approved for use as analgesics in human patients. An elegant
study using transgenic mice in which DORs were fused to a
GFP epitope revealed that DORs and MORs are expressed on
distinct subtypes of primary afferent fibers, and regulate dis-

tinct aspects of pain signaling, with DORs regulating mechan-
ical pain, whereas MORs appear to preferentially regulate
heat pain (757). The absence of DORs in heat-sensing fibers,
however, seems at odds with the analgesic effects of SNC80 in
thermal pain (323), suggesting perhaps a more complex rela-
tive contribution of different opioid receptor subtypes to pain
signaling. Further complicating matters is the fact that MORs,
KORs, and DORs can form heterodimers (199, 685) with
altered agonist responses and perhaps altered signaling to N-
type channels (329, 333). Notably, the formation of such het-
erodimers appears to change dynamically in response to pro-
longed MOR receptor activation by morphine (354). Finally, a
recent study has implicated specific MOR splice isoforms in
analgesia and morphine-induced itch, with the MOR1D iso-
form triggering an itch response via interactions with the gas-
trin releasing peptide receptor (552). Whether the itch re-
sponse is related to N-type channel modulation is not known.
Nonetheless, receptor subtype and splice isoform specificity is
a key consideration in the development of new opioid analge-
sics.

Prolonged use of opioids can result in opioid-induced hyper-
algesia, i.e., a condition where chronic opioid treatment can in
fact result in increased pain (523). The underlying mechanisms
appear to be complex and multifactorial. It has been reported
that opioid-induced hyperalgesia may involve central sensiti-
zation mediated by upregulation of NMDARs, through alter-
ations of chloride homeostasis in spinal lamina I neurons (293)
or through modulation of descending pathways (733, 900). It
has also been shown that opioids such as dynorphin may have
off-target effects on bradykinin receptors, which in turn acti-
vates voltage-gated calcium channels (506, 561), thereby me-
diating proalgesic effects.

A fourth member of the extended opioid receptor family is the
nociceptin (NOP) receptor (612, 844). It is expressed in both
the CNS and in afferent nerve terminals (12, 576). This recep-
tor is insensitive to classical opioid receptor ligands (286) but is
activated via its endogenous agonist orphanin-FQ (also
known as nociceptin) (598). Like other members of the opioid
receptor family, NOP receptor activation by orphanin-FQ me-
diates voltage-dependent inhibition of N-type channel activity
(4, 5, 511, 621, 742, 985). When delivered intrathecally, or-
phanin-FQ induces analgesia (202, 215, 483), whereas prono-
ciceptive effects have been described upon activation of NOP
receptors in the brain (297, 734, 847). An endogenous biolog-
ically active antagonist of NOP receptors, nocistatin, inhibits
the analgesic actions of orphanin-FQ (670), although report-
edly through an NOP receptor-independent mechanism (12).
Even though NOP receptors are not sensitive to morphine,
there is an intriguing crosstalk between the NOP and MOR
systems. Chronic administration of morphine leads to in-
creased expression of NOP receptors (337, 885) and, con-
versely, mice lacking NOP receptors exhibit decreased mor-
phine tolerance (884, 886). The molecular basis for this cross-
talk is not fully understood. The NOP receptor has been
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shown to form a physical signaling complex with N-type cal-
cium channels in both DRG neurons and in transient expres-
sion systems (28, 80). This has two important implications.
First, because the NOP receptor appears to show a low level of
constitutive activity, the formation of N-type channels/NOP
receptor complexes triggers an agonist-independent G��
modulation of channel activity which increases with increas-
ing receptor densities (80). Second, NOP receptor interaction
with the N-type channel enhances forward trafficking of the
receptors to the plasma membrane, and allows for agonist-
mediated internalization of channel/receptor complexes (27)
(although it should be noted that a nociceptin receptor-
mediated loss of surface N-type channels in DRG neurons has
not been observed in a recent study; Ref. 630). The agonist-
independent modulation coupled with NOP receptor-medi-
ated forward trafficking of N-type channels could potentially
result in an enhanced population of N-type channels in the
plasma membrane that is under tonic G protein inhibition, and
therefore insensitive to further modulation by other GPCRs
such as the MOR. It is thus possible that this regulation could
contribute to a form of morphine resistance under conditions
where NOP receptor density is upregulated (as is known to
occur in response to chronic morphine administration; Refs.
337, 885). However, this has not been demonstrated experi-
mentally, and such a mechanism may be further confounded
by the notion that MORs, NOPs, and N-type channels can
form larger complexes with altered channel trafficking prop-
erties and regulation (279).

GABAB receptors are another class of GPCRs expressed in
primary afferent fibers and are known to inhibit N-type cal-
cium channels via both voltage-dependent and voltage-
independent pathways (758). Intrathecal delivery of the
GABAB receptor agonist baclofen induces analgesia; however,
the use of systemic GABAB receptor agonists to treat pain is
not possible due to CNS side effects, such as increased short-
term food intake and increased seizure activity (102, 754). On
the other hand, it may be possible to selectively target GABAB

receptors in peripheral neurons. Indeed, Vc1.1 is an �-cono-
toxin that was originally thought to selectively inhibit nicotinic
receptors (187, 647). However, this toxin and a related pep-
tide, Rg1A, remarkably inhibit the activity of N-type calcium
channels through GABAB receptor activation (125, 126, 206).
This in turn is responsible for the analgesic action of this pep-
tide (707). Interestingly, a cyclized version of the Vc1.1 pep-
tide has been generated and shown to be orally effective for
treating pain (132). Whether this oral route of administration
may result in side effects similar to those observed with
baclofen remains to be seen.

Altogether, the regulation of N-type calcium channels by
GPCRs is a potent modifier of pain transmission and can be
exploited pharmacologically towards the development of an-
algesics. The normal physiological role of these receptors may
be an intrinsic mechanism to depress pain through elevation of
endogenous receptor ligands such as endorphins.

E. N-type Calcium Channel Trafficking and
Pain

Under conditions of chronic pain, there is an upregulation of
N-type channel expression in primary afferent fibers and the
dorsal horn of the spinal cord (182, 987) as well as a change in
the expression of specific N-type channel splice isoforms lack-
ing exon 18a, which corresponds to a region in the domain
II-III linker of the channel (44). Furthermore, exposure of cul-
tured DRG neurons to an inflammatory cocktail results in an
increased proportion of N-type channels at the cell surface
(Altier and Zamponi, unpublished observation). Real-time
PCR analysis of mouse DRG neurons shows that N-type chan-
nel mRNA is unaltered in conditions of diabetic neuropathic
pain (890), suggesting that chronic pain-induced changes in
N-type channel membrane expression may occur at the pro-
tein, rather than the mRNA, level. This also fits with observa-
tions that N-type channels in superior cervical ganglion neu-
rons are subject to regulation by ubiquitination and protea-
somal degradation (916), and that the Cav2.2 exon37b splice
variant is more susceptible to internalization in response to
ubiquitination (577).

A recent study has reported an association of N-type calcium
channels with the collapsin response mediator protein 2
(CRMP2) (117). This protein is involved in cell growth, but
has also been linked to synaptic function. In CRMP2-
overexpressing neurons, N-type calcium channel cell surface
density appears to be increased, suggesting a potential role in
N-type channel stability (117). Furthermore, in DRG neurons,
overexpression of CRMP2 results in an increase in N-type
channel-mediated secretion of CGRP, suggesting a potential
role in pain signaling (171). Indeed, uncoupling of CRMP2
from N-type calcium channels using a TAT peptide based
approach results in suppression of both inflammatory and
neuropathic pain (116, 445, 951) and migraine pain (732).
This effect likely occurs by interference with N-type calcium
channel stability in the plasma membrane that is mediated by
CRMP2 association with the channel, and may be regulated
by SUMOylation (446). However, at this point, it is not clear
if chronic pain conditions result in an increased association of
N-type channels with CRMP2, and if so, what the underlying
cell signaling mechanisms are. Nonetheless, interfering with
N-type calcium channel trafficking may be an effective alter-
native means of regulating pain transmission, perhaps selec-
tively in neurons where an aberrant upregulation of channel
activity has occurred.

As noted earlier, the Cav�2� subunit is an important accessory
subunit for all HVA calcium channels, and typically promotes
the trafficking of HVA �1 subunits to the plasma membrane.
There is evidence that Cav�2�1 expression is enhanced during
neuropathic pain states such as those triggered by mechanical
nerve injury or diabetes (100, 101, 563) and that this upregu-
lation is linked to the development of tactile allodynia (528,
564). Along these lines, in transgenic animals overexpressing
Cav�2�1, trigeminal sensory neurons show hyperexcitability
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due to an enhancement of whole cell calcium channel activity
(529). Altogether, this fits with an enhancement of N-type
calcium channel cell surface density as a result of increased cell
surface trafficking. The Cav�2�1 subunit is the key pharma-
cological target for gabapentinoids such as gabapentin and
pregabalin (296), a class of drugs that is highly effective in the
treatment of neuropathic pain (740). Gabapentin directly
binds to the Cav�2�1 subunit (326). A transgenic mouse car-
rying a point mutation (R217A) in the Cav�2�1 subunit that
abolishes pregabalin binding is insensitive to the analgesic ac-
tions of pregabalin (295). In this mouse, binding of tritiated
pregabalin to brain tissue is virtually abolished, indicating that
the Cav�2�1 subunit is indeed the primary in vivo target of
this drug compound. The Cav�2� subunit has recently been
shown to act as a thrombospondin receptor (276) and shown
to be involved in regulation of synaptic morphology (719).
Furthermore, thrombospondin 4 has been implicated in spinal
sensitization during neuropathic pain (475), thus raising the
question as to whether gabapentinoids act exclusively via cal-
cium channel regulation, or perhaps via multiple cellular path-
ways that rely on the Cav�2� subunit. Although acute gaba-
pentin effects on voltage-gated calcium channels have been
observed under some conditions (220, 581, 816, 883), such
actions have little relevance to their clinical effect that takes
days or weeks to develop (168, 773). However, upon chronic
exposure to pregabalin, transiently expressed Cav2.1 calcium
currents become reduced, as do native whole cell calcium cur-
rents in DRG neurons (371), indicating a mechanism involv-
ing channel trafficking. This effect is abolished upon mutating
the gabapentinoid binding site on the Cav�2�1 subunit (366).
Along these lines, pregabalin inhibits the synaptic targeting of
Cav�2� (71) and abolishes the increased membrane expres-
sion of Cav�2� in DRG neurons from rodents under neuro-
pathic pain conditions (70). Altogether, these findings suggest
that, by as yet an unknown mechanism, there is an upregula-
tion of Cav�2� subunits in afferent pain fibers that in turn
promotes enhanced expression of synaptic N-type calcium
channels, thus facilitating the transmission of pain signals. Ga-
bapentinoids appear to interfere with Cav�2� subunit traffick-
ing, thus promoting normal N-type channel trafficking activ-
ity and synaptic transmission (370) to produce analgesia.

F. Role of T-type Calcium Channels in Pain
Signaling

By virtue of their hyperpolarized voltage activation range and
window current, T-type (Cav3) calcium channels are ideally
suited to regulate neuronal excitability, as evident from their
role in the development of spike and wave discharges in the
epileptic brain (for review, see Refs. 473, 1004). In addition,
T-type channels also support secretion from neuroendocrine
cells (311, 669) and are capable of associating with the synap-
tic vesicle release machinery (934). Along these lines, T-type
calcium channels have been implicated in synaptic release in
the dorsal horn of the spinal cord (425, 852). Cav3.2 calcium
channels are expressed in various subpopulations of primary

afferent neurons (104, 853), altogether suggesting a role of
these channels in pain processing. Consistent with this idea,
systemic or intrathecal delivery of T-type calcium channel
blockers such as ethosuximide and mibefradil produce anal-
gesia in rodents (165, 248, 300, 358, 629). On the flip side,
T-type calcium channel activity is increased in afferent pain
fibers in a number of chronic pain conditions, such as after
spinal nerve injury (996), diabetic neuropathy (131, 427), and
mechanical nerve injury (426, 938). At least in the case of
diabetic neuropathy, blocking T-type channel activity restores
a normal pain phenotype (513, 597). In vivo silencing of
Cav3.2 calcium channels (but not other T-type calcium chan-
nel isoforms) via siRNA reduces mechanical nociception, and
tactile allodynia arising from nerve injury (104). This fits with
observations showing that Cav3.2 channels regulate mecha-
nosensitivity of D-hair receptors (259, 924). Furthermore, in a
rodent model of colonic hypersensitivity, in vivo knockdown
of Cav3.2 channels reverses pain hypersensitivity in response
to colorectal distension (578). Collectively, these data indicate
that T-type channel membrane expression is dynamically reg-
ulated and increased under conditions of chronic pain, and
that counteracting this aberrant upregulation may constitute
an effective means of mediating analgesia.

It is interesting to note that mice lacking Cav3.2 show hypo-
sensitivity to Formalin-induced but not neuropathic pain
(173). They do, however, exhibit significant developmental
abnormalities such as deformed trachea (154). While this
could potentially limit clinical applications, it may be possible
to exploit state dependence of drug action as a means to pref-
erentially inhibit T-type calcium channels in highly active pain
fibers, akin to our discussion on N-type channel blockers. In-
deed, new generation state-dependent blockers such as
TTA-P2 and TTA-A2, which appear to interact preferentially
with inactivated T-type calcium channels, both elicit analgesia
in rodent models of pain (172, 303). Z123212, a mixed
blocker of voltage-dependent sodium channels and T-type cal-
cium channels, induces analgesia by selectively targeting the
slow inactivated state of these channels (376). In this context it
is interesting to note that the local anesthetic binding domain
of voltage-gated sodium channels is partially conserved in T-
type calcium channels (95). Finally, Z944, another state-
dependent T-type channel inhibitor, is currently in phase I
clinical trials for pain.

A number of questions concerning the role of T-type channels
in pain remain unresolved. First, it is unclear precisely how
T-type channels contribute to pain signaling. Possibilities in-
clude the following: 1) a lowering of the firing threshold for
afferent pain fibers, 2) a direct contribution to neurotransmit-
ter release at primary afferent synapses (852), 3) a direct func-
tion of T-type channels as mechanosensors, 4) activation of
pathways such as ERK which in turn is linked to increased
pain (160), and 5) perhaps via interactions with other types of
ion channels such as voltage- and calcium-activated potassium
channels as described for different types of CNS neurons (34,
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271, 882). Second, the mechanism by which T-type calcium
channel activity is enhanced in chronic pain conditions re-
mains to be determined. Posttranslational modifications such
glycosylation, phosphorylation (406, 407, 674, 933), redox
modulation (687), or potentially ubiquitination could poten-
tially contribute to enhanced T-type channel activity/density,
as could interactions with other regulatory proteins such as
Kelch-like 1 protein as described for cerebellar Purkinje neu-
rons (43). This could potentially include the Cav�2� subunit,
which has been shown to increase T-type channel amplitude in
heterologous expression systems (258). Finally, it is possible
that T-type channel expression is aberrantly regulated at the
transcriptional level via regulatory elements such as early
growth response 1 and repressor element protein silencing
transcription factor (897) or TrkB receptors (375).

G. Direct Inhibition of T-type Channels by
GPCR Ligands

T-type calcium channels are regulated through a number of
different second messenger pathways in response to activation
of various GPCRs (400, 407). It is well established that acti-
vation of some GPCRs such as opioid or cannabinoid recep-
tors induces antinociception (829), whereas others such as
bradykinin receptors (127) or CCR2 receptors (2, 808) are
pronociceptive. Some GPCR agonists have been shown to di-
rectly regulate T-type channel activity, rather than acting via G
protein signaling. For example, the endocannabinoid anand-
amide potently blocks T-type channels (150). Naturally occur-
ring anandamide derivatives also inhibit T-type channels, and
by doing so, produce analgesia (57) in normal mice, but not in
Cav3.2 channel knockout mice. Along these lines, mixed T-
type channel/cannabinoid receptor ligands have been shown
to be efficacious in inflammatory pain (990). The CCR2 re-
ceptor agonist monocyte chemoattractant protein-1 (MCP-1)
also directly and selectively inhibits Cav3.2 channels (989).
T-type channel inhibition occurs at nanomolar concentrations
of this ligand and is partial with a plateau of �50% inhibition
of current activity. MCP-1 activation of CCR2 receptors is
proalgesic (606), whereas CCR2 receptor antagonists elicit
analgesia (808). Some of these CCR2 receptor antagonists also
block T-type channels (989), and it is thus possible that such a
mixed Cav3.2 channel/CCR2 receptor antagonist may have
synergistic effects in treating pain.

H. R-, P/Q-, and L-type Channels and
Afferent Pain Signaling

Among all HVA calcium channel subtypes, R-type calcium
channels are most similar to T-type calcium channels at the
functional level, including a hyperpolarized activation and in-
activation range, and rapid inactivation kinetics (791). Like
T-type channels, R-type calcium channels have been linked to
the regulation of neuronal excitability in a number of neuronal
subtypes including DRG neurons (544, 683, 999). R-type

channels have also been reported to contribute to neurotrans-
mitter release at certain synapses (135, 322, 452, 634, 638,
960). Given that R-type channels are expressed in DRG neu-
rons (282, 283), it stands to reason that R-type channels could
be involved in pain signaling. Several lines of experiments im-
plicate R-type calcium channels in pain transmission. Mice
lacking Cav2.3 show hyposensitivity to inflammatory pain
(746) through alterations in both ascending and descending
pathways (747). Like N-type channels, R-type channels are
upregulated during spinal nerve ligation (979), whereas intra-
thecal delivery of the R-type channel blocker SNX-482 (a pep-
tide isolated from the venom of the Tarantula Hysterocrates
gigas) elicits analgesia in models of neuropathic pain (584).
Along these lines, the mixed R-type and P/Q-type channel
blocker TX3.3 (isolated from the venom of an armed Brazilian
spider) produces antinociception in conditions of neuropathic
pain. Altogether, these findings support a role of R-type cal-
cium channels in the development of neuropathic pain and
implicate Cav2.3 as a potential target for analgesics.

Although the role of P/Q-type calcium channels in migraine is
well established (700), the participation of these channels in
afferent pain signaling is much less clear. Mice lacking Cav2.1
display hyposensitivity to inflammatory and neuropathic pain,
but curiously, increased acute thermal nociception (when
tested at young ages to minimize knockout-induced motor
deficits) (565). Along these lines, the rolling Nagoya mutant
mouse that carries a loss of function mutation in Cav2.1 shows
a reduced inflammatory pain phenotype (307). It has also been
suggested that gabapentin may decrease P/Q-type calcium
channel activity in dorsal horn synapses, potentially contrib-
uting to the analgesic properties of this compound (75). Fi-
nally, topical application of the P-type blocker �-AGA-IVA
appears to inhibit inflammatory pain processing in neurons
innervating the knee joint (643). Altogether, although there is
evidence indicating that P/Q-type channels may contribute to
nociceptive signaling in the afferent pain pathway, but in a
much more limited role compared with N- and T-type chan-
nels.

There is only scant evidence of a role of L-type calcium chan-
nels in the afferent pain pathway. Mice lacking Cav1.3 chan-
nels display a normal pain phenotype (186). In contrast, an
upregulation of Cav1.2 channels in spinal cord neurons in
chronic pain conditions has been reported (285). Notably, this
upregulation was shown to involve a change in translational
regulation by a specific species of microRNA (mir-103) that
normally downregulates Cav1.2 expression. When mir-103
was knocked down in rats, the rats developed pain hypersen-
sitivity, consistent with an involvement of Cav1.2 channels in
pain transmission. Other roles of Cav1.2 have been described
at the central level in the anterior cingulate cortex, where re-
gion specific knockout of this channel not only altered fear
learning, but also reduced pain responses (435) and modu-
lated the effects of morphine. Direct pharmacological block of
spinal L-type channels has been shown to interfere with mor-
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phine hyperalgesia and morphine tolerance (247, 601, 1007),
and conversely, chronic treatment of rodents with morphine
elevates L-type calcium channel expression levels in the spinal
cord (89, 904). Collectively, these studies suggest a postsynap-
tic role of L-type calcium channels in afferent pain signaling,
although it is not clear to what extent these channels can be
targeted therapeutically.

In summary, multiple types of voltage-gated calcium channels
are involved in primary afferent pain signaling. Among the
calcium channel family, the N- and T-type calcium channels
appear to have the most critical role, and as a result are the two
calcium channel subtypes that are most vigorously pursued as
therapeutic targets.

V. NMDA RECEPTORS

A. NMDA Receptor Subtypes, Molecular
Composition, and Function

The glutamate receptor family includes three pharmacologi-
cally and genetically distinct ionotropic receptor types, named
based on their selective pharmacological ligands: N-methyl-D-
aspartate receptors (NMDARs), �-amino-3-hydroxy-5-
methylisoxazole-4-proprionic acid receptors (AMPARs), and
kainate receptors. Compared with AMPARs and kainate re-
ceptors, NMDARs have unique functional properties that in-
clude high calcium permeability, blockade by extracellular
magnesium ions at physiological resting membrane potential,
slow activation (�10 ms) and deactivation (�100 ms) kinet-
ics, and a high degree of allosteric modulation by endogenous
molecules. NMDARs function as integrators of synaptic in-
puts and intra- as well as intercellular signaling. Thereby,
NMDARs are critical in physiological mechanisms of synaptic
plasticity underlying learning and memory (193) and in path-
ological mechanisms of neuronal hyperexcitability underlying
a number of neurological disorders (450). NMDARs are well-
recognized to play essential roles in pain signaling and are the
focus here. Other calcium-permeable glutamate receptors, i.e.,
AMPARs that lack edited GluA2, may contribute to pain sig-
naling (312, 348, 793, 857, 906, 910) and have been reviewed
in detail elsewhere (839).

The NMDAR is a tetrameric assembly that forms the core of a
computational complex consisting of many different proteins,
including scaffolding proteins, peptide regulators of NMDAR
function, and signaling proteins (270) (FIGURE 4). At a molec-
ular level, seven homologous genes code for NMDAR sub-
units and are categorized into three major classes: GluN1/
NR1 (Grin1), GluN2/NR2 (Grin2A, Grin2B, Grin2C, and
Grin2D), and GluN3/NR3 (Grin3A and Grin3B) (180, 216,
420, 505, 619, 624, 811). As for all ionotropic glutamate
receptors, an individual NMDAR subunit is composed of four
domains, including an NH2-terminal domain and an agonist-
binding domain in the extracellular region, a pore-forming

transmembrane domain consisting of three transmembrane
(M1, M3, and M4) segments and a short re-entrant pore loop
(M2), and an intracellular COOH-terminal domain. The vari-
ability in length and sequence of the NMDAR COOH termi-
nus generates much of the diversity in function and modula-
tion across NMDAR subtypes (570, 571; for reviews, see Refs.
681, 871). The pore of the NMDAR is permeable to monova-
lent cations such as sodium and potassium and divalent cat-
ions including calcium (FIGURE 4A). Activation of NMDARs is
not voltage dependent and only requires the binding of coago-
nists glycine and L-glutamate. However, at physiological rest-
ing membrane potential, the pore is largely blocked by extra-
cellular magnesium ions, and this blockade is relieved by mem-
brane depolarization to greatly increase inward current
through the receptor (586). Regulators that are physically in-
corporated into the macromolecular NMDAR membrane
complex (270) also enhance NMDAR function, through
mechanisms that include phosphorylation and membrane
trafficking. Under basal physiological conditions in the CNS,
including the afferent nociception pathway, the naive state of
NMDARs is the nonpotentiated state (399, 691) (FIGURE 4B).
The net inward flow of sodium and calcium ions through
NMDARs modulates synaptic plasticity and integration by
depolarizing the synaptic membrane to facilitate excitatory
postsynaptic potentials (EPSPs) and by causing an increase in
intracellular calcium concentration (FIGURE 4C). Although
these two distinct events are often not experimentally sepa-
rated, it is the NMDAR-mediated rise in intracellular calcium
beyond threshold levels that activates multiple downstream
effectors through signaling molecules associated with the
NMDAR complex (189). In addition to increasing intracellu-
lar calcium, occupancy of the glutamate or glycine sites on the
receptor may signal independently of ion flux (635, 660, 661),
a concept that is only beginning to be explored.

A functional, pore-forming NMDAR complex is composed of
two glycine-binding GluN1 subunits and two L-glutamate
binding GluN2 or GluN3 subunits (310). The GluN1 subtype
is essential for NMDAR function and is expressed in the ma-
jority of CNS neurons, while differential expression of GluN2
subtype variants account for differences in the functional
properties of native NMDAR currents throughout the CNS
(618). For example, GluN2A- and GluN2B-containing
NMDARs have larger single-channel conductances and
higher sensitivity to magnesium blockade than GluN2C- and
GluN2D-containing NMDARs, while agonist-induced deac-
tivation rates differ across GluN2 variants according to the
following order: GluN2A � GluN2B � GluN2C � GluN2D
(618, 715, 804). The primary function of GluN3 variants is to
negatively regulate GluN1/GluN2-mediated NMDAR cur-
rents during development and in the mature CNS (180, 216,
811). In brain regions including the hippocampus and cortex,
GluN2B is the predominant GluN2 variant expressed during
the first week of postnatal development, followed by a robust
increase in the functional expression of GluN2A (618, 718,
776, 949) and a concomitant decrease in functional expression
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FIGURE 4. The NMDA receptor is an ionotropic glutamate receptor at the core of a synaptic computational
membrane complex. A: functional NMDARs typically contain two GluN1 and two GluN2 genetically encoded
subunits, which have conserved extracellular, transmembrane, and intracellular domains. In the postsynaptic
membrane, NMDARs form the core of a macromolecular complex that includes regulators, scaffolding
proteins, and signaling molecules. Cellular integrators can modulate NMDAR function by activating associated
regulators, while NMDAR activity can modulate effector proteins through the activation of associated signaling
molecules. B: under basal physiological conditions, the NMDAR is in a nonpotentiated state, with attenuation
of inward sodium and calcium currents by extracellular magnesium ions. However, NMDAR activity can
contribute to the slow component of EPSPs during basal synaptic transmission. C: NMDAR currents are
potentiated through relief of extracellular magnesium blockade by membrane depolarization as well as through
phosphorylation by activated membrane-associated regulators. Potentiated NMDAR activity results in both a
facilitation of EPSPs as well as an increase in synaptic intracellular calcium concentration, leading to activation
of associated signaling molecules, kinase cascades, and the modulation of target effector proteins.
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of GluN2B (737) during subsequent postnatal development.
GluN2C-containing NMDAR currents are primarily re-
stricted to expression in the cerebellum and barrel and audi-
tory cortex (93, 139, 265, 284, 801), while GluN2D-
containing NMDAR currents are prevalent during early post-
natal development in CNS regions including the substantia
nigra, cerebellum, and spinal cord (120, 440, 615, 616).

In the brain, synaptic NMDAR currents are predominantly
mediated by GluN2A while extrasynaptic NMDAR currents
are dominated by GluN2B (363, 485, 682, 743). However,
similar to voltage-gated calcium channels, the exact roles and
distributions of NMDAR subunits vary, such that all GluN2
variants have been shown to contribute to synaptic NMDAR
currents in specific neuronal populations at specific points in
development (120, 139, 609). In contrast to voltage-gated cal-
cium channels, alternative splicing of NMDAR subunits is
much less extensive. Three independent alternative splice sites
on GluN1 have been identified, creating eight distinct devel-
opmentally and regionally expressed GluN1 isoforms (517)
(for review, see Ref. 681) that generate further diversity in
NMDAR function and modulation.

Pharmacological probes and knockout of specific NMDAR
subunits have been used to characterize the properties and
functions of native NMDAR currents. To complement exist-
ing GluN2B-specific antagonists (i.e., ifenprodil and analogs;
Refs. 299, 948) and the GluN2A-specific antagonist Zn2�

(158, 939), selective pharmacological agonists and antago-
nists of both GluN2A (i.e., TCN-201, TCN-213) (90, 361)
and GluN2C/GluN2D (i.e., DQP-1105, CIQ) (7, 628) have
recently been identified. These newer agents will help further
characterize the specific functional roles of GluN2 variants
and could lead to the development of novel classes of thera-
peutics. Along with GluN2 variant-specific antagonists, sev-
eral classes of NMDAR antagonists have been developed for
basic research and/or therapeutic purposes, including compet-
itive L-glutamate binding site antagonists [i.e., D-APV, (R)-
CPP, NVP-AAM077], competitive glycine binding site antag-
onists [i.e., (R)-HA-966, ACPC, L-683,344], noncompetitive
channel blockers (i.e., memantine, ketamine, dextrometho-
rphan, MK-801), NH2-terminal domain binding modulators
(i.e., ifenprodil, Ro25-6981, CP-101,606), negative allosteric
modulators (i.e., QNZ46, TCN-201, DQP-1105), and posi-
tive allosteric modulators (i.e., spermine, UBP551, and CIQ)
(for reviews, see Refs. 617, 684).

B. Expression and Function of NMDA
Receptors in the Afferent Nociception
Pathway

1. Primary afferent neurons

NMDARs are expressed within the central and peripheral
endings of nociceptors, as well as in the soma of these cells
within the DRG. GluN1 and GluN2 (especially GluN2B)

mRNA and protein are localized in nociceptive DRG neurons
(582, 755) and in primary afferent fibers, including their pre-
synaptic terminals (547, 566). Whether functional NMDARs
are present in DRG neurons is somewhat controversial. No
NMDA-induced currents were found in the majority of
acutely dissociated DRG neurons (401), while other studies
have demonstrated NMDA-induced currents in cultured DRG
neurons of adult rats (531, 554). The hallmark biophysical
and pharmacological properties of these NMDA-evoked cur-
rents are consistent with GluN2B-containing NMDARs. The
ability of DRG neurons to develop functional processes (po-
tentially enriched with NMDARs) in culture could possibly
account for differences in functional NMDAR expression be-
tween acutely dissociated and cultured DRG neurons.

Within the central terminals of primary afferents, functional
presynaptic GluN2B-containing NMDARs induce SP release
through a tyrosine kinase-dependent pathway (159, 546). Pre-
synaptic NMDARs also inhibit glutamate release from termi-
nals in the dorsal horn of infant (P6 to P12) rats (60), while
having no effect on glutamate release in sham-operated adult
rats (974). Electron microscopy studies in naive adult rats have
demonstrated relatively sparse staining of GluN1 in presynap-
tic primary afferent terminals of the superficial dorsal horn
(laminae I and II) (556), while GluN1 is found on presynaptic
terminals of GABAergic interneurons in the superficial dorsal
horn (557). Following peripheral nerve injury (974) or chronic
morphine exposure (1008, 1019), presynaptic NMDAR ex-
pression is upregulated, leading to an increase in the frequency
of spontaneously occurring excitatory postsynaptic currents
(EPSCs). An increase in NMDAR expression has also been
demonstrated in DRG neurons (530) and unmyelinated pri-
mary afferents (255) following inflammation. There is evi-
dence that NMDARs in the periphery contribute to inflamma-
tory pain hypersensitivity, particularly in the orofacial region
(252, 422). Centrally, the majority of studies investigating a
role for “presynaptic” NMDARs at primary afferent-dorsal
horn neuron synapses test for effects of NMDAR agonists and
antagonists on 1) the frequency of spontaneous EPSCs, 2)
neurotransmitter or neuropeptide release, and 3) primary af-
ferent responses or other readouts of presynaptic activity.
These approaches do not test or account for pharmacological
effects on NMDARs in dorsal horn spinal cord neurons that
could potentially cause presynaptic changes through retro-
grade signaling (267) or polysynaptic circuits (851).

2. Superficial dorsal horn neurons

NMDARs are robustly expressed in the spinal cord superficial
dorsal horn. In situ hybridization studies consistently demon-
strate high expression of GluN1 subunit mRNA in the super-
ficial dorsal horn laminae (I and II) (777, 799, 854, 930).
However, the relative expression of specific GluN2 variant
mRNAs differs between studies. Immunohistochemical stud-
ies reveal dense staining for GluN1 and GluN2B in laminae I
and II of adult rats, with moderate staining for GluN2D and
minimal immunoreactivity for GluN2A and GluN2C (6, 404,
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997). At a subcellular level, antigen-unmasking immunohisto-
chemistry demonstrates GluN1, GluN2A, and GluN2B local-
ization at synaptic sites in the dorsal horn, with GluN2B pro-
teins being concentrated in laminae I and II and GluN2A being
concentrated in laminae III and IV (637).

At a functional level, neurons in laminae I and II show robust
NMDAR-mediated responses in vitro and in vivo to either
primary afferent stimulation or local administration of exog-
enous agonists (46, 59, 615, 721, 779, 818, 856, 988). Stim-
ulus-evoked NMDAR EPSCs in superficial dorsal horn neu-
rons of acute spinal cord slices exhibit hallmark biophysical
properties, including slow activation and deactivation kinet-
ics, APV sensitivity, and blockade by extracellular magnesium
ions at negative membrane potentials (46, 59). In lamina I
neurons, the differential sensitivity to blockade by magnesium
of different GluN2 variants has been used to infer that both
high magnesium-sensitive (GluN2A/B) and low magnesium-
sensitive (GluN2C/D) GluN2 variants are functionally ex-
pressed (856). In lamina II neurons, a combination of single-
channel and whole cell recordings have been used to suggest
that functional GluN2B-containing and GluN2D-containing
NMDARs are located extrasynaptically (615, 779). Which
GluN2 variants mediate the postsynaptic responses at primary
afferent synapses onto lamina I or lamina II neurons is an open
question. Primary afferent stimulation evokes direct, mono-
synaptic as well as indirect, polysynaptic responses which
overlap temporally with the prolonged time course of
NMDAR deactivation. To date, monosynaptic versus poly-
synaptic contributions of GluN2 variants have not been sepa-
rated experimentally.

C. NMDA Receptors and Spinal Cord
Neuronal Hyperexcitability

Chronic pain states involve enhanced responses in the nocice-
ptive relay/processing circuitry of the spinal cord dorsal horn,
and this phenomenon is referred to as central sensitization.
Central sensitization is mechanistically and qualitatively dis-
tinct from peripheral sensitization, which includes a reduction
in threshold and increase in responsiveness of peripheral noci-
ceptors when their terminals are exposed to inflammatory me-
diators or damaged tissue. Peripheral sensitization is restricted
to the site of injury and causes primary hyperalgesia when
peripheral pathology is present. Central sensitization mediates
allodynia, primary hyperalgesia, and secondary hyperalgesia
and can be maintained long after the initiating cause has re-
solved and even when no peripheral pathology is present. The
changes associated with central sensitization underlie a func-
tional reorganization of the somatosensory system so that the
low-threshold mechanosensory system feeds into the normally
high-threshold nociception system, leading to pain hypersen-
sitivity (for review, see Ref. 514).

The initial activity-dependent increases in synaptic responses
that trigger central sensitization include a process known as

windup. Windup is characterized by a successive increase in
the output of a dorsal horn neuron produced by afferent stim-
uli during a repetitive train of inputs (FIGURE 5A). Although
the repetitive stimuli that induce windup can also lead to cen-
tral sensitization, the two phenomena are distinct, as windup
itself is rapidly reversed during the time period in which central
sensitization manifests (for review, see Ref. 957). Clinically,
windup is a form of physiological pain amplification, mea-
sured as enhanced pain responses during repetitive noxious
stimuli (for review, see Ref. 38). The cumulative depolariza-
tion produced during windup leads to a relief of NMDAR
blockade by magnesium and a subsequent feed-forward am-
plification of synaptic membrane depolarization (222, 242,
846). Accordingly, NMDAR antagonists abolish windup in
placebo-controlled, blinded clinical studies. Administration of
dextromethorphan or ketamine in healthy human subjects at-
tenuates the facilitation of behavioral responses induced by
repeated noxious stimuli while not affecting pain responses to
a single stimulus (39, 708).

Central sensitization refers to a phenomenon defined by activ-
ity-dependent, persistent changes in dorsal horn neuronal ex-
citability (955), rather than a singular neuronal process or
mechanism. The sequential processes that underlie facilitation
of dorsal horn neurons include 1) cumulative depolarization
of superficial dorsal horn neurons; 2) relief of magnesium
blockade of NMDARs, causing an increase in intracellular
calcium (560) and synaptic depolarization (FIGURE 4C);
3) feed-forward depolarization and calcium influx mediated
by increased NMDAR currents and voltage-gated calcium-
permeable channel activity; and 4) elevation of intracellular
calcium beyond a threshold required to activate multiple in-
tracellular signaling pathways, leading to sustained increases
in synaptic transmission and neuronal excitability. Mecha-
nisms that underlie the initial cumulative depolarization in-
clude repetitive inputs causing temporal summation through
ligand-gated ion channel activity, activation of receptor ty-
rosine kinases by growth factors such as brain-derived neu-
rotrophic factor (BDNF) to cause disinhibition, and activation
of GPCRs by neurotransmitters and neuromodulators to in-
hibit voltage-gated potassium channels and facilitate nonselec-
tive cation channels (for review, see Ref. 502).

In addition to the role of NMDARs as a trigger in dorsal horn
neuron sensitization, NMDARs also act as effectors in dorsal
horn neuronal hyperexcitability (FIGURE 5B). The NMDAR-
mediated rise in intracellular calcium in dorsal horn neurons
causes an activation of kinases including protein kinase A
(PKA), protein kinase C (PKC), and extracellular signal-
regulated kinase (ERK) (461). These kinase cascades lead to a
phosphorylation-mediated increase in the activity of excit-
atory NMDARs, AMPARs, and voltage-gated calcium chan-
nels as well as an inhibition of voltage-gated potassium chan-
nels (357, 396, 521). The phosphorylation of NMDARs re-
sults in feed-forward potentiation of NMDAR function by
increasing NMDAR channel open time and probability (927,
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992) and by modulating NMDAR trafficking (151). Phos-
phorylation effects combine with membrane depolarization
and the activation of extrasynaptic NMDARs by glutamate
and glycine spillover during repetitive firing (13, 651) to en-
hance the contribution of NMDARs to EPSPs. Potentiated

NMDAR activity further increases intracellular calcium, lead-
ing to downstream activation of CaMKII, CREB, and c-fos as
well as NO-mediated activation of guanylate cyclases, ulti-
mately resulting in changes in synaptic strength mediated by
de novo gene transcription and translation of synaptic proteins
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FIGURE 5. NMDA receptors contribute to dorsal horn neuronal windup and persistent hyperexcitability.
A: repetitive presynaptic afferent fiber activity leads to a depolarization at dorsal horn neuron synapses, resulting in
the relief of magnesium blockade of NMDARs, feed-forward cumulative synaptic depolarization, and neuronal
hyperexcitability (right, top). This “windup” of dorsal horn excitability is immediately reversed upon the cessation
of repetitive presynaptic firing and the return to resting membrane potentials. Blockade of NMDARs with APV
attenuates the slow component of the initial EPSP and abolishes the cumulative dorsal horn neuronal hyper-
excitability produced by repetitive afferent activity (right, bottom). B, left: in mechanisms of dorsal horn neuron
sensitization, NMDAR currents are potentiated by both membrane depolarization and by phosphorylation
through associated upstream regulators and membrane receptors. The GluN1 subunit of NMDARs is phos-
phorylated by serine/threonine kinases while the GluN2 subunit is phosphorylated by tyrosine kinases. Right,
NMDAR activity in sensitized dorsal horn neurons causes calcium-dependent activation of associated effectors
that leads to an upregulation in the activity of excitatory ion channels and a downregulation in the activity of
inhibitory ion channels through posttranslational modifications. The activation of kinase cascades by NMDAR
activity also results in the transcriptional and translational regulation of many proteins, resulting in persistent
changes in dorsal horn neuron excitability.
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(reviewed in Refs. 512, 551, 744). The essential and ongoing
role of potentiated NMDAR activity in neuronal hyperexcit-
ability and pathological pain is demonstrated in the fact that
intrathecal injection of NMDAR antagonists attenuates and
reverses hyperalgesia and allodynia following peripheral in-
flammation or nerve injury (see below).

Long-term potentiation (LTP) at primary afferent-dorsal horn
neuron synapses constitutes a specific form of synaptic facili-
tation that leads to pain hypersensitivity (for review, see Ref.
753). At C-fiber-lamina I neuron synapses, NMDAR activa-
tion is required for the induction but not maintenance of LTP
that is elicited by either low-frequency or high-frequency stim-
ulation, both in vitro and in vivo (85, 410, 411, 549). This
form of LTP is referred to as homosynaptic, as the activating
synaptic input and the potentiated synaptic output are re-
stricted to the same synapse(s). However, homosynaptic LTP
does not offer a mechanistic explanation for the generation of
allodynia nor the spreading of hyperalgesia to uninjured re-
gions (secondary hyperalgesia) in chronic pain states and also
does not explain why NMDAR antagonists reverse pain hy-
persensitivity when administered long after sensitization
mechanisms have been initiated. A distinct form of plasticity,
heterosynaptic potentiation, occurs when one population of
synapses increases the responses of a distinct synaptic popula-
tion and is thought to be the predominant mechanism under-
lying neuronal sensitization and pathological pain (for re-
views, see Refs. 514, 515, 752).

It has been proposed that NMDAR-mediated plasticity in spi-
nal cord superficial dorsal horn neurons is similar in mecha-
nism to the LTP observed at glutamatergic synapses in other
regions of the CNS, including the hippocampus (reviewed in
Refs. 512, 744). However, synapses of superficial dorsal horn
neurons contain unique molecular and functional properties
that set them apart from other CNS synapses. For example,
GluN2B proteins rather than GluN2A proteins predominate
at mature synaptic sites in the superficial dorsal horn, which is
the reverse of hippocampal synapses (637, 682). NMDAR-
dependent hippocampal LTP is persistent and is maintained by
insertion of new AMPARs into the postsynaptic membrane
(470), while plasticity in the superficial dorsal horn only lasts
for hours and involves ongoing functional contributions of
potentiated NMDARs to facilitated EPSCs, including the
NMDAR-dependent recruitment of normally mechanosen-
sory A� fiber inputs (397, 515, 860). Moreover, non-Hebbian
synaptic plasticity induced exclusively by postsynaptic depo-
larization and calcium entry has recently been described in
superficial dorsal horn neurons (639). Thus hippocampal LTP
and dorsal horn neuroplasticity are distinct phenomena.

D. Changes in NMDAR Subtype Expression and
Phosphorylation in Chronic Pain Models

A wealth of literature exists on the changes in NMDAR phos-
phorylation and function that underlie dorsal horn neuronal

hyperexcitability in inflammatory and neuropathic chronic
pain states (514, 551, 744). This section focuses on genetic,
molecular, biochemical, pharmacological, and behavioral ev-
idence for the involvement of specific potentiated NMDAR
subtypes and variants in chronic pain, with an emphasis on
recent studies that have not been comprehensively reviewed to
date.

1. GluN1

Phosphorylation of the GluN1 NMDAR subtype by serine/
threonine kinases is enhanced in superficial dorsal horn neu-
rons during pathological pain signaling. In response to contin-
ual noxious stimulation but not innocuous stimuli, GluN1 is
rapidly and reversibly phosphorylated (112) by PKC and ERK
at S896 and by PKA at S897 in the superficial dorsal horn,
leading to pain hypersensitivity in models of neuropathic, in-
flammatory, visceral, and cancer pain (130, 785, 848, 889,
1011, 1012) (FIGURE 5B). Increases in GluN1 phosphoryla-
tion during sensitization mechanisms are reversed by in vivo
administration of NMDAR antagonists (i.e., MK-801), indi-
cating that the activation of NMDARs leads to feedforward
mechanisms resulting in enhanced phosphorylation of GluN1
itself (112, 217, 218). Thus intrathecal administration of
NMDAR antagonists attenuates both NMDAR activation
and potentiation to reverse behavioral hypersensitivity in
chronic pain states (217, 218).

The expression of total GluN1 protein within the dorsal horn
does not change during pathological pain signaling (130, 218,
889, 980); however, an increase in GluN1 immunoreactivity is
observed in the synaptic membrane fraction of dorsal horn
neurons during the development of mechanical allodynia in
inflammatory pain states (130, 980). As NMDAR phosphor-
ylation can modulate both channel opening and receptor traf-
ficking (reviewed in Ref. 151), it is likely that increased phos-
phorylation of GluN1 contributes to enhanced synaptic tar-
geting during pathological dorsal horn plasticity (130).

The essential role of NMDARs in dorsal horn sensitization
and pathological pain is demonstrated in GluN1 conditional
knockout mice. As all functional NMDARs contain two
GluN1 subunits (310), attenuated GluN1 expression results in
decreased functional expression of NMDARs. Mice with an
inducible knockout of GluN1 in superficial dorsal horn neu-
rons exhibit no deficits in acute thermal or mechanical pain
sensation but have significantly attenuated pain hypersensitiv-
ity in models of chronic inflammatory pain (164, 795, 944).
Similarly, antisense siRNA knockdown of GluN1 expression
in the superficial dorsal horn attenuates mechanical allodynia
produced by inflammation but has no effect on acute thermal
and mechanical pain sensation (320). Consistent with a role
for NMDAR calcium currents in activating downstream effec-
tor kinases during dorsal horn sensitization, knockout of
GluN1 abolishes inflammation-induced increases in PKC and
ERK phosphorylation (at 24 h) within superficial dorsal horn
neurons (164, 944). Selective knockout of GluN1 in primary
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afferent neurons also decreases pain hypersensitivity produced
by inflammation, while not affecting acute pain sensation
(594).

2. GluN2A

No alterations in the phosphorylation state or synaptic target-
ing of GluN2A in the dorsal horn have been observed follow-
ing peripheral nerve injury or NMDA injection models of
chronic pain (534, 693). Furthermore, global GluN2A knock-
out mice display no significant differences in pain behavior
produced by models of chronic postoperative, inflammatory,
and neuropathic pain compared with wild-type mice (6, 658,
698), and acute thermal and mechanical pain sensation are not
significantly different between wild-type and GluN2A knock-
out mice (6, 698). However, one study has reported that global
GluN2A knockout mice do exhibit a reduced secondary in-
flammatory pain response compared with wild-type mice
(379).

3. GluN2B

Phosphorylation of the GluN2B NMDAR variant by tyrosine
kinases (Src-family kinases, SFKs) is critical for dorsal horn
neuronal hyperexcitability and pain hypersensitivity. In-
creased phosphorylation of GluN2B at Y1336 and Y1472
residues occurs in superficial dorsal horn neurons in rodent
models of neuropathic and visceral pain and in some models of
inflammatory pain (6, 693, 784, 959, 975) (FIGURE 5B). As for
GluN1, the overall expression of GluN2B protein in the su-
perficial dorsal horn is not altered in chronic pain states (6,
784, 959), while there is an increase in synaptic GluN2B pro-
tein and GluN2B-like synaptic NMDAR currents in disinhibi-
tion, inflammatory, and neuropathic chronic pain states (130,
423, 975). Furthermore, mechanical allodynia induced by in-
trathecal injection of NMDA is sufficient to increase phos-
phorylation of GluN2B at Y1472 as well as synaptic targeting
of GluN2B (and GluN1) (534). Thus feedforward NMDAR-
dependent mechanisms promote both the phosphorylation
and synaptic targeting of GluN1 and GluN2B in the spinal
cord superficial dorsal horn.

Specific SFK members, including Src and Fyn, are involved in
the tyrosine phosphorylation of GluN2B, critical for initiating
and maintaining pathological pain signaling. Genetic deletion
of either Src or Fyn (6, 550) as well as pharmacological inhi-
bition by general SFK antagonists (353, 692, 784) results in
reduced GluN2B phosphorylation and attenuated behavioral
hypersensitivity in rodent models of visceral, inflammatory,
and neuropathic pain. The specific interactions between Src or
Fyn and GluN2B can also be targeted to reverse pain hyper-
sensitivity. Blockade of the Src-ND2-NMDAR interaction
through intrathecal injection of a specific peptide disrupter
(Src40–49Tat) (1, 331) prevents pain behaviors in rodent
models of both inflammatory and neuropathic pain, while
having no effect on acute pain sensation or cardiovascular,

respiratory, locomotor, and cognitive functions (550; re-
viewed in Ref. 750). Alternatively, transgenic GluN2B
Y1472F knock-in mice have impaired phosphorylation at
Y1472 by SFKs and do not exhibit neuropathic pain produced
by peripheral nerve injury or postherpetic neuralgia, while
displaying unaltered acute and inflammatory pain signaling
(583, 891). The observation that SFK inhibitors attenuate A�
fiber-mediated NMDAR mEPSCs (but not AMPAR mEPSCs)
in nerve-injured and not sham-operated rats also supports the
conclusion that the potentiation of GluN2B by SFKs is critical
for chronic but not acute pain (397).

GluN2B and Src proteins also interact with other proteins in
the macromolecular membrane complex to modulate
NMDAR functional expression and downstream synaptic sig-
naling (FIGURE 4). One such protein family is the membrane-
associated guanylate kinases (MAGUKs), composed of four
distinct members (PSD-95, PSD-93, SAP102, and SAP97) that
form intracellular scaffolding proteins. Both the PSD-93 and
PSD-95 MAGUK proteins have been shown to interact with
the COOH-terminal of GluN2 and are expressed in the super-
ficial dorsal horn (reviewed in Ref. 840). Genetic deletion of
PSD-93 in transgenic mice results in reduced expression of
GluN2A/B in the superficial dorsal horn, reduced NMDAR-
mediated synaptic currents, and reduced pain hypersensitivity
in neuropathic and inflammatory pain states, with preserved
acute nociceptive responsiveness (536, 841). Transgenic mice
with a truncated version of PSD-95 also fail to develop allo-
dynia and hyperalgesia in the peripheral nerve injury model of
neuropathic pain (321); however, PSD-95 truncation does not
affect synaptic NMDAR expression or NMDAR-mediated
synaptic currents (602). Thus PSD-95-NMDAR interactions
likely induce neuronal hyperexcitability and pathological pain
by modulating NMDAR-mediated effector signaling and not
NMDAR-mediated depolarization (FIGURE 5B). Indeed, an
increase in phosphorylation and colocalization of PSD-95,
SHP2, Shank1, and GluN2B at superficial dorsal horn syn-
apses has been implicated in mediating pain hypersensitivity in
models of inflammatory and neuropathic pain (353, 604,
693). The activation of neuronal nitric oxide synthase by
NMDAR is a likely effector downstream of PSD-95-GluN2B
interactions (926), and disruption of the association between
PSD-95 and nNOS reverses neuropathic pain (301). Finally,
spinal delivery of peptides that disrupt interactions between
GluN2B and PSD-95 reduce dorsal horn neuronal hyperexcit-
ability and pain hypersensitivity in vivo (210, 838). Further
peptides that disrupt interactions between NMDARs and
PSD-95 are currently under development as potential novel
therapeutics for the treatment of chronic pain (49).

Given that GluN2B is highly expressed in laminae I and II of
the spinal cord and is potentiated during mechanisms of dorsal
horn neuronal hyperexcitability, considerable efforts have
been made in developing GluN2B-specific antagonists and in
testing their efficacy in attenuating chronic pain signaling.
Global GluN2B knockout mice are embryonic lethal, but
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knocking down GluN2B expression in the dorsal horn with
siRNA attenuates behavioral hypersensitivity in the Formalin-
induced inflammatory pain model and has no effect on acute
pain responsiveness (833). Intrathecal administration of
GluN2B-selective antagonists including Ro25-6981, ifen-
prodil, and CP-101,606 reverse allodynia and hyperalgesia in
rodent models of cancer, inflammatory, and neuropathic pain,
while causing minimal deficits in motor function or acute pain
sensation (108, 349, 479, 716, 819, 967, 1013). Furthermore,
intrathecal injection of Ro25-6981 and ifenprodil also inhibits
activity-dependent plasticity of nociceptive dorsal horn neu-
rons in vivo (716). In models of neuropathic pain, Glu2B-
specific antagonists exhibit a significantly greater separation
between antinociceptive doses and doses that produce behav-
ioral and motor side effects when compared with nonselective
NMDAR antagonists (108, 819). Thus GluN2B-specific an-
tagonists have high efficacy in specifically attenuating spinal
cord hyperexcitability and pain hypersensitivity as well as a
potentially preferable side effect profile compared with nonse-
lective NMDAR antagonists.

4. GluN2C/D

Expression of the GluN2C NMDAR variant is thought to be
predominantly restricted to the cerebellum (618), with mini-
mal GluN2C mRNA and protein identified in superficial dor-
sal horn neurons (458, 997). Transgenic GluN2C knockout
mice do not display deficits in acute pain sensitivity and have
not been tested in models of chronic pain (378). In contrast,
GluN2D proteins are specifically localized to superficial dorsal
horn neurons (404) and the low magnesium-sensitive, putative
GluN2D-containing NMDAR currents in laminae I and II
spinal cord neurons (779, 856) could potentially contribute to
slow EPSCs and resultant slow EPSPs (482, 988) in mecha-
nisms of superficial dorsal horn transmission and plasticity.
Experiments on GluN2D knockout mice have yielded con-
flicting results, with no deficits in pain hypersensitivity in the
L5 spinal nerve transection, plantar incision, and plantar For-
malin injection models of chronic pain (6, 379, 658). In con-
trast, mechanical allodynia is completely abolished in
GluN2D knockout mice with the partial sciatic nerve ligation
model of neuropathic pain (379). Given the recent develop-
ment of GluN2D-selective antagonists and agonists (reviewed
in Ref. 617), the specific roles of GluN2D-containing
NMDARs in superficial dorsal horn plasticity and pathologi-
cal pain signaling should be investigated.

E. Upstream Regulators of NMDA
Receptors Linked to Dorsal Horn
Neuronal Hyperexcitability

Inflammation- or nerve injury-mediated activation of many
different GPCRs, receptor tyrosine kinases, and intracellular
signaling pathways converge onto the potentiation of
NMDARs to cause dorsal horn neuronal facilitation and pain
hypersensitivity (FIGURE 5B). Activation of the TrkB receptor

tyrosine kinase in lamina I projection neurons by BDNF causes
a downregulation of a chloride transporter (KCC2), leading to
attenuation of GABAergic inhibition and neuronal hyperex-
citability (201, 467). However, NMDAR activity may be re-
quired for the downregulation of KCC2 by BDNF (1020) and,
conversely, the BDNF-mediated disinhibition pathway may
induce NMDAR potentiation to facilitate excitation in lamina
I projection neurons. In support of this idea, the increase in
BDNF expression produced in nerve injury or bone cancer
models of chronic pain is paralleled by an increase in the ex-
pression and/or phosphorylation of NMDAR subunits in su-
perficial dorsal horn neurons (328, 923). Blocking NMDARs
with antagonists including APV and Ro25-6981 abolishes
BDNF-mediated behavioral hypersensitivity in chronic pain
models (328, 344), while knocking down BDNF expression
with RNAi attenuates increases in GluN1 phosphoryla-
tion induced by a bone cancer pain model (923). Increases in
BDNF and NMDAR expression and phosphorylation in the
superficial dorsal horn are correlated with activation of down-
stream PLC-, PKC-, SFK-, and ERK-mediated signaling path-
ways (319, 785; reviewed in Refs. 729). At a functional level,
application of exogenous BDNF facilitates EPSCs and
NMDA-evoked currents in neonatal lamina II neurons in vitro
(319, 469). However, recordings of synaptic NMDAR activity
in lamina I neurons are required to test for a direct and caus-
ative functional linkage between BDNF disinhibition and
NMDAR potentiation.

EphB receptor tyrosine kinases and their endogenous ligands
(EphrinBs) are presynaptic and postsynaptic membrane pro-
teins, respectively, that are essential for mechanisms of synap-
tic scaffolding, including the maintenance of NMDAR cluster-
ing at the synapse (213). Activation of EphB induces allodynia
and hyperalgesia in chronic pain states while not affecting
acute nociception (69, 790). Mechanistically, EphB activation
causes a SFK-mediated phosphorylation of GluN2B at Y1336
and Y1472 and an enhancement of synaptic plasticity and
dorsal horn neuronal excitability in chronic pain states, while
not altering acute pain transmission (181, 784, 790, 959,
1017).

Activation of GPCRs can also potentiate NMDARs in patho-
logical mechanisms of dorsal horn neuroplasticity. In addition
to the activation of ionotropic AMPARs and NMDARs, re-
petitive synaptic glutamate release also activates metabotropic
glutamate receptors (mGluRs) in superficial dorsal horn neu-
rons to induce prolonged EPSPs and neuronal hyperexcitabil-
ity (reviewed in Ref. 551). In inflammatory pain states, activa-
tion of group I mGluRs causes the tyrosine phosphorylation of
GluN2B through a PKC-/SFK-dependent pathway as well as
an enhancement of NMDAR EPSCs and inflammatory hyper-
algesia (353, 978). Bradykinin, another inflammatory media-
tor, acts on B2 GPCRs to potentiate NMDARs in lamina II
neurons through a pathway that includes PKA, PKC, and ERK
activation, leading to thermal hyperalgesia (492, 921).
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The activity of dorsal horn NMDARs is also facilitated by
other proinflammatory cytokines to potentially mediate
neuronal hyperexcitability and pain hypersensitivity. Acti-
vation of the IL-1R receptor by interleukin-1� potentiates
NMDA-induced currents in lamina II neurons (462, 548),
where GluN1 and IL-IR are colocalized (1011, 1012). Fur-
thermore, intrathecal administration of the IL-1R antago-
nist IL-1Ra reverses GluN1 phosphorylation and mechani-
cal hyperalgesia in rodent models of inflammatory and bone
cancer pain (1011, 1012). A similar reduction in inflamma-
tion-induced pain hypersensitivity and GluN1 phosphory-
lation is observed following intrathecal administration of
an antibody against the proinflammatory cytokine interleu-
kin-17 (596).

The contributions of NMDAR antagonism to morphine
analgesia are influenced by sex differences (645). A greater
understanding of how sex differences shape dorsal horn
NMDAR function is of clinical interest, as opioids and
NMDAR antagonists can have complimentary analgesic ef-
fects (298, 355, 495). Application of exogenous estrogen
(17�-estradiol) induces an NMDAR-dependent increase in
GluN2B phosphorylation, facilitates NMDAR-mediated
currents, and increases LTP in superficial dorsal horn neu-
rons (1016). Furthermore, estrogen activates feedforward
phosphorylation of GluN1 via PKA activity and induces
behavioral hypersensitivity in a rodent visceral pain model
(836).

F. Lipid Signaling Molecules Also Modulate
NMDAR Activity in the Superficial Dorsal
Horn

Leptin, a pronociceptive adipocytokine, increases spinal
cord GluN1 expression and potentiates NMDA-induced
currents in spinal cord lamina II neurons through a pathway
that includes the leptin receptor and downstream JAK2/
STAT3 signaling (539, 849). The allodynia and hyperalge-
sia induced by intrathecal infusion of leptin is abolished by
coadministration of MK-801 and reversed by subsequent
administration of MK-801 (849). Furthermore, spinal ad-
ministration of a leptin antagonist prevents and reverses
hyperalgesia and allodynia in a rodent peripheral nerve in-
jury model of neuropathic pain (539). In contrast to leptins,
resolvins are a family of lipid mediators with efficacy in
attenuating inflammatory pain. Spinal administration of re-
solvin E1 blocks the facilitation of NMDARs by the inflam-
matory cytokine TNF-� in superficial dorsal horn neurons
(972). Intrathecal administration of resolvin D1 also atten-
uates the increase in phosphorylation of spinal cord GluN1
and GluN2B and reverses mechanical allodynia in a rat
model of chronic pancreatitis, while having no effect on
pain sensation or NMDAR phosphorylation in sham-
operated rats (717).

G. NMDA Receptors as Clinical Targets for
Pain Therapeutics

Preclinical evidence demonstrates that NMDARs are essential
for spinal cord facilitation in chronic pain states. Inhibiting the
activation or potentiation of NMDARs attenuates dorsal horn
neuronal hyperexcitability and pathological pain, while leav-
ing acute pain transmission intact. Blinded, placebo-controlled
clinical trials with healthy, unmedicated volunteers have been
used to test the efficacy of NMDAR antagonists in reversing
pain hypersensitivity produced by relatively minor injury
models. Administration of either low-dose oral dextrometho-
rphan or intravenous ketamine in volunteers with a first degree
burn injury significantly reduced mechanical allodynia and
secondary hyperalgesia yet had no effect on heat pain detec-
tion thresholds in undamaged skin (415, 416). Similarly, in-
travenous administration of ketamine attenuated secondary
hyperalgesia and had no effect on thermal pain thresholds in
volunteers with topical application of 1% capsaicin to the foot
(33). Thus NMDAR antagonists reverse dorsal horn sensitiza-
tion and pain hypersensitivity in human models of pathologi-
cal pain but do not affect basal pain transmission.

Testing the clinical efficacy of NMDAR antagonists in chronic
pain syndromes is complicated by heterogeneity in underlying
genetic, etiological, and environmental factors (912); variabil-
ity in patient drug metabolism (600); and potentially con-
founding comorbidities (84, 497). For neuropathic pain, a
recent meta-analysis identified 28 blinded, randomized, place-
bo-controlled clinical trials that tested the efficacy of NMDAR
antagonists in reversing pain hypersensitivity (194). While ad-
ministration of NMDAR antagonists caused no significant
pain relief in a subset of studies, potentially due to the factors
listed above, significant reductions in pain hypersensitivity
were observed in clinical trials testing the efficacy of amanta-
dine, dextromethorphan, magnesium salts, ketamine, and me-
mantine in specific neuropathic pain syndromes. Overall, the
meta-analysis study stated that “evidence in favor of the effec-
tiveness of NMDAR antagonists for the treatment of neuro-
pathic pain, of which ketamine seems to be the most potent, is
accumulating” (194). It should be noted that most of the cur-
rently available clinical NMDAR antagonists are moderate-
affinity NMDAR antagonists with multiple potential mecha-
nisms of action that may contribute to their therapeutic effi-
cacy. For example, micromolar concentrations of riluzole and
dextromethorphan inhibit NMDAR activity (226, 646) but
also inhibit excitatory voltage-gated sodium and/or calcium
channels (646, 968).

Broad-spectrum inhibition of all NMDAR function by clinical
antagonists such as ketamine can cause an inhibition of phys-
iological NMDAR activity, leading to CNS-related adverse
effects that include drowsiness, restlessness, hallucinations,
headaches, and impairment of memory and motor functions.
In an effort to develop therapeutics that treat chronic pain with
greater efficacy and fewer side effects, new strategies are
emerging that target specific pronociceptive NMDAR vari-
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ants, their potentiators, and their downstream effectors
(FIGURE 4). Due to the critical role of GluN2B in spinal cord
sensitization, high-affinity antagonists of GluN2B are under
preclinical and clinical development for the treatment of
chronic pain (reviewed in Ref. 962). However, inhibition of
GluN2B-mediated plasticity in physiological brain functions
may cause psychotomimetic effects and limit the utility of
Glu2B-specific therapeutics. Given the restricted expression of
GluN2D in the mature CNS and the putative functional ex-
pression of GluN2D in the superficial dorsal horn, it will be
interesting to explore whether recently developed GluN2C/D-
specific antagonists (617) are efficacious in attenuating neuro-
nal hyperexcitability and chronic pain. Another promising
therapeutic strategy for treating pathological pain is to block
upstream potentiators of NMDAR function or downstream
GluN2B-coupled effectors (FIGURE 5B). Recent candidate ap-
proaches include the use of peptide disrupters of peptide-
peptide interactions to specifically target the upstream dys-
regulated Src enhancement of NMDARs (550) or the down-
stream coupling of GluN2B with PSD-95 (210, 838). Further
study of the functional roles of NMDARs in the afferent no-
ciception pathway could reveal further upstream enhancers of
NMDAR activity and downstream NMDAR-coupled effec-
tors that may constitute novel therapeutic targets for pain
treatment.

VI. PURINERGIC RECEPTORS

A. ATP and Pain

ATP is the prototypical energy source that fuels virtually all
cellular processes. The first clue that ATP might possess an
alter ego, one that mediates nociceptive signaling between
cells, was the observation that it is released from sensory
nerves following electrical stimulation (382, 383). This initial
finding explicated an extracellular role for an otherwise intra-
cellular molecule that was consistent with reports of pain
evoked by intradermal ATP injection in both humans (96,
359) and animals (433). Subsequent studies demonstrated that
exogenous application of ATP causes neuronal excitation in
the spinal cord and DRG (428, 499). A mechanistic link be-
tween extracellular ATP release and pain signaling was real-
ized when the P2X3 receptor was cloned and shown to be
preferentially expressed on nociceptive neurons together with
the P2X2/3 heterodimer receptor (152, 526). Identification of
the P2X3 receptor spawned an intense search for other ATP
receptors which led to the discovery of a number of additional
P2 purinergic receptor family members.

B. Purinergic Receptor Subtypes and
Molecular Composition

The P2 family of receptors is comprised of P2Y metabotropic
and P2X ionotropic receptors. Activation of these receptors is
the modus operandi for ATP-mediated intercellular signaling

implicated in a wide range of physiological processes, includ-
ing neurotransmission, neuromodulation, chemoattraction or
chemotaxis, and pain (123). Unlike P2Y receptors, which are
G protein-coupled, P2X receptors are nonselective cation
channels permeable to calcium, sodium, and potassium ions.
Seven P2X (P2X1-P2X7) receptor subunits have been cloned
(472, 662). Assembly of three of these subunits as either ho-
momeric or heteromeric complexes forms the core P2X recep-
tor channel (650, 905). To date, six homomeric (P2X1-P2X5
and P2X7) and eight heteromeric (P2X1/2, P2X1/4, P2X1/5,
P2X2/3, P2X2/5, P2X2/6, P2X4/6, and possibly P2X4/7) re-
ceptors with unique molecular and cellular properties have
been identified (195, 432, 858, 859). Each subunit shares a
common topology with two transmembrane helices that link
the intracellular NH2 and COOH termini to a large extracel-
lular ligand binding region (110, 662, 893). The NH2 termi-
nus of all P2X receptor subunits is similar in length (20–30
amino acids) and contains a protein kinase C phosphorylation
site (103). In contrast, the COOH terminus can differ between
26 (P2X6) and 239 (P2X7) amino acids; this intracellular re-
gion contains several distinct motifs that confer subunit spe-
cific properties related to trafficking, internalization, and pro-
tein-protein interactions (448). The COOH terminus of the
P2X4 receptor in particular appears to be important for ago-
nist-induced desensitization (302), binding of phosphoinosi-
tide PIP2 (88), and constitutive internalization (97, 306, 720).

The trimeric architecture of P2X receptors is distinct from that
of other ligand-gated cation channels, such as tetrameric glu-
tamate receptors (741) and pentameric acetylcholine receptors
(731, 892). However, the precise arrangement of P2X receptor
subunits remained enigmatic until the recent crystallization of
the zebrafish P2X4 receptor, which revealed hidden details
about its extracellular domain, transmembrane regions, and
ion permeation pathway (463, 464). Elucidation of the P2X4
crystal structure also uncovered three ATP binding pockets
(463, 464) validating earlier predictions that at least three ATP
molecules are required to induce conformational changes that
open the cation channel (65, 650). Influx of calcium through
the opened P2X channel engages specific intracellular signal-
ing cascades that are now beginning to be understood within
the context of physiological and pathological processes. The
idea that extracellular ATP is significantly increased in re-
sponse to inflammation and tissue trauma (504, 652, 813) is
consistent with growing evidence that P2X receptors are caus-
ally implicated in chronic inflammatory and neuropathic pain
(868, 874). The converging lines of evidence that P2X recep-
tors are cellular substrates for pain pathology has generated
considerable therapeutic interest, with the most promising of
these targets being P2X3, P2X2/3, P2X4, and P2X7 receptors.
However, a major challenge that has plagued the study of P2X
receptors is the dearth of selective agonists, antagonists, and
modulators. A lack of research tools has made it difficult to
parse the specific contribution of each P2X receptor subtype
based on pharmacological strategies alone. Rather, a com-
bination of pharmacological and genetic approaches has
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been necessary to build the argument that P2X3, P2X2/3,
P2X4, and P2X7 receptors are key components that drive
chronic pain signaling in the central and peripheral nervous
systems.

C. Role of P2X3 Receptors in Pain Signaling

The P2X3 receptor is a homomeric trimer composed of three
P2X3 monomers. Two subunits of P2X3 monomer can also
assemble with one P2X2 monomer to form the P2X2/3 het-
eromeric receptor (128, 526). Both P2X3 and P2X2/3 recep-
tors are localized on a subset of primary afferents (152, 526),
with the highest expression being on small to medium-sized
nonpeptidergic afferents (915). In addition, P2X3 receptor
subunits are found in supraspinal regions involved in pain
modulation (188, 768, 981). P2X3 receptors are therefore
crucial nodes for transmitting nociceptive signals from the pe-
riphery to the CNS. However, it appears that these receptors
are not required for acute responses to noxious mechanical or
thermal stimuli as these modalities appear to be unaffected in
the P2X3 receptor knockout mice (191, 794). Rather, there is
growing evidence that P2X3 receptors are critically involved in
pain caused by chronic inflammation or nerve injury (133,
388, 590, 876). Such injuries alter P2X3 receptor expression
leading to increased spontaneous firing of wide dynamic range
and nociceptive specific neurons in the spinal cord (431, 665,
971). Pharmacologically blocking P2X3 function or suppress-
ing its expression with antisense oligonucleotides attenuates
pain behaviors in rodent models of inflammation, nerve in-
jury, and bone cancer (388, 389, 774). These results have been
confirmed by a new generation of drugs with improved selec-
tivity against P2X3 and P2X2/3 receptors (128, 351, 971) as
well as in P2X3 knockout mice which display an attenuated
inflammatory and neuropathic pain phenotype (190, 191,
794). Altogether these findings provide pharmacological, ge-
netic, and behavioral evidence towards a causative role of
peripheral and central P2X3 receptors in mediating the se-
quelae of chronic pain. However, deciphering the specific con-
tribution of homomeric versus heteromeric P2X3 receptors
has not been possible because both receptor types are sup-
pressed in the P2X3 knockout mice or blocked by the current
pharmacological repertoire of antagonists.

D. P2X4 Receptors Are Cellular Hubs for
Pain Signaling in Microglia

In the CNS, P2X4 receptors have emerged as key cellular play-
ers involved in neuropathic pain signaling (81, 866). The spe-
cific role of P2X4 receptors was first teased out from pharma-
cological responses to P2X receptor antagonists: it was
demonstrated that intrathecal injection of 2=,3=-O-(2,4,6-
trinitrophenyl)adenosine 5=-triphosphate (TNP-ATP), an
antagonist of P2X1–4 receptors, reversed mechanical allo-
dynia in nerve-injured rats, whereas pyridoxalphosphate-6-
azophenyl-2=,4=-disulphonoic acid (PPADs), an antagonist of

P2X1–3,5,7 receptors, had no effect on mechanical allodynia
(879). On the basis of the pharmacological profiles of these
antagonists, it was deduced that the essential P2X receptor
subtype involved in central responses to peripheral nerve in-
jury is the P2X4 receptor, and that persistence of mechanical
allodynia requires tonic P2X4 receptor activation. A causative
link between P2X4 receptors and neuropathic pain was sup-
ported by direct targeting of P2X4 receptors with antisense
oligonucleotides (879) and by genetically deleting the P2rx4
gene (877, 887). Both of these approaches produced a marked
reduction in mechanical allodynia, demonstrating the neces-
sity of P2X4 receptors in neuropathic pain. Furthermore, it
was discovered that the onset of mechanical allodynia coin-
cides with a progressive increase in spinal P2X4 expression,
which is typically present at low levels in the uninjured CNS
(879, 887). In an unexpected twist, this increase was confined
to microglia (which are immunocompetent cells) residing in
the spinal dorsal horn (879, 887). Delivering P2X4 stimulated
microglia into the spinal cord of an uninjured animal mim-
icked the neuropathic pain phenotype, and recapitulated the
altered nociceptive output of lamina I neurons induced by
peripheral nerve injury (201, 467, 879). As such, P2X4 recep-
tors expressed on microglia provide a neural basis for the
etiology of neuropathic pain (FIGURE 6).

E. Modulators of P2X4 Receptor Expression

Building on the discovery that P2X4 receptors are causally
implicated in neuropathic pain, a catalog of signaling mole-
cules has been discovered to modulate P2X4 expression in
microglia. Cytokines, chemokines, and extracellular matrix
molecules are among the cellular substrates that engage the
P2X4 receptor response in spinal microglia (418, 558, 870). In
particular, chemokines CCL21 and CCL2 released from in-
jured neurons are known to affect microglial P2X4 receptors
through distinct intracellular mechanisms; CCL21 is an up-
stream activator of de novo P2X4 synthesis (91, 223, 224),
whereas CCL2 increases cell surface expression of P2X4 re-
ceptors without changing total P2X4 protein levels (863).
Other signaling molecules that promote P2X4 expression in-
clude interferon-�, a cytokine released following nerve injury
(878), and tryptase, a protease secreted from activated mast
cells (995). In addition, extracellular matrix molecule fi-
bronectin signaling through Lyn kinase has been found to
regulate the transcription and translation of P2X4 receptors
(642, 880, 881). Activation of MORs by morphine can also
increase microglial P2X4 receptor expression; this response
opposes morphine analgesia (391, 392) and paradoxically en-
hances pain sensitivity (293). Thus several signaling molecules
are implicated in the regulation of microglial P2X4 receptors.
The next steps will be to determine the significance of this
diverse, yet convergent modulation of P2X4 expression, and
to elucidate how they are causally interconnected in P2X4
receptor mediated pain signaling.
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F. Convergent P2X4 Receptor Signaling
Gates Inflammatory and Neuropathic
Pain

The intracellular convergence point for P2X4 receptor regula-
tion and the key effector of P2X4 receptor signaling is p38
mitogen-activated protein kinase (MAPK) (869, 875, 888). In
microglia, influx of calcium through the P2X4 receptor cou-
ples activation of p38 MAPK to the synthesis and release of
BDNF, a critical microglia-to-neuron signaling molecule im-
plicated in aberrant nociceptive processing in the spinal cord
(201, 867). The requirement for P2X4 receptors in BDNF
release is consistent with evidence that P2X4 knockout mice
have impaired microglial BDNF release, altered BDNF signal-
ing in the spinal cord, and abrogated development of mechan-
ical allodynia following peripheral nerve injury (887). A caus-
ative link between P2X4 receptors and p38 MAPK has also
been uncovered in peripheral macrophages (FIGURE 6). Like
microglia, influx of calcium through stimulated P2X4 recep-
tors is an essential mechanistic step that is permissive for mac-
rophage mediated pain signaling; however, in this cell type the
released signaling molecule is prostaglandin E2, which sensi-
tizes peripheral nociceptors leading to inflammatory pain hy-
persensitivity (888). Thus central and peripheral P2X4 recep-
tors control the release of distinct factors from spinal microglia
(BDNF) and peripheral macrophages (prostaglandin E2)
which differentially contribute to the sequelae of neuropathic
and inflammatory pain.

G. Role of P2X7 Receptors in Pain Signaling

P2X7 receptors are predominantly expressed on immune cells
in both central and peripheral tissues (402, 780, 783, 911).
Their activation provides the critical signal that engages the
inflammasome response, initiating synthesis and release of
proinflammatory cytokines (291, 490). Concomitant with in-
creased activation is the upregulation of P2X7 receptor ex-
pression, which is particularly striking in DRG and injured
nerves isolated from chronic neuropathic pain patients (170).
Genetically suppressing or pharmacologically blocking the
P2X7 receptor blunts inflammatory and neuropathic pain be-
haviors in rodents, as well as abolishes ATP evoked release of
the cytokine interleukin-1�, a mediator of inflammation (170,

387, 459). The cellular contribution of P2X7 receptors to pain
pathology also encompasses the regulation of neuronal P2X3
receptors (162), downregulation of glutamate transport (622),
and release of matrix metalloproteinase-9 (347) and prosta-
glandin E2 (58). In the CNS, the P2X7 receptor is a locus for
microglia-mediated chronic pain signaling. Activating micro-
glial P2X7 receptors drives the release of interleukin-1�, ca-
thepsin S, and TNF-�, which contribute to the development
and maintenance of mechanical pain hypersensitivity (184,
185, 631). Thus extensive and converging lines of preclinical
evidence clearly support P2X7 receptors as being essential
players in chronic pain and inflammation.

Because of the potential implications for treating chronic pain,
P2X7 receptors are considered high-priority targets for drug
development. Drugs that have entered clinical testing have a
mechanism of action that blocks P2X7 cation channel func-
tion (169, 350, 351). However, P2X7 receptors possess two
distinct modes of action; not only do they function as a cation-
selective channel, but they can also form large nonselective
pores (also referred to as pore formation) that allow molecules
up to 900 Da to pass through the cell membrane (437, 690,
814). Pore formation is regulated by the COOH-terminal do-
main of the P2X7 receptor (10, 408). In this region, a proline
to leucine substitution at amino acid 451 of the P2X7 receptor
differentially impairs pore formation while leaving cationic
channel function completely intact (10, 408). In mice, the
pore-disabling P2X7 variant (451L) is associated with an at-
tenuated inflammatory and neuropathic pain phenotype
(792). In humans, the P2RX7 gene is highly polymorphic
(309, 806), and genetic differences within P2RX7 that affect
P2X7 pore formation have been associated with two distinct
types of persistent pain: chronic post-mastectomy pain and
osteoarthritis pain (792). Individuals in these cohorts carrying
an allele encoding for heightened P2X7 pore function reported
more intense pain, whereas those with a low-functioning allele
reported lower pain. Taken together, the most parsimonious
explanation is that genetically determined P2X7 pore forma-
tion critically controls variability in chronic pain sensitivity in
both mice and humans. Targeting pore formation might there-
fore provide a focused therapeutic strategy with the potential
for fewer side effects associated with indiscriminate P2X7 in-
hibition. Moreover, identification of specific P2RX7 haplo-
types has potentially important implications for predicting an

FIGURE 6. Critical role of P2X receptors in central and peripheral chronic pain signaling. P2X3, P2X2/3, P2X4, and P2X7 receptors are
causally implicated in inflammatory and neuropathic pain. Localized on primary sensory afferents, P2X3 and P2X2/3 receptors are nodes for
transmitting nociceptive signals from the periphery to the CNS. P2X4 and P2X7 receptors, on the other hand, are expressed predominantly on
immune cells. In particular, P2X4 receptors are cellular hubs for microglia-mediated chronic pain signaling: influx of extracellular calcium through
ATP-stimulated P2X4 receptors activates p38-MAPK and gates the release of BDNF. Acting via its cognate receptor, TrkB, BDNF signals to
increase spinal nociceptive output through neuronal disinhibition or hyperexcitation. Likewise, inflammatory challenges that stimulate P2X4
receptors on macrophages trigger a calcium and p38-MAPK-dependent release of prostaglandin E2 (PGE2), which sensitizes peripheral
nociceptors. P2X7 receptors expressed on microglia and macrophages are also key players in chronic pain signaling. Activation of these
receptors releases interleukin-1� (IL-1�) and cathepsin S which contribute to the development and maintenance of chronic pain. A unique feature
of the P2X7 receptor is its ability to form large nonselective cytosolic pores (pore formation) that allow molecules up to 900 Da to pass through
the cell membrane. P2X7 pore formation mediated by recruitment of an accessory protein, pannexin-1 channels, which form the pore, is
critically implicated in experimentally induced pain in mice and in chronic pain conditions in humans.
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individual’s risk of developing chronic pain. The most salient
prediction is that individuals with pore-impaired P2X7 recep-
tors would not benefit from pharmacological interventions
aimed at this target. Hence, a therapeutic strategy that involves
P2RX7 genotyping, or functionally assessed pore formation,
has great potential for guiding and individualizing the treat-
ment of chronic pain.

In summary, P2X3, P2X2/3, P2X4, and P2X7 receptors have
emerged as the core P2X receptor subtypes involved in central
and peripheral pain pathology. Several recent discoveries have
begun to unravel the molecular composition of these receptors
and build a comprehensive mechanistic framework for under-
standing the intracellular components that control P2X recep-
tor-mediated pain signaling. A large body of evidence now
suggests that strategies directed against P2X3, P2X2/3, P2X4,
or P2X7 receptors is of high value for designing novel and
more effective pain therapies. Although there are P2X-based
drugs currently in clinical trials for rheumatoid arthritis, pain,
and cough (663), there remains a pressing need for a new
generation of P2X receptor antagonists with improved selec-
tively and pharmacological profiles, both as research tools and
as realized clinical pain therapies.

VII. TRANSIENT RECEPTOR POTENTIAL
CHANNELS

A. Physiological Role and Molecular
Compositions Of Transient Receptor
Potential Channels

The identification of the superfamily of transient receptor po-
tential (TRP) cation channels has led to many important in-
sights into the molecular basis of pain signaling. In particular,
the family of thermosensitive TRP channels has been of utmost
interest due to their polymodal activation. They are nonselec-
tive cation channels and act as molecular transducers of nox-
ious temperatures (heat or cold), as well as mechanical and
chemical stimuli (292, 654, 668). Calcium and sodium influx
through these channels convert these stimuli into locally
spreading membrane depolarizations, propagating action po-
tentials to the spinal cord and higher brain centers (827). These
channels can also contribute to changes in the intracellular
calcium concentration that subsequently activates calcium-
dependent enzymes involved in the pain pathway, such as the
neuronal nitric oxide synthase (nNOS) (421; for review, see
Ref. 327). Thermosensitive TRPs allow us to experience the
burning of chili peppers or the cooling of menthol, as they can
be activated not only by temperature, but also by endogenous
molecules and synthetic substances known to trigger thermal
and pain sensation. While these channels are of tremendous
importance in somatosensory perception, their dysregulation
(i.e., increased expression and sensitivity) is often associated
with inflammatory and neuropathic pain (748). Along these
lines, growing evidence of the regulation of these channels by

pro-inflammatory mediators such as serotonin, bradykinin,
prostaglandins, proteases, chemokines, and growth factors
has confirmed how essential these channels are in the sensiti-
zation of the afferent pain pathway (for review, see Ref. 898).

The TRP channel superfamily is a large family of ion channels
with 28 mammalian members identified, separated into 7 dis-
tinct subfamilies (183). TRP channels are found in a wide
variety of cell types, including smooth muscle, epithelium, and
immune cells as well as neurons. Since the cloning of the first
vanilloid receptor (TRPV1), six subfamilies have been de-
scribed: the vanilloid (TRPV), canonical (TRPC), melastatin
(TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin
(TRPML) (655). While TRP channels share little sequence
homology among subfamilies, they exhibit a similar mem-
brane topology. Each TRP subunit contains six membrane
spanning helices (termed S1-S6) as well as a pore-lining loop
between S5 and S6 that enables distinct cation selectivity and
permeability among TRP channels. The assembly of four sub-
units is generally required to form a functional channel (465,
759), yet both homo- and heteromultimerization of channel
complexes have been reported (52, 166, 167, 369). The NH2

and COOH termini are intracellular regions that contain sites
of regulation by protein kinases, chaperones, and scaffold pro-
teins. These interactions either facilitate channel trafficking to
the cell surface or lower the threshold of channel activation,
both leading to sensitization of nociceptive transduction.

TRP channels are regulated by a wide variety of molecules and
stimuli, from protons to arachidonic acid (AA) metabolites or
even changes in osmolarity. Thus TRP channels are ideally
suited towards detection of pathophysiological inflammatory
conditions: heat, acidosis, changes in osmolarity (mechanical
stimulus), as well as the release of inflammatory mediators
that might accompany these conditions (686, 922). These
channels can also be intrinsically voltage-dependent, as shown
for TRPV1 (352), TRPM3 (342), TRPM4 (656), TRPM5
(381, 828), TRPM8 (907), TRPV3 (179), TRPM3 (342),
TRPA1 (1025), and TRPP3 (778). Finally, phosphorylation is
an important regulator of TRP channel function (705, 931).

While the TRPC and TRPM families have been characterized
in sensory neurons, analysis of mice lacking various thermo-
sensitive TRP genes has revealed a crucial role of TRPV1–4,
TRPM8, TRPM3 (914), and TRPA1 channels in pain signal
transduction and integration, and these channels have been
highlighted as molecular players in nociceptive and neuro-
pathic pain. Here we will review their molecular identity, their
mechanism of activation by nociceptive stimuli, their regula-
tion by proinflammatory mediators, and changes in their ex-
pression patterns in physiopathological pain states. To date,
drug companies have dedicated considerable efforts towards
targeting TRP channels for pain management (197, 620, 822).
However, the development of new analgesic molecules has
encountered limitations due to undesired on-target side-
effects. In particular, early TRPV1 antagonists elicited marked
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hyperthermia in animal models (315, 324, 386, 952) and in
clinical studies (471). As discussed here, the task is not insur-
mountable, and analgesic molecules targeting nociceptive TRP
channels may soon find their place in the therapeutic arsenal
(641).

B. TRPV1

The first characterized nociceptive TRP channel was the vanil-
loid type 1 (TRPV1), the receptor for the vanilloid irritant
capsaicin. This channel was cloned in 1997 using an expres-
sion-cloning screening strategy (138). Structure-function anal-
ysis indicates that several phosphorylation sites involved in
sensitizing actions of PKA and PKC are located in the cyto-
plasmic NH2 and COOH termini (702). In addition, the NH2-
terminal region of TRPV1 holds six cytosolic ankyrin repeat
domains (ARDs) that form a multiligand-binding site for cal-
modulin (CaM) and ATP (545) (see FIGURE 7). While the
CaM-binding site in the NH2-terminal region was described as
an important regulator of TRPV1 desensitization, the high-
affinity CaM-binding site isolated in the COOH-terminal re-
gion of the channel showed a minor contribution (516).

TRPV1 is a noxious heat-sensitive channel with polymodal
activation (low pH, osmolarity changes, arachidonic acid me-
tabolites) and voltage-dependent properties (352). Expression
of the TRPV1 channel was reported in small to medium DRG
neurons that respond to the pungent ingredients of hot pepper
as well as heat (138, 239). It is also widely expressed within the

peripheral and central nervous systems, in the gastrointestinal
tract, and the epithelium of the bladder and skin (620, 633,
702, 728, 908). In rodents, TRPV1 has been described primar-
ily in small- to medium-diameter primary sensory ganglia
(DRG, trigeminal and nodose ganglia). TRPV1 is expressed in
nociceptive A�- and C-fibers (138) which project to the super-
ficial dorsal horn (855) and is found in 70% of small (�50
�m) neurons from human cervical DRG (31). TRPV1 is also
distributed in trigeminal and vagal afferents immunoreactive
for SP, CGRP, and the NGF receptor TrkA (138, 178, 1021,
1022). Consequently, sensitization of the channel during in-
flammation or ectopic discharge may contribute to the devel-
opment of autonomic dysregulation in visceral tissue inner-
vated by the vagus nerve (935). Electrophysiological charac-
terization of the channel has revealed its intrinsic heat
sensitivity in DRG neurons (146) and in reconstituted artificial
liposomes (129). Importantly, the temperature threshold that
gates the channel can be lowered by proinflammatory media-
tors released during inflammation. As discussed below, nu-
merous studies have proposed a pivotal role of TRPV1 in
hypersensitive states that result from tissue inflammation, in-
cluding thermal and mechanical hyperalgesia.

Due to its high expression in nociceptors, TRPV1 has received
intense interest from a pain-management perspective, and
blockers of TRPV1 have been shown to have analgesic prop-
erties. However, while capsaicin is able to produce peripheral
and central sensitization associated with secondary hyperalge-
sia, prolonged or repetitive administration of capsaicin locally
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on the epidermis results in channel desensitization and skin
fiber removal (429, 821). Indeed, excessive TRPV1 activation
leads to calcium cytotoxicity and specific ablation of TRPV1
positive nociceptors. Use of the potent agonist resiniferatoxin
(RTX), which is 1,000-fold more potent than capsaicin (824),
has demonstrated that removal of TRPV1-expressing nocice-
ptors reduces experimental inflammatory hyperalgesia and
neurogenic inflammation in rats as well as naturally occurring
cancer pain and debilitating arthritic pain in dogs (456). Fur-
thermore, desensitization of TRPV1-positive fibers with sys-
temic RTX administration abolishes spinal nerve ligation
(SNL) injury-induced thermal hypersensitivity and spontane-
ous pain, but has no effect on tactile hypersensitivity (484). In
humans, a single high dose or repeated application of capsai-
cin (injected or topical) causes rapid desensitization (468, 509,
659, 781), whereas single low doses lead to activation of no-
ciceptive fibers and thermal hyperalgesia (24, 843). Topical
administration of capsaicin as a cream or local patch (NGX-
4010, Qutenza) has been developed for chronic pain condi-
tions that result from postherpetic neuralgia (51, 441), human
immunodeficiency virus-associated distal sensory neuropathy
(782), or diabetic neuropathy (664). In contrast, attempts to
develop TRPV1 antagonists have been less successful. Given
the role of this channel in the regulation of body temperature
(314, 409), most of the antagonists tested in preclinical and
human studies presented hyperthermic side effects (620). Cur-
rent investigations are centered on separating the analgesic
potency of TRPV1 blockers from their hyperthermic action.
The solution may reside in specifically targeting one of the
three modalities of channel activation (capsaicin, low pH, or
heat). An alternative strategy is to generate a channel-
permeant activator with the ability to desensitize the channel
from within its open state during neuronal hyperactivity. This
would prevent inactivation of silent (closed) channels to pre-
serve normal nociception (620). Another strategy consists of
introducing the membrane-impermeant sodium channel
blocker QX-314 into primary afferent nociceptors through
the TRPV1 channel pore. Using this approach, Binshtok et al.
(92) were able to rapidly and specifically block the excitability
of TRPV1-expressing C-fibers (92).

1. TRPV1 and inflammatory pain

A main hallmark of TRPV1 is its sensitization in response to
mediators contained in the inflammatory milieu after infection
and injury or in autoimmune diseases. While protons, heat,
pressure, or lipids directly activate TRPV1 (136, 855), proin-
flammatory mediators such as serotonin, bradykinin, hista-
mine, proteases, chemokines, or NGF (800, 1014) are able to
regulate TRPV1 activity and trafficking, leading to channel
sensitization and thermal hyperalgesia (453) (FIGURE 8). This
is of particular significance, since NGF levels are increased
during nerve injury (525, 735) or in murine models of visceral
hyperalgesia, including gastric ulcers (508) and colitis (175,
572, 797). Other inflammatory mediators such as prostaglan-
din E2 (PGE2) trigger sensitization of TRPV1 channels via
phosphorylation, leading to development of thermal hyperal-

gesia (395, 623, 787). Recent studies have shown a role of
TRPV1 in pain behaviors associated with the rodent monoi-
odoacetate (MIA)-induced osteoarthritis model (449, 714,
765). Particularly, the severity of arthritic pain (mechanical
hyperalgesia) is reduced by blocking or deleting TRPV1. This
fits with a number of pharmacological and null mouse studies
that have shown impaired detection of heat and reduced ther-
mal hyperalgesia during inflammation (24, 137, 843).

2. TRPV1 and visceral pain

It is now well established that TRPV1 is expressed in visceral
afferent neurons that are immunoreactive for the proinflam-
matory neuropeptides SP and CGRP (831, 832). These neu-
rons project from the gut to the CNS to evoke abdominal pain
in gastrointestinal disorders such as inflammatory bowel dis-
ease (384). Tan et al. (831) showed that the majority (82%) of
colon-innervating DRG neurons are TRPV1 positive and 60%
of these neurons express neuropeptides CGRP and SP. In con-
trast, only 32% of TRPV1-positive neurons are vagal afferents
(832). In a functional correlate of these immunohistological
studies, TRPV1 appears to play a key role in visceral mecha-
nosensation and pain (738) and was recently shown to be
upregulated in experimental and human colitis (14; for review,
see Refs. 17, 272). Indeed, this channel mediates pain and
visceral hypersensitivity both in irritable bowel syndrome as-
sociated with subtle inflammation and in inflammatory bowel
disease during remission (14, 15). Increased TRPV1 expres-
sion in the absence of inflammation has also been observed in
idiopathic rectal hypersensitivity and fecal urgency (147) and
Hirschsprung’s disease (280). Moreover, TRPV1 activation
induces hypersensitivity of pelvic afferents in response to colo-
rectal distension, whereas channel blockers reverse the hyper-
sensitivity observed after acute stress exposure of adult rats
that have been subjected to maternal separation as neonates
(895). While TRPV1 is not a mechanosensor per se, it enables
sensitization of distension-responsive colon afferents that
present a low frequency of firing (573). In human volunteers,
instillation of capsaicin at different levels of the gut causes
heartburn, cramps, pressure, nausea, and increases the sensi-
tivity to balloon distension (40, 156, 360, 481, 522, 760).
Finally, the TRPV1 G315C polymorphism was found to in-
fluence the susceptibility to pain in the upper abdomen asso-
ciated with functional dyspepsia. Therefore, TRPV1-induced
visceral hyperalgesia has been recognized as an important fac-
tor in the pathogenesis of functional disorders of the gastroin-
testinal tract (585).

3. TRPV1 in neuropathic pain

Studies of neuropathic pain conditions following nerve injury,
viral infection, or metabolic disorders such as painful diabetic
neuropathy revealed a pronociceptive role of TRPV1. Channel
expression is enhanced in response to spinal nerve ligation or
ventral root transection, promoting thermal and mechanical
hyperalgesia in those neuropathic pain models (308, 965). In
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contrast, TRPV1 silencing with injection of antisense oligode-
oxynucleotides suppresses mechanical hypersensitivity (176).
Cell-specific expression of TRPV1 and functional sensitization
of the channel via subunit oligomerization and cell surface
translocation were described in DRG neurons from diabetic
rats (385), suggesting a role in diabetic neuropathy.

At the central level, a role for TRPV1 in inhibitory interneu-
rons of the spinal cord was recently identified. Kim et al. (480)
reported that mechanical hypersensitivity after peripheral
nerve injury is attenuated in TRPV1 knockouts, but not in
mice lacking TRPV1-expressing peripheral neurons. Cold hy-
persensitivity is another feature of neuropathic pain, and in
this context, McCoy et al. (588) observed that CGRP-positive/
TRPV1-positive primary afferent neurons encode heat and
itch. These peptidergic sensory neurons tonically cross-inhibit
cold-responsive neurons in the spinal cord. Ablation of this
specific subset of neurons disrupts the inhibitory crosstalk,
thereby eliciting cold hypersensitivity. Interestingly, the
TRPV1-positive interneurons described by Kim et al. (480)
appear to be responsible for masking the tonic activity of cold-
responsive TRPM8 neurons described by McCoy et al. (588).
These results could provide a mechanistic framework for the
development of cold hypersensitivity associated with neuro-

pathic pain. Along these lines, specific silencing of TRPV1-
positive primary afferents using the sodium channel blocker
QX-314 with capsaicin reduces heat, mechanical, and cold
hyperalgesia in an inflammatory setting, but cannot abolish
tactile and cold allodynia in response to peripheral nerve in-
jury (111). With regard to therapeutic development, two re-
cent TRPV1 antagonists PHE377 and DWP-05195 have en-
tered phase I clinical trials for neuropathic pain management,
and it will be interesting to learn whether these compounds
affect temperature perception. Moreover, topical applications
of capsaicin are used for treating neuropathic pain conditions
(823); however, the tolerability of capsaicin and the mainte-
nance of the analgesic effect still need consideration.

C. TRPA1

TRPA1 has also emerged as an important player in pain pro-
cessing. The TRPA subfamily has only one characterized
member (TRPA1) and is named for the high number of
ankyrin domains at the NH2 terminus of the protein (807).
TRPA1, formerly referred to as ANKTM1, was originally
identified and cloned by Jaquemar et al. in 1999 (430). The
mammalian TRPA1 gene is orthologous to the nociception
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gene painless in Drosophila melanogaster, thus suggesting a
conserved role for TRPA1 in sensory functions across phyla
(196, 864). In both humans and rodents, TRPA1 is expressed
in a subpopulation of small-diameter peptidergic nociceptors
of the dorsal root, nodose, and trigeminal ganglia, along with
TRPV1 (636, 807). In humans, TRPA1 is localized in spinal
cord motoneurons and nerve roots, peripheral nerves, intesti-
nal myenteric plexus neurons, and skin basal keratinocytes
(32). TRPA1 is also present in the substantia gelatinosa (SG) of
the spinal cord where it facilitates spontaneous glutamatergic
excitatory transmission (496). Lastly, the channel is expressed
in vagal and primary afferent fibers innervating the bladder,
the pancreas, the heart, the respiratory tract, and the gastroin-
testinal tract (653).

TRPA1 is activated by a variety of noxious stimuli, including
cold temperatures, pungent natural compounds, and environ-
mental irritants (567, 807). In vitro, covalent modification of
reactive cysteines within TRPA1 activates the channel (567).
Therefore, TRPA1 serves as a broad-spectrum irritant recep-
tor for a variety of reactive chemicals, including both electro-
philic and nonelectrophilic compounds (54). Dietary irritants
such as isothyocyanates (mustard oil, wasabi, horseradish)
and allycin (garlic) can covalently bind to and activate the
channel in heterologous expression systems and in DRG neu-
rons (73). Moreover, TRPA1 responds to endogenous inflam-
matory/tissue damage mediators including cyclopentane pros-
taglandins, by-products of oxidative stress [4-hydroxynonenal
(4-HNE), 4-oxononenal] and hydrogen peroxide, making
TRPA1 a key transducer of inflammatory pain (35, 53, 442,
872). Specifically, TRPA1 is a major effector of the known
proinflammatory mediator bradykinin, which elicits sensory
neuron excitation ex vivo and hyperalgesia in vivo (53, 72). As
observed for bradykinin-induced sensitization of TRPV1, bra-
dykinin enables disinhibition of TRPA1 via a PLC activation
pathway and PIP2 breakdown (53), as well as PKA activation
(925). Further evidence of this functional relationship was ob-
tained from TRPA1�/� mice in which intraplantar injection
of bradykinin failed to produce thermal and mechanical hy-
persensitivity (72). Finally, the importance of TRPA1 was
highlighted by the description of a gain-of-function mutation
in humans suffering from episodic pain syndromes. This au-
tosomal dominant mutation in the fourth transmembrane do-
main of TRPA1 generates normal pharmacological profile but
increases inward current at resting potentials. Since cold tem-
perature is a trigger of enhanced pain perception in this human
cohort study, it confirms the role of the TRPA1 channel as a
noxious cold sensor as well as an irritant sensor (498).

1. TRPA1 in inflammatory and neuropathic pain

In metabolic disorders linked to diabetes mellitus and renal
failure, nociceptor sensitization can be induced by altered lev-
els of specific metabolites, which triggers neuropathic pain.
One of these metabolites, methylglyoxal (MG), can directly
bind to TRPA1 and trigger the release of proinflammatory
neuropeptides (263). This could explain why metabolic disor-

ders exacerbate cold or pain perception and often itch. In
diabetic animals, mechanical hypersensitivity is reduced by
low doses of TRPA1 antagonist (932). Following spinal nerve
ligation, TRPA1 upregulation has been shown to promote
cold hypersensitivity (460). Thus accumulating evidence con-
firms that therapeutic targeting of TRPA1 may prevent neuro-
pathic pain associated with both nerve injury and metabolic
disorders.

Antagonists of TRPA1 have been tested in acute and chronic
inflammatory pain models. The selective blocker HC-030031
reduces pain behaviors in response to paw inflammation.
These data agree with the lack of pain hypersensitivity in
TRPA1-deficient mice that received an injection of Formalin in
the hindpaw (593). Using a chronic model of inflammatory
pain induced by intraplantar injection of CFA, Eid et al. (268)
observed that HC-030031 can reverse mechanical hyperalge-
sia. Identical effects were obtained with the HC-030031 com-
pound in the spinal nerve ligation model, suggesting common
mechanisms of TRPA1 sensitization in both inflammatory and
neuropathic pain models. An additional novel selective
TRPA1 antagonist from Abbott laboratories (A-967079) was
used to demonstrate that TRPA1 contributes to normal and
pathological noxious mechanosensation. Systemic injection of
this potent nanomolar affinity blocker decreases spontaneous
activity of spinal neurons in models of CFA-mediated inflam-
mation and in osteoarthritic rats (589). Interestingly, this com-
pound also shows analgesic properties in isothiocyanate- and
osteoarthritis-induced pain. Whereas cold allodynia produced
by nerve injury is reduced, noxious cold sensation and body
temperature are not altered (157). Recently, a new series 641
of 7-substituted-1,3-dimethyl-1,5-dihydro-pyrrolo[3,2-d]
pyrimidine-2,4-dione derivatives have been developed as effi-
cient TRPA1 antagonists, yet their analgesic properties in ro-
dent animal models of inflammatory and neuropathic pain still
need to be validated (56).

2. TRPA1 and visceral pain

The role of TRPA1 in visceral inflammation and nociception
has been studied most thoroughly in the gastrointestinal tract
(510). Administration of the TRPA1 agonist mustard oil by
enema induces characteristic symptoms of colitis including ab-
dominal pain and release of inflammatory mediators driving
leukocyte rolling. Given that TRPA1 is present at the nerve
terminals of nociceptive and vagal afferents, it is ideally posi-
tioned to sense endogenous and dietary irritants from the gut.
Activation of TRPA1 in these fibers stimulates the release of
the pro-inflammatory neuropeptides SP and CGRP, which in
turn exacerbates the inflammatory state and causes visceral
hyperalgesia. A recent demonstration of the direct activation
of TRPA1 channels by 2,4,6-trinitrobenzene-sulfonic-acid
(TNBS), currently used as a rodent model of colitis, confirmed
the role of TRPA1 in the control of intestinal inflammation.
While colitis is induced and maintained through a TRPA1-
dependent release of colonic SP, the inflammatory response
and histological damages are significantly reduced in
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TRPA1�/� mice or upon systemic administration of the
TRPA1 blocker HC 030031 (273). In addition to its contribu-
tion to the inflammatory response, TRPA1 stimulation by
agonists allyl isothiocyanate and trans-cinnamaldehyde also
promotes mechanosensory responses in vagal and pelvic sero-
sal afferents of normal mice, but not in TRPA1-deficient ani-
mals. However, in vivo recording of visceromotor responses to
colorectal distension showed a significant reduction in me-
chanical hyperalgesia in TRPA1�/� mice, thus directly impli-
cating TRPA1 in colonic pain (113). Interestingly, induction of
colitis exacerbated the mechanical hypersensitivity of colonic
fibers, in response to TRPA1 agonists. These data not only
suggested a role of TRPA1 in mechanosensation, but they
confirm that channel sensitization mediates mechanical hyper-
algesia in a colitis setting. These observations were corrobo-
rated by results obtained with in vivo knock down of TRPA1
via antisense oligodeoxynucleotide, which reduced colonic hy-
persensitivity induced by TNBS-mediated colitis in mice (977).
Likewise, knocking down TRPA1 using intrathecal injection
of antisense oligonucleotides led to attenuation in hypersensi-
tivity in the rat stomach (494).

D. TRPV4

Although the identification of mechanically activated Piezo
channels was recently in the spotlight (200, 336, 477), TRPV4
has been the main candidate for sensing osmotic changes, pres-
sure, and shear stress in both neurons (657) and muscle tissue
(380). TRPV4 is ubiquitously expressed and regulates intra-
cellular calcium signaling, temperature sensing, osmo- and
mechano-transduction, as well as maintenance of cell volume
and energy homeostasis (983). TRPV4 is present in various
cell types, including endothelial cells, chondrocytes, epithelial
cells, and adipocytes (657). Channel expression in DRG and
trigeminal ganglia neurons has suggested a role in pain re-
sponses to mechanical stimuli in somatic tissue and visceral
organs. This thermosensitive channel responds to various ex-
ogenous chemical ligands including synthetic 4�-phorbol es-
ters and the plant extract bisandrographolide A (657). Like
TRPV1 and TRPA1, TRPV4 is also activated by polyunsatu-
rated fatty acids. Metabolites of arachidonic acid activate
TRPV4 by an indirect mechanism involving the cytochrome
P-450 epoxygenase-dependent formation of 5,6-epoxyeico-
satrienoic acid (EET) and 8,9-EET (929).

Although the TRPV4 channel does not appear to transduce
mechanical stimuli directly, this channel may be involved in
triggering mechanical hyperalgesia. Work from Levine and
colleagues has suggested a role for TRPV4 in osmotic stimu-
lus-induced nociception. Both hypotonic and hypertonic stim-
uli produces mechanical hyperalgesia in the hindpaw (19, 20)
which is sensitized by the inflammatory mediator PGE2 and
reduced by in vivo silencing of the TRPV4 channel, suggesting
that the channel could be a molecular mechanotransducer of
major relevance to human pain disorders. Functional cooper-
ation of TRPV4 with �2�1 integrin and Src tyrosine kinase

was shown to contribute to the development of mechanical
hyperalgesia in response to inflammation and in diverse mod-
els of peripheral painful neuropathy (18). In addition,
TRPV4�/� mice exhibit impaired mechanical nociception
along with altered sensitivity to acid and thermal selection
behavior, whereas responses to noxious heat and low-
threshold mechanical stimuli are conserved (537, 538, 817).
While NGF-mediated sensitization of TRPV4 triggers pres-
sure-evoked pain, the sensitization to heat and mechanical
stimuli by von Frey filaments is identical in wild-type and
knockout mice (21). In contrast, the contribution of TRPV4 in
thermal hyperalgesia was highlighted in these TRPV4 null
mice which display longer latency to escape from a hot plate
following carrageenan-induced inflammation (850). Remark-
ably, thermal hyperalgesia is observed in mice overexpressing
TRPV3 channels in keratinocytes, suggesting a similar role for
TRPV3 and TRPV4 (398).

The ability of TRPV4 to promote inflammation and mechan-
ical allodynia was reported in a rat model of joint inflamma-
tion in which administration of PAR2 agonist could sensitize
channel response to 4�-phorbol 12,13-didecanoate (4�PDD)
(229). Consistent with a change in pH and osmolarity during
inflammation (356), these studies may collectively point to the
TRPV4 channel as a mediator of pain hypersensitivity associ-
ated with inflammatory or neuropathic conditions. It is possi-
ble that this PAR2-mediated effect involves tyrosine kinase
phosphorylation (931).

1. TRPV4 and visceral hypersensitivity

It is interesting to note that TRPV4 appears to be enriched in
splanchnic and pelvic colonic afferents that project to the tho-
raco-lumbar and lumbo-sacral DRGs (114). While gut-
innervating sensory neurons display low- and high-threshold
mechanosensitivity, channel activation is only responsible for
sensitizing high-threshold mechanosensitive fibers (114).
Channel activation by the phorbol ester 4�-phorbol 12,13
dideconoate (4�PDD) induces visceral hypersensitivity in re-
sponse to colorectal distension (144), and these nocifensive
responses are suppressed by in vivo channel knock down
(209). Hence, the TRPV4 channel is an essential mediator of
visceral hypersensitivity, one of the main symptoms of IBS.
Likewise, in an experimental model of acute pancreatitis,
TRPV4 null mice exhibited both reduced nociceptor activa-
tion as well as pain behavior. In contrast, intraductal admin-
istration of 4�PDD to the murine pancreas enhanced c-fos
expression in the superficial lamina of the dorsal horn, indi-
cating activation of nociceptive neurons in the spinal cord
(145).

E. TRPM8

The calcium-permeable TRPM8 channel functions as the pri-
mary mammalian sensor of cold. TRPM8 channels are present
in 10% of small (�20 �m) DRG and trigeminal ganglia neu-
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rons that do not express the classical markers of nociceptors
such as TRPV1 and CGRP, initially suggesting that TRPM8 is
a nonnoxious cool thermosensor (592, 689). TRPM8-
expressing sensory neurons depolarize below �25°C and re-
spond to cooling agents (177) such as menthol and eucalyptol,
thus explaining why these compounds evoke a psychophysical
sensation of cold. Both pharmacological and genetic studies
support the idea that these channels likely govern the neuronal
sensing of both innocuous cool temperatures and noxious cold
(74, 192, 238). Indeed, administration of 1-phenylethyl-4-
(benzyloxy)-3-methoxybenzyl(2-aminoethyl) carbamate
(PBMC) produces a hypothermic response independently of
other thermosensitive channels, TRPV1 and TRPA1 (489). A
recent study reported that inflammatory mediators inhibit
TRPM8 activity through direct binding of the G�q subunit
(896). The G�q-coupled receptors for bradykinin, histamine,
serotonin, ATP, and PGE2 enhanced the heat response but
reduced the cold response of sensory fibers of the cornea (896).
These findings provide a framework mechanism relevant to
the abnormal sensation of cold (dysesthesia) observed in re-
sponse to injury and/or inflammation. Interestingly, musca-
rinic receptor-mediated inhibition of TRPM8 via the G�11

pathway appeared to be less effective (533), suggesting that
channel activity can be fine-tuned through activation of differ-
ent types of GPCRs.

TRPM8-deficient mice display impaired discrimination of
mildly warm or cool temperatures and poorly avoid noxious
cold down to 5°C. Apart from its role in thermosensation,
acute activation or inhibition of TRPM8 can have analgesic
effects either on visceral or neuropathic pain (115, 362, 713)
and can also attenuate cold hypersensitivity in inflammatory
and nerve-injury pain models (489). Chronic inflammatory
conditions are often accompanied by cold pain that results
from the long-term action of cytokines and growth factors
upregulating TRPM8 in DRG neurons. Accordingly, the hy-
persensitivity to innocuous cold in neuropathic pain models is
diminished in TRPM8-deficient mice (488, 489), and their
nocifensive response to cold stimulation following an intra-
plantar injection of CFA is reduced (192, 489). On the other
hand, in vivo studies revealed that these mice display normal
responses to cold pain, suggesting the existence of additional
noxious cold sensors (238). Hence, further interrogations are
necessary to identify the precise contribution of TRPM8 chan-
nels to cold sensing.

F. Regulation of Nociceptive TRP Channels
by Proteinase Activated Receptors

Proteinases are signaling molecules that regulate numerous
biological functions. The family of serine proteinases [which
activates proteinase activated receptors (PARs)] triggers both
protective and proinflammatory effects, and thus both serine
proteinases and PARs are potential targets for inflammatory
pain management (675, 903). PAR2 receptors, a family of
GPCRs that is activated by serine proteinases, are activated by

the proteolytic unmasking of a tethered ligand that stimulates
the receptor (724). PARs have been implicated in nociception
(901) and signal to TRPV1, TRPV4, and TRPA1 channels
(212; for review, see Ref. 339). After injury or trauma, released
proteases from mast cells, epithelial cells, and even neurons
sensitize the activities of these channels, thus leading to ther-
mal and mechanical hyperalgesia (29, 30, 211, 340). The mo-
lecular mechanisms of the sensitization process seem to point
towards a reduction of phosphatidylinositol-4,5-bisphosphate
(PIP2)-mediated inhibition of TRP channels. PAR2 triggers
TRPV1 and TRPV4 phosphorylation via G�q coupling and
the activation of the protein kinase C (PKC-�) pathway, lead-
ing to channel potentiation (30, 340) (FIGURE 8). This en-
hancement of TRPV1 activation occurs via an increase in open
probability of the channel, inhibition of desensitization,
and/or increased cell surface expression (339). Likewise,
TRPA1 channel sensitization by PAR2 activation could be
mimicked through PIP2 antibody sequestration or PLC-
mediated hydrolysis (212). Finally, the sensitization of TRP
channels contributes to neurogenic inflammation in the con-
text of diseases such as asthma, irritable bowel syndrome, or
pruritus. TRPV1 channel activation by capsaicin triggers SP
and CGRP release at the nerve terminal and at central synapses
in the dorsal horn. Consequently, PAR2-induced sensitization
of TRPV1 exacerbates neurogenic inflammation at the periph-
ery and amplifies pain transmission in the spinal cord, exem-
plified by mechanical and thermal hyperalgesia (339, 390,
802). A similar regulation by PAR2 has been described for
TRPV4 (144, 340, 902).

TRPA1 and PAR2 have been observed in a colocalization pat-
tern in rat DRG neurons (212). PAR2 activation mediates
TRPA1 sensitization through a mechanism similar to brady-
kinin-evoked sensitization, and this involves the cleavage of
PIP2 by PLC-�, which relieves the inhibition of TRPA1. PAR2
has also been shown to activate PKA, which modulates
TRPA1 activity via channel phosphorylation as well as en-
hanced trafficking of TRPA1 to the cell surface (161, 761).
The regulation of TRPA1 by PAR2 might play a central role in
different experimental models of gastrointestinal disorders.
Cattaruza et al. (140) have reported that TRPA1 deletion sig-
nificantly reduces mechanical colonic hyperalgesia induced by
PAR2 activating peptide. Furthermore, mast cell-dependent
mechanical hyperalgesia in the inflamed esophagus involves
PAR2-mediated sensitization of TRPA1 (991).

Finally, TRPV4 sensitization by PAR2 produces mechanical
hyperalgesia following intraplantar injection of PAR2 activat-
ing peptides in the paw (340). Likewise, PAR2 agonist-
induced visceral hypersensitivity in response to colorectal dis-
tension is dependent on TRPV4 expression in colon-innervat-
ing DRG neurons (144). The functional coupling between
PAR2 and the channel is thought to involve tyrosine phos-
phorylation (705). Specifically, the activation of PAR2 induces
the production of arachidonic acid-derived signaling media-
tors that activated TRPV4. PAR2-TRPV4 coupling is blocked
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by using the Src inhibitor-1 or the TRPV4 tyrosine mutant
Y110F. This mechanism of PAR2-TRPV4 cooperativity may
be required for sustained inflammation leading to somatic and
visceral nociceptive hypersensitivity.

In summary, the thermosensitive TRP channels are primary
sensors of various noxious stimuli and molecules released in
trauma or in an immune response. These stimuli encompass
membrane stretch and direct channel activation by protons or
reactive oxygen species, among many others. Acute regulation
by signaling molecules and long-term changes in TRP channel
expression are key contributors to persistent pain, and are
promising targets for the development of nonopioid and
NSAID analgesics. Our understanding of the role of thermo-
sensitive TRP channels will also rely on determining their en-
dogenous activators and regulators. Lipid mediators that be-
long to the lipoxin and resolvin families have emerged as cru-
cial candidates. Future investigation will be warranted to
determine what type of metabolites are released in pathologi-
cal pain states and how they impact on TRP channel function
and pain signaling. Finally, apart from their role as noxious
sensors and their electrogenic action in primary afferent neu-
rons, TRP channels generate intracellular calcium changes.
Thereby, TRP channels may serve as signaling molecules in-
volved in transcriptional regulation and neuroanatomical
changes of primary afferent neurons, two major regulatory
mechanisms of chronic pain establishment.

VIII. ACID SENSING ION CHANNELS

A. Subtypes and Molecular Structure

The acid sensing ion channels belong to the superfamily of ion
channels comprising the epithelial sodium channel and degen-
erin in Caenorhabditis elegans (superfamily ENaC/DEG; Ref.
466). Originally named MDEG, BNC1, and BNaC1–2 after
their initial identification, they have been characterized as pro-
ton-activated channels and therefore named “acid sensing ion
channels” or ASICs (919). In rodents, at least six ASIC sub-
units (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4)
encoded by four genes (ACCN1–4) have been described. The
functional diversity of ASIC channels arises from these four
genes and their alternative splice variants: ASIC1a and 1b (68,
316, 919), or ASIC2a and 2b (316, 711). Genome sequencing
information of several species confirms the presence of ASIC
genes across evolution. However, the profile of alternative
splicing may differ. In humans for example, ASIC1b has not
been described yet, while ASIC3 and ASIC4 have three and
two variants, respectively (16, 48, 345), with still unknown
physiological impact. For human ASIC3, it should be noted
that in addition to acidic pH, alkalinization is also able to
activate the channel, thus opening new conceptual views of the
pathophysiological impact of this ASIC isoform (228).

Structurally, each ASIC subunit has the same topology as P2X
proteins with two hydrophobic transmembrane domains

linked by a large extracellular loop. Crystal structure resolu-
tion of chicken ASIC1a showed that the functional channel is
a trimeric assembly (334, 434). Channels formed of homo-
meric and heteromeric composition of ASIC subunits exist,
thus further multiplying their functional diversity with regards
to their current kinetics, ionic selectivity, and pH sensitivity
(47, 542). ASIC2b and ASIC4 do not form functional channels
on their own (16, 345, 542). ASIC2b, however, modulates
the properties of other ASIC subunits and contributes to the
unique properties of heteromeric channels (235, 542). The
functional role of ASIC4 is not yet understood, but it may
negatively modulate surface expression of the other isoforms
(253).

In rodents, ASIC1a, ASIC2a, and ASIC2b are expressed in the
CNS (63, 64, 316, 711, 919, 936, 961), whereas ASIC1b
appears to be restricted to peripheral neurons (153, 574, 703,
909, 918). In humans, this tissue distribution seems to be sig-
nificantly different since ASIC3 is present in the PNS as well as
in the CNS (228).

ASIC channels are cationic channels whose activation leads to
membrane potential depolarization. Although they are largely
permeable to sodium ions, ASIC channels can be permeable to
calcium ions (919), with relative calcium to sodium permea-
bility varying between studies (PNa/PCa from 2.5 to 50) (68,
937, 986). However, it has been proposed that calcium per-
meation through human and chicken ASIC1a is limited when
extracellular calcium and sodium are maintained in physiolog-
ical conditions (751). Nevertheless, ASIC activity is also indi-
rectly linked to intracellular calcium elevation due to their
depolarizing effect and subsequent activation of voltage-gated
calcium channels (373, 751, 969, 970, 986), and/or due to the
release of calcium from intracellular stores (1009). Interest-
ingly, ASIC1a-mediated activation of N-type calcium channels
has been demonstrated, and this could be of great importance
in the context of synapses in the dorsal horn of the spinal cord
(969).

ASIC currents, gated by a drop in extracellular pH, are gener-
ally of a transient nature. Their activation threshold and kinet-
ics differ as a function of channel subunit composition. This
heterogeneity confers onto ASIC channels an array of func-
tional properties that can optimally correspond to distinct ex-
tracellular acidification stimuli. ASIC1a and ASIC3 are the
most sensitive to protons since they have a threshold of acti-
vation as low as a �0.4 or �0.2 pH drop from 7.4, and a half
activation (pH1/2) around �6.5 (234, 973). In contrast,
ASIC2a channels are activated by a more substantial drop in
extracellular pH, with thresholds at pH �6.0 and pH1/2 be-
tween 5 and 4 (62, 64, 542). Of the distinct ASIC-mediated
currents, ASIC3 differs by generating biphasic components: a
transient, and a sustained phase that is maintained as long as
the pH stays acidic (231, 234, 749, 973). This property confers
onto ASIC3 a role in sustained neuronal activity, and this can
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become of particular physiological importance in conditions
in which the sustained phase is upregulated (234, 438, 953).

As with many other types of channels, ASIC subunits can be
part of macromolecular signaling complexes that regulate
their correct subcellular localization and their functional prop-
erties (37, 61, 232, 235, 253, 260, 313, 393, 394, 699, 712,
763, 943, 1009). Among the interactors of ASIC channels are
other ion channels (such as BK potassium channels,
NMDARs), as well as adaptor proteins involved in coupling
with kinases, the cytoskeleton, and neurotransmitter receptors
(such as PSD95, lin7b, NHERF, CIPP, AKAP150, and PIKC1
that associate via PDZ ligand/PDZ domain interactions). They
also interact with stomatin and thereby may play a role in
mechanoreceptor complexes in sensory neurons. Therefore,
ASIC channels may support a multitude of cellular functions
depending on their subunit composition and interacting part-
ners.

Given the ASIC subtype-specific physiological roles, the iden-
tification of specific ASIC pharmacology has been crucial. A
number of nonspecific molecules (i.e., amiloride) or NSAIDs
(i.e., diclophenac, aspirin, or ibuprofen) inhibit ASIC1a and
ASIC3 (909). New specific drugs that have been discovered
over the last few years have emerged as key tools to elucidate
ASIC functions in particular in the pathophysiology of
pain. Among these are specific toxin antagonists such as PCTx1,
APETx2, and Manbalgine-1 isolated from tarantula, sea
anemone, and black Mamba snake venom, respectively (243,
244, 277). Conversely, the ASIC agonist MitTx isolated from
Texas Coral snake venom has provided new insights into
ASIC function (94, 99). Small organic molecules would be
interesting as clinical means to treat disorders linked to ASIC
overexcitability. To this end, chemical screens identified
A-317567, a compound that has a more potent efficacy than
amiloride (257). Moreover, 2-guanidine-4-methylquinazoline
(GMQ) is able to activate ASIC3 at neutral pH but at a rather
high concentration (1 mM). At lower doses, it potentiates
acidic stimulation by binding to an extracellular site distinct
from the proton site (535, 993, 994). Altogether, there is a
slowly growing arsenal of pharmacological tools that allows
in depth analysis of ASIC function at the physiological and
pathophysiological level.

B. ASIC Channels and Pain

The first experimental proof of ion channels gated by extracel-
lular medium acidification (that are known now to be ASICs)
was obtained from primary sensory neurons from dorsal root
and/or trigeminal ganglia (500, 501). ASIC channels are ex-
pressed in almost all subtypes of primary sensory neurons
including in peripherin positive small DRG neurons compris-
ing all the C-fibers (68, 153, 676, 703, 909). ASIC channels are
expressed in both the DRG cell soma and in axonal fibers
where they are targeted to peripheral sites (256, 317). The
impact of ASIC channels to cutaneous somatic pain has been

initially difficult to decipher due to the lack of altered nocice-
ptive phenotype in mice deficient of ASIC1a, ASIC2, and
ASIC3 (155, 676, 709, 710). In these animals, the responses to
acid injection are unaffected. However, ASIC3 null mice do
present altered responses to strong mechanical stimuli (155),
but other studies have reported contradictory results (676). In
contrast to mice, evidence of an involvement of ASIC channels
in somatic pain in rats and humans has been obtained using
intrathecal RNAi delivery and pharmacological studies (234,
438). In rats, A-317576 has analgesic effects toward thermal
inflammatory and postoperative pain (257, 736). More selec-
tive approaches with RNAi and APETx2 demonstrated the
impact of ASIC3 in cutaneous peripheral terminals, an effect
that is increased in inflammatory conditions due to elevated
ASIC3 level (234, 575). In contrast, the use of the ASIC3
agonist GMQ showed a painful phenotype upon peripheral
intraplantar injection, an effect that is absent in ASIC3 null
mice (993). The use of PCTx1 was instrumental for demon-
strating the minimal role of ASIC1a in the periphery (256,
587).

In contrast to somatic cutaneous pain, ASIC channels seem to
have a more prominent effect in deep muscle pain. ASIC3 is
largely expressed in nociceptors innervating tissues such as the
plantar muscle (233). In a model of postoperative pain target-
ing this muscle, the use of APETx2 has a clear analgesic effect.
This is also true for the model of gastrocnemius muscle acidi-
fication or in the knee osteoarthritis model (424, 457). The use
of ASIC1 and/or ASIC3 null mice also revealed a role in mus-
cular pain in naive and inflammatory conditions (122, 413,
414, 786, 917). Overall, these data provide evidence for a role
of ASIC1a and ASIC3 in nociceptors that innervate muscles.

A separate series of studies explored the role of ASICs in pri-
mary afferents during visceral pain. The pH changes inside the
lumen of the gastrointestinal tract are highly significant, and
this is particularly the case in the stomach in the context of
pathological conditions such as ulcer. Indeed, stomach sensory
afferents densely express ASIC like currents (812). Further
down in the gastrointestinal tract, ASIC1, -2, and -3 channels
have been identified in myenteric plexus neurons, with ASIC3
showing the largest expression. Retrogradely labeled colonic
DRGs also revealed that ASIC3 is the most abundant isoform
expressed (403). This is consistent with the impact of this
channel in colon-nerve teased fiber excitability induced by
stretch and mechanical stimulation of the receptive field (439,
677). Altogether, the contribution of ASIC channels to the
perception of mechanical stimuli in visceral tissues appears to
be more important than their role in cutaneous afferents.

Finally, the contribution of ASIC channels has been investi-
gated in primary afferent neurons innervating the heart in the
context of ischemia generated by angor. Ed McCleskey’s
group showed that ASIC currents are prominently expressed
in these neurons and proposed that they are key sensors of
pain associated with cardiac ischemia (86). They demon-
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strated that this current likely originates from an ASIC3/
ASIC2b assembly (815). These channels are particularly sen-
sitive to acidification, and a drop in pH to 7.0 that is reached
rapidly during the first minutes of ischemia is sufficient to
activate them. Interestingly, lactic acid produced in this path-
ological situation can lead to ASIC3 sensitization (417).
Therefore, ASIC3 channels may be key sensors of ischemia-
induced cardiac pain.

What remains to be determined is whether ASICs contribute
to pain signaling by virtue of their effect on membrane poten-
tial, or instead by their role as calcium entry pathways. To
date, it remains unclear whether ASIC-mediated calcium entry
activates cell signaling processes and plasticity that lead to
long-term sensitization of pain pathways in tissues such as the
gut.

IX. SUMMARY

A plethora of ion channels and receptors contribute to afferent
pain signaling. Among the numerous ion channels that are
involved in this process, there are a number of channel sub-
types that permit the influx of calcium ions. Hence, in addition
to regulating membrane potential and excitability, these chan-
nels mediate a chemical cell signaling function. This includes
the release of neurotransmitters (i.e., N-type and T-type cal-
cium channels), the activation of calcium-dependent enzymes
(e.g., NMDARs, P2X receptors, TRP channels), and calcium-
dependent changes in plasticity and gene transcription (e.g.,
NMDARs). Unlike electrical signaling, these downstream sig-
naling events are immensely complex and likely vary with the
cellular and subcellular localization of source channels. In-
deed, it is intriguing to note that although all of the ion channel
types discussed in this review allow the entry of calcium into
the cytosol, these channels fulfill unique roles and physiologi-
cal functions (often within the same type of afferent neuron),
and are in turn regulated by specific cell signaling molecules
such as kinases, phosphatases, and G proteins. In the context
of pain signaling, these channels often become hyperactive,
whether at the functional level, or at the membrane expression
level. While ion channel blocking drugs may be effective
against both of these mechanisms, specifically targeting the
mechanisms that cause aberrant upregulation of channel den-
sity in the plasma membrane may offer opportunities for se-
lective interference with dysregulated channels, while sparing
the essential calcium signaling functions that are inherent to
the channel subtypes discussed herein.
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FIGURE 1. Ascending pain neuraxis. Pain-sensing neurons in the peripheral nervous system have their soma located in the dorsal root ganglia (DRG).
These neurons have a peripheral axon innervating the distal territories (skin, viscera, etc.) where they detect painful stimuli leading to an action potential that
travels along the fibers up to the DRG and then to the first relay in the dorsal spinal cord. Sensory neurons within the DRGs are diverse and can be separated
based on the expression of neurotrophin receptors. The majority are TrkA- and c-Ret-positive small-diameter sensory afferents that correspond to
unmyelinated C fibers mainly involved in nociception. TrkB- and TrkC-positive myelinated larger diameter afferents correspond to A� and A�-� fibers,
respectively. They convey touch and proprioception signals, although both of these subclasses contain nociceptive neurons. The sensory information is
processed locally in neuronal circuitry within the dorsal horn of the spinal cord before being sent to the thalamus to convey nociceptive information. Following
thalamic filtering, the information is sent to the cortical structures of the pain matrix.

Physiol Rev 94: 987, 2014
doi:10.1152/physrev.z9j-2698-corr.2014 Corrigendum

9870031-9333/14 Copyright © 2014 the American Physiological Society



 doi:10.1152/physrev.00023.2013 94:81-140, 2014.Physiol Rev
Michael W. Salter and Gerald W. Zamponi
Emmanuel Bourinet, Christophe Altier, Michael E. Hildebrand, Tuan Trang,
Calcium-Permeable Ion Channels in Pain Signaling

You might find this additional info useful...

for this article has been published. It can be found at:A corrigendum 
 /content/94/3/987.full.html

1016 articles, 367 of which can be accessed free at:This article cites 
 /content/94/1/81.full.html#ref-list-1

2 other HighWire hosted articlesThis article has been cited by 

 
 [PDF] [Full Text] [Abstract]

, June 13, 2014; 289 (24): 16675-16687.J. Biol. Chem.
Christophe Altier
Robyn Flynn, Kevin Chapman, Mircea Iftinca, Reem Aboushousha, Diego Varela and
Attenuates Inflammation-induced Hypersensitivity
Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Assembly Domain
 

 [PDF] [Full Text] [Abstract]
, August , 2014; 350 (2): 290-300.J Pharmacol Exp Ther

Bin Pan, Yuan Guo, Wai-Meng Kwok, Quinn Hogan and Hsiang-en Wu
Current in Sensory Neurons

2+Sigma-1 Receptor Antagonism Restores Injury-Induced Decrease of Voltage-Gated Ca

including high resolution figures, can be found at:Updated information and services 
 /content/94/1/81.full.html

 can be found at:Physiological Reviewsabout Additional material and information 
http://www.the-aps.org/publications/prv

This information is current as of July 3, 2014.
 

website at http://www.the-aps.org/.
MD 20814-3991. Copyright © 2014 by the American Physiological Society. ISSN: 0031-9333, ESSN: 1522-1210. Visit our
published quarterly in January, April, July, and October by the American Physiological Society, 9650 Rockville Pike, Bethesda 

 provides state of the art coverage of timely issues in the physiological and biomedical sciences. It isPhysiological Reviews

on July 3, 2014
D

ow
nloaded from

 

http://jpet.aspetjournals.org/content/350/2/290.abstract.html
http://jpet.aspetjournals.org/content/350/2/290.full.html
http://jpet.aspetjournals.org/content/350/2/290.full.pdf
http://www.jbc.org/content/289/24/16675.abstract.html
http://www.jbc.org/content/289/24/16675.full.html
http://www.jbc.org/content/289/24/16675.full.pdf
http://www.the-aps.org/publications/prv

