
10. Associative Memory: 
Advanced Learning Strategies 

10.1 Storing Correlated Patterns 

As we discussed in Sects. 3.1 and 4.3, the ability to recall memories correctly 
breaks down if the number p of stored patterns exceeds a certain limit. When 
the synaptic connections are determined according to Hebb's rule (3.12), this 
happens at the storage density a = piN = 0.138. The reason for this behavior 
was the influence of the other stored patterns as expressed by the fluctuating 
noise term in (3.13). As we already pointed out at the end of Sect. 3.1, this 
influence vanishes exactly if the patterns are orthogonal to each other as de­
fined in (3.16). On the other hand, the power of recollection deteriorates even 
earlier if the stored patterns are strongly correlated. Unfortunately, this hap­
pens in many practical examples. Just think of the graphical representation 
of roman letters, where "E" closely resembles "F" and "e" resembles "G", or 
of a typical list of names from the telephone book, which are probably highly 
correlated. 

Use the program ASSO (see Chapt. 22) to learn and recall 
the 26 letters of the alphabet: A-Z. Choose the following 
parameter values: (26/26/0/1) and (1/0/0/1;2), i.e. se­
quential updating, temperature and threshold zero, and 
experiment with the permissible amount of noise. Is any 
letter stable? Repeat the exercise with the first six let­
ters of the alphabet and study the network's ability to 
recall the similar letters "E" and "F". 

The nature of the problem is not so different from that encountered in 
the previous section in connection with layered feed-forward networks. The 
perceptron learning rule provides the perfect learning strategy for simple per­
ceptrons without hidden layers of neurons. However, these devices are not 
particularly useful in practice, since they fail to solve even some very simple 
tasks. This is the reason why the perceptron concept fell out of grace for 
almost twenty years, although multilayered perceptrons with hidden neurons 
do not suffer from such ailments. But without a practical learning algorithm, 
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which became first available with error back-propagation, they did not pro­
vide a practical alternative. 

Similarly, some of the practical difficulties encountered with associative­
memory networks are not of a fundamental nature, but rather a consequence 
of the inadequacy of the elementary form (3.12) of Hebb's learning rule. As 
we discussed in Sect. 3.1, Hebb's rule is based on the concept of the Hamming 
measure (3.1) of distance between different patterns. In mathematical terms, 
this distance measure or metric is called the Euclidean metric in the space of 
patterns. More general measures of the distance between different patterns 
are conceivable and may be more useful if the patterns are correlated. For 
example, in the case of the letters "E" and "F" a distance measure based 
solely on the bottom part of the letter would easily discriminate between the 
patterns. However, as the letters "K" and "R" show, this simple choice does 
not yet provide a general solution, not even for the alphabet. 

10.1.1 The Projection Rule 

Nonetheless, it turns out that the problem of discriminating between cor­
related patterns has a remarkably simple solution, which even permits the 
storage of p = N arbitrarily correlated patterns, as long as they are linearly 
independent. To see how it works, we form the matrix of scalar products 
between all pairs of patterns (O'f = ± 1): 

QJl.V = ~ L afar 
i 

(l~J1.,V~p). (10.1) 

For linearly independent patterns the matrix QJl.V is invertible, and we can 
define the following improved synaptic coupling strengths [Ko84, Pe86b]: 

(10.2) 

Mathematically, (10.2) corresponds to a projection technique that eliminates 
the existing correlations between patterns, hence this learning rule is often 
called the projection rule. With this choice the interaction of the stored 
patterns due to the fluctuating term in (3.13) vanishes exactly, as can be 
easily seen by computing the post-synaptic potentials in the presence of one 
of the memorized patterns 0';: 

1 '" Jl.(Q-l) '" v >. N L..t O'i Jl.V L..t O'j O'j 
Jl.,V j j 

(10.3) 
Jl.,V Jl. 

We conclude that every stored pattern represents a stable network configu­
ration, independent of correlations among the patterns. Of course, the condi­
tion p ~ N continues to limit the memory capacity, since at most N linearly 
independent patterns can be formed from N units of information. 



110 10. Associative Memory: Advanced Learning Strategies 

As it stands this statement is not entirely correct because some patterns may 
be effectively memorized without being explicitly represented in the synaptic cou­
plings. Such a phenomenon is not new to to us; we have seen in Sect. 3.3 (3 .23) 
that linear combinations of stored patterns may also be stable memory states. As 
Opper has shown [Op88] this occurs for the iterative learning algorithm of Krauth 
and Mezard [Kr87a] (see also Sect. 10.1.3), which permits the storage of up to 
2N different patterns in an optimal way. Only N of these patterns are stored ac­
cording to the projection rule, the others are memorized without being explicitly 
stored. However, for p > N the learning process converges very slowly. (Techniques 
to accelerate convergence were suggested in [Ab89, An89a].) The optimal storage 
capacity of a neural network will be discussed in detail in Chapt. 20. 

The prescription (10.2) for the coupling strengths is also called the pseu­
doinverse solution. Essentially it performs an inversion of the set of pattern 
vectors (/r which can be viewed as a matrix with N columns and p rows. The 
role of the pseudoinverse is most easily understood if we look at (10.3) at a 
fixed site, dropping the index i . Then we have TIJ. = 2:j (/IJ. j Wj or in matrix 
notation T = Q. w . Here TIJ. stands for the output which is to be evoked when 
the input pattern (/'1 is presented to the network. We have to solve a system 
of p linear equations for the N-dimensional weight vector w. Since in general 
the matrix Q. is not square (p < N) we cannot invert it directly. However, 
one can introduce the pseudoinverse matrix [K084] 

Q.pi = Q.T (Q.Q.T)-l (l0.4) 

so that W = Q.pi T, (d. (10.2)), solves the problem: 

Q.W = Q.Q.piT = Q.Q.T (Q.Q.T) -1 T = T . (10.5) 

In an autoassociative memory T happens to coincide with (/ but this is not 
essential, the pseudoinverse solution also works for heteroassociation and for 
perceptrons without hidden layers. 

The quality of pattern recall deteriorates with growing temperature T 
and memory utilization a = piN [Ka87].1 As in the case of Hebb's rule 
the quality of recollection is described by the parameter m defined in (4.15). 
m = 1 denotes perfect memory recall, whereas m = 0 indicates total amnesia. 
The regions of working and confused memory are shown, together with the 
value of m at the phase boundary, in Fig. 10.1. The radius of attraction R of 
the stored patterns is shown in Fig. 10.2 as function of storage density a for 
the models of Kanter and Sompolinsky [Ka87] (curve a) and Personnaz et 
al. [Pe86b] (curve b) . Here the radius of attraction is defined as R = 1 - mo, 
where mo is the smallest overlap a pattern Si can have with a stored pattern 
(/i to be recognized with certainty by the network. As one sees, the elimination 

1 Note that the diagonal couplings Wii are set to zero in [Ka87]. If the diagonal 
terms are retained [Pe86b], the critical memory capacity remains Q c = 1 at 
T = 0, but in the presence of tiny fluctuations the stored patterns cannot be 
recalled above Q = 0.5. (One says that the radius of attraction of the stored 
patterns is zero.) 
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of the diagonal couplings Wii in the model of [Ka87J, curve (a), has a very 
beneficial effect. 
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Fig. 10.1. Regions of working mem­
ory and total confusion, and recall 
quality m at the phase boundary la­
beled "Te". 
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Fig. 10.2. Average radius of attrac­
tion R as function of storage density 
in the models [Ka87] (curve a) and 
[Pe86b] (curve b). 

10.1.2 An Iterative Learning Scheme 

The practical application of the projection learning rule for large, memory­
saturated networks suffers from the need to invert the (p x p)-matrix QjJ.v, 
which poses a formidable numerical problem. Fortunately, the matrix inver­
sion need be performed only once, when the patterns are stored into the net­
work. The ingrained memory can then be recalled as often as desired without 
additional effort. A practical method of implementing the projection rule is 
based on an iterative scheme, where the "correct" synaptic connections are 
strengthened in order to stabilize the correlated patterns against each other 
[Di87]. For the sake of simplicity, we demonstrate this method only for the 
deterministic network (T = 0). 

Because of the neuron evolution law Si(t + 1) = sgn[hi(t)] any pattern af 
represents a stable network configuration, if hi has the same sign as ai, i.e. 

afhi = L wijafaj' > 0 
j 

(10.6) 

for every neuron i. If the expression (10.6) is only slightly positive, any small 
perturbation, i.e. Si 'I af for a few neurons i, can change its sign. In order 
to achieve greater stability of the desired memory patterns, we demand that 
the expression (10.6) be not only positive but also greater than a certain 
threshold K, > O. For a single pattern, Hebb's rule (3.7) yields hi = ai. As 
a consequence, the condition aihi = 1 is always satisfied in this case. It 
appears natural to take the stability threshold at K, = 1 also in the general 
case of several stored patterns, and to demand that the synaptic connections 
be chosen such that 
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athi = L Wijataj = 1 
j 

for all neurons i . 

(10.7) 

An obvious method of achieving the desired result begins with choosing 
the synaptic connections initially according to Hebb's rule: 

Wij = ~ Lataj . (10.8) 
J-L 

In the next step we check, one after the other for all stored patterns, whether 
the condition (10.7) is fulfilled. If this is not the case, we modify the synapses 
according to the prescription 

Wij ~ W~j = Wij + 8Wij 
with 

(10.9) 

(10.10) 

where J.L denotes the pattern just under consideration.2 With these modified 
synaptic connections we obtain for the same pattern J.L 

at h~ at hi + 2: 8Wijat aj 
j 

at hi + ~ L ( at) 2 ( aj) 2 (1 - at hi) = 1 , 
j 

(10.11) 

since (at) 2 = 1. Thus, after updating all synapses, the threshold stability 
condition (10.7) is satisfied for the considered pattern. When we proceed to 
the next pattern (J.L + I), the synaptic couplings will be modified again, so 
that (10.7) becomes valid for the pattern now under consideration. However, 
(10.7) may cease to be satisfied for the previous pattern J.L . After a full cycle 
over all stored patterns the condition is therefore only fulfilled with certainty 
for the last pattern, J.L = p, but not necessarily for all other patterns. The 
crucial question is whether this updating process converges, or whether it 
may continue indefinitely without reaching a stationary state, in which the 
threshold condition is satisfied by all patterns.3 

In order to study this question, it is useful to introduce some abbreviations. We 
assume here that the synapses are adjusted sequentially, i.e. after inspection of the 
performance of the network for each single pattern. We define the deviation from 
the threshold in the Rth updating cycle, and the sum of all deviations encountered 
up to that point, as 

2 In principle, we can do without the initial Hebbian choice of synapses. If we 
start with a completely disconnected network (Wij = 0), or tabula rasa, the first 
application of the modification law (10.9) results in synaptic connections with 
precisely the values assigned by Hebb's rule! 

3 The proof of convergence follows closely that of the perceptron convergence the­
orem given, e.g., in [Bl62a, Mi69] . 
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t 

xf = L oxnl) . (10.12) 
t'=l 

The synaptic modifications according to (10.10) for the vth pattern in the fth cycle 
can then be written in the form 

(10.13) 

Thus, after the completion of the fth updating cycle the synaptic connections can 
be expressed as 

Wij = ~ L xr (f)O"f O"j . (10.14) 
v 

Consider now what happens in the (f + 1 )th iteration cycle. If we have just reached 
the pattern fL, all previous patterns have contributed (f + 1) times to the synaptic 
modification process, whereas all others (including pattern fL) have made only f 
contributions. The modification for the fLth pattern is therefore given by 

oxf xnf + 1) - xnf) = 1 - L WikO"fO"~ 
k 

1- ~ L [LXr(f + l)O"fO"kO"fO"~ + LXr(f)UfO"kO"fO"~l· 
k v<~ v~~ 

(10.15) 

We now introduce the N matrices of dimension (p x p) 

B~v _ 1 '"""' v v ~ ~ _ v ~Q 
i - N L...t O"i O"kO"i O"k - O"i O"i ~v, (i = 1, ... , N), (10.16) 

k 

where Q~v is the symmetric overlap matrix defined in (10.1). This allows us to put 
(10.15) into the simple form 

Assuming that the iteration procedure converges, Le. 

,lim xf(f) = yf , 
~ .... oo 

the limiting values must satisfy 

'"""' B~v v - 1 L...t i Yi -
v 

(10.17) 

(10.18) 

(10.19) 

for all values of i and fL . This is a linear system of Np equations for the quantities 
yf. The iteration procedure (10.16) is just the well-known Gauss-Seidel method for 
the iterative solution of a system of linear equations, here the equations (10.19). It 
can be shown that this method always converges if the matrix Btl' has only positive 
eigenvalues, Le. if ""' Btl' z~ ZV is a positive semidefinite quadratic form [St80j. 

wJ.L1V 

This condition is certainly satisfied in our case, since on account of the definition 
(10.16): 
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L Bfv zl'ZV = ~ L (Lur UkZV) 2 20. (10.20) 
j.£,V k 1/ 

We conclude that the iteration process is guaranteed to converge, yielding 
the synaptic connections 

(10.21) 

Owing to the relation (10.16) between the matrices Bfu and QJ1.U we can 
write the equation (10.19) for Yi also in the form 

(10.22) 
U 

where we have multiplied by O'f and made use of the property (0'f)2 = l. 
Multiplying with the inverse of the matrix QJ1.U and utilizing the same relation 
we find 

yi = O'i L(Q-l)UJ1.O'f . (10.23) 
J1. 

Upon inserting this into (10.21), which describes the synaptic strengths at 
the end of the iteration process, we obtain the result 

(10.24) 
J1.,V 

These are precisely the synaptic connections (10.2), Wij, of the projection 
rule discussed at the beginning of this section, which solve the problem of 
storing correlated patterns. 

10.1.3 Repeated Hebbian Learning 

For most practical purposes it is not necessary to use precisely the optimal 
synaptic couplings Wij, or, in other words, it is not essential to render the 
left-hand side of (10.7) exactly equal to one. We recall that the starting point 
of our considerations was the desire to make the expression O'f hi significantly 
greater than the critical-stability threshold zero. This condition is also satis­
fied if we modify the synaptic connection in such a way that the left-hand side 
of (10.7) is greater than or equal to a given threshold K" which mayor may 
not be taken equal to 1. This condition has the important advantage that 
the iteration process is guaranteed to come to an end after a finite number 
of steps, and it yields a maximal memory capacity a c = 2. 

The procedure then works exactly as described above, except that we 
strengthen all synapses of a "sub critical" neuron by a fixed amount liN, Le. 
we replace the expression (10.10) by [Di87, Kr87a, Ga88a, Fo88bJ 

(10.25) 
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with the step function O(x) and the normalized stability measures4 

(
#i ) 1/2 

IIWili = 2: W7j 
J 

(10.26) 

Here we have explicitly dropped the synaptic self-couplings Wii, which leads to 
a better performance of the memory, as discussed in the previous subsection. 
The same calculation as in (10.11) then yields 

(10.27) 

When this expression is larger than K, the iteration has converged; otherwise 
the synaptic reinforcement must be repeated. 

In a sense this procedure can be understood as repeated learning according 
to Hebb's rule, where the synapses are increased by the amount i.rafa'J as 
often as necessary to obtain the required stability for all stored patterns. 
This procedure reminds one of the experience of learning new words of a 
foreign language, where it is usually necessary to repeat those words several 
times until they have entered the long-term memory. As everyone knows, 
this method works for sure - if only after an annoyingly large number of 
repetitions! 

It is therefore important to optimize the learning rate as much as possible. 
For this aim Abbott and Kepler [Ab89] have modified (10.25) by introduc­
ing a new function fb) that modulates the magnitude of synaptic change 
according to the remaining deviation from the desired stability goal: 

(10.28) 

Two choices of this function were considered, namely the quasilinear function 

(10.29) 

and the nonlinear function 

(10.30) 

Here b « 1 is a parameter that controls the speed of learning. For the quasilin­
ear function (10.29) the algorithm converges after less than 2Njb2 iterations. 

The rate of convergence for a typical simulation with the parameters 
K = 0.43, b = 0.01, and N = 100 is shown in Fig. 10.3. The storage density 
was a = 0.75, i.e. 75 patterns were to be stored by the network. Curve (a) 
refers to the standard algorithm (10.25), while curves (b) and (c) refer to the 
optimized algorithm (10.28) with the functions hand fNL, respectively. The 
advantage of the modified algorithm is obvious. An analytic expression for 

4 The various references given above deviate slightly in their definition of the 
stability measure. The interested reader is urged to consult the original literature 
for details. We also refer to Chapt. 22 where some additional information on the 
learning rules can be found . 
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the rate of convergence of the standard algorithm (10.25) has been derived 
by Opper [Op88], which shows that the convergence slows down dramatically 
when the critical memory density is approached. 

Fig. 10.3. Rate of convergence for the iterative learning rules (10.25) (curve a) 
and (10.28), (curves b and c). T counts the number of iterations (from [Ab89]). 

How large should the stability threshold K, be chosen? If K, is taken too 
large, no solution of the stability condition If > K, may exist. Then the 
algorithm will not converge. If K, is taken too small, the algorithm (10.25) 
converges rapidly and the stored patterns are stable, but the basins of at­
traction are small and the neural network will not necessarily recognize a 
slightly perturbed pattern. A certain amount of experience is required to 
find the optimal set of learning parameters. The dependence of the average 
radius of attraction of the stored patterns on the choice of K, was studied by 
Kepler and Abbott [Ke88], who found that it drops to R = 0.1 at K, = 1 for 
a saturated network. 

m1J.-~ . , , ~~.I.:';. - . 

, .. ,,,"-. 

Use the program ASSO (see Chapt. 22) to learn all 26 
letters of the alphabet with any of the improved learning 
schemes 2-5. Compare their speed of convergence and 
the stability of the learned patterns against noise and 
thermal fluctuations. 

Repeat the exercise of Sect. 3.4 with the program ASS­

COUNT (cf. Chapt. 23) using the Diederich-Opper learn­
ing protocol on up to 10 numbers. Experiment with the 
parameters governing time delay. 
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10.2 Special Learning Rules 

10.2.1 Forgetting Improves the Memory! 

As we discussed in Sect. 3.3, the standard learning rule (Hebb's rule) leads to 
the emergence of undesirable local minima in the "energy" functional E[sJ . 
In practice, this means that the evolution of the network can be caught in 
spurious, locally stable configurations, such as those in (3.23). Large networks 
usually contain a vast number of such spuriously stable states, many of which 
are not even linear combinations of the desired stability points. The learning 
rule for correlated patterns discussed in Sect. 10.1 does not guard against this 
problem. Thermal fluctuations do help to destabilize the spurious configura­
tions, but at the expense of storage capacity. Moreover, the disappearance of 
all the spurious states at some finite T is not ensured. 

A much better strategy is to eliminate the undesired stable configura­
tions by appropriate modifications of the synaptic connections. Hopfield et 
al. [Ho83J have proposed to make use of the fact that the spurious minima of 
the energy functional E[sJ are usually much shallower than the minima that 
correspond to the learned patterns. Borrowing ideas developed in the study 
of human dream sleep, and discussed in Sect. 2.3, they suggested tracking 
these states by starting the network in some randomly chosen initial con­
figuration and running it until it ends up in a stable equilibrium state sf'. 
This may be one of the regular learned patterns, or one of the many spurious 
states. Whatever the resulting state is, the synapses are partially weakened 
according to Hebb's rule: 

(10.31) 

where A « 1 is chosen. This procedure of unlearning has two favorable effects. 
Most spurious equilibrium states of the network are "forgotten" , since they 
are already destabilized by small changes in the synaptic connections Wij ' 

Moreover, the different regions of stability of the stored patterns become 
more homogeneous in size, since those with a larger range of stability occur 
more often as final configurations and are therefore weakened more than 
others. 

The effect of this intentional forgetting is especially apparent in the sizes 
of the basins of attraction. This term denotes the set of all states, from which 
the network dynamics leads to a particular pattern. The change of the size of 
the basin of attraction of a given stored pattern, as the total memory load is 
increased, is illustrated in Fig. 10.4. The two axes labeled Hk and HN - k in 
these figures represent a crude measure of the distance of an initial trial state 
Si from the considered memory state uf . They denote the partial Hamming 
distances between the trial state and the memory state, evaluated for the 
first k and the last (N - k) of all N = 200 neurons, respectively. 
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k 

Hk = ~ L (Si - (ln2 , 

i=1 

N-k 

H N - k = ~ L(Si-(lr)2. 
i=k 

(10.32) 

In this specific case k = N /2 was taken, i.e. the axes represent the Hamming 
distance for the first and the last half of the neurons of the network. If the 
trial state Si developed into the stored pattern j.L, a black dot was plotted. 
For a single memory state (Fig. 10.4a), half of the trial states are found to 
evolve into the stored pattern (Ii, the other half ends up in the complemen­
tary pattern (-(Ii) . The basin of attraction thus represents a black triangle. 
For more memory states this region shrinks rapidly and takes on a highly 
ragged shape in the vicinity of (¥c, as shown in Fig. 1O.4b,c for 28 and 32 
uncorrelated memory state::;, respectively. Figure lO.4d shows the result of 
applying the forgetting algorithm (10.31) 1000 times to the network loaded 
with 32 patterns [Ke87]. (The unlearning strength was A = 0.01.) The basin 
of attraction grows strongly (by a factor of ten or more) and also takes on a 
more regular shape. The probability of retrieving the stored patterns is much 
improved. 
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Fig. 10.4. Basins of attraction in a Hopfield network with 200 neurons for (a) 1, 
(b) 28, (c) 32 memory states. After deliberate forgetting the basin expands strongly 
(d). (From [Ke87]). 

In a somewhat modified version of this method [Pa87] the network is 
allowed to develop from the stored patterns, deteriorated by random noise. 
One then not only weakens the synaptic connections by unlearning the final 
state sf, but also simultaneously relearns the correct starting pattern v: 
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(10.33) 

If the pattern was recalled without fault, the synapses remain unchanged 
according to this prescription. With this method the storage capacity can be 
increased to Q: = 1, and the storage of strongly correlated patterns becomes 
possible. 

Unfortunately, these methods do not eliminate the spurious stable states 
corresponding to linear combinations of stored patterns, such as (3.23). The 
total synaptic modification for all eight of these states taken together vanishes 
exactly, since the sum of the changes (10.31) adds to zero. However, a slightly 
different procedure works successfully [Ki87], where forgetting is controlled 
by the rule 

(10.34) 

Here j.L, v, and A denote any triple of stored patterns. For 'TJ > 1/3 one finds 
that all eight spurious states (3.23) already become unstable at T = O. At 
a finite value of the temperature parameter a smaller value of A suffices for 
destabilization, and above T = 0.46 these spurious configurations become 
unstable because of the action of thermal fluctuations alone. 

10.2.2 Nonlinear Learning Rules 

An essential disadvantage of Hebb's rule (3.12) for p patterns 
p 

_l~JLJL 
Wij - N ~aiaj 

1'=1 

(10.35) 

for many applications is that the synaptic strengths can vary over a wide 
range -piN ~ Wij ~ +plN . This is particularly disturbing in hardware 
implementations of neural networks, since it requires electronic switching 
elements with a wide dynamical range. It is therefore natural to ask whether 
the range of allowed values of the Wij can be limited with impunity. The 
extreme case would be to distinguish only between excitatory (Wij > 0) and 
inhibitory (Wij < 0) synapses, which are assigned the same absolute strength, 
but different signs: 

Wij = ytsgn(t ~araj) = ± '{1 . (10.36) 
1'=1 y P 

This procedure, called clipping of synapses, is a special case of the nonlinear 
Hebb rule [He86, He87c, So86b], (see also Sect. 19.3) 

Wij = '{1 if> ( ~ taraj) , (10.37) 
y p 1'=1 
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where 4>(x) is an arbitrary, monotonously increasing function. The choice 
4>(x) = x leads back to the standard (linear) Hebb rule (3.12), while 4>(x) = 
sgn(x) describes clipped synapses. 

Clipping of synapses has a surprisingly small influence on the storage 
capacity of a network and on its ability to recall stored patterns. Compared to 
Hebb's linear rule the learning rule (10.36) acts as additional noise, causing a 
reduction of the critical storage density O:c = Pmax/ N at T = 0 from O:c Hebb = 
0.138 to O:c = 0.102, It can be shown that in general the memory capacity 
is always less than in the linear Hebb case, O:c q, :S O:c Hebb, for arbitrary 
synapses [He87c, He88a]. At low memory density, i.e. for small values of 0:, 

the error rate (1 - m) /2 in pattern recall is insignificantly larger for clipped 
synapses than for Hebbian ones. These deteriorations are compensated by the 
important simplifications resulting for the storage of the synaptic connections 
Wij in hardware realizations, as well as in software simulations of the neural 
network on conventional digital computers. 

Of particular interest are bounded synaptic strength functions 14>( x) 1 :S 
4>0. Here it is useful to modify the learning rule (10.37), in order to allow for 
the addition of more and more patterns to the memory: if the synapses after 
storing (J-L - 1) patterns are denoted by w}r- 1), those obtained after adding 
the next pattern to the memory are defined as 

w(':') = 4>(CIJ':'IJ':' + w(,:,-l») (10.38) 
tJ t J tJ . 

Whereas in the case of the linear Hebb rule the continued addition of more 
memory states eventually leads to the complete breakdown of the ability of 
the network to retrieve any stored pattern, memory degradation proceeds 
in a much gentler way for the nonlinear learning law (10.38) with bounded 
synaptic strengths. As more and more patterns are stored, the network ap­
proaches the limit of its storage capacity, O:c. However, instead of entering a 
state of total confusion, the network then experiences a gradual "blurring" 
of the older memory states, which are slowly replaced by the freshly learned 
patterns. 

Because the whole memory can eventually be viewed as a sequence of 
clearly retrievable fresh patterns superimposed on increasingly deteriorated 
older patterns, such a memory structure is often called a palimpsest. 5 Mem­
ories of this type can serve as efficient short-term memories, because they 
permit the network to function as an information storage device continuously 
without encountering its capacity limit. Besides overwhelming physiological 
evidence that short-term-memory structures exist in the brain, such memories 
have important applications in electronic information processing as so-called 
cache memories. 

5 The term palimpsest derives from a practice used in the Middle Ages, when 
parchment was so precious that it was written upon several times, the earlier 
writing having been wholly or partially erased to make room for the next. 
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The nonlinear learning rule (10.38) was studied by Parisi [Pa86b] for the 
bounded function 

<P(x) = { :gn(x) 
for Ixl ~ 1 
for Ixl > 1 

(10.39) 

shown in Fig. 10.5. As expected, the recall quality m of a stored state deteri­
orates after the addition of many other patterns to the memory, as depicted 
in Fig. 10.6. Although the total memory capacity remains bounded at any 
one time (Parisi found a max = Pmax/N ~ 0.04), the network never loses its 
ability to learn new patterns. Similar models were studied by Nadal et al. 
[Na86] and various other authors [Ge87, He88c, Ge89]. A general discussion 
of their properties can be found in [Mo88]. 

tl>(x) 
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a 
Fig. 10.5. Bounded synaptic-strength 
function used for palimpsest memory 
networks. 

Fig. 10.6. The recall quality m of an 
older memory state fades after the ad­
dition of p = aN new states (from 
[Pa86bJ). 

Use the program ASSO (see Chapt. 22) to learn at least 
ten letters of the alphabet with any of the improved 
learning schemes 2- 5, using standard values for the other 
parameters. Then choose option "m" in the search menu 
to limit the synaptic strength, or to allow only for binary 
synapses. 

Use the program ASSO to learn at least ten letters of 
the alphabet with any of the improved learning schemes 
2- 5, using standard values for the other parameters, ex­
cept selecting only positive (excitatory) or only negative 
synapses on the first screen. 
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10.2.3 Dilution of Synapses 

The assumption that all neurons are interconnected is not very realistic, 
especially if one is interested in modeling biological neural nets. One may 
ask whether a neural network can still act as an efficient associative memory 
if a large fraction of the synaptic connections are severed or diluted. The 
synaptic connectivity is usually diluted by eliminating connections at random, 
keeping only a fraction d < 1 of all synapses [So86b] . If this is done while the 
symmetry of the synaptic matrix Wij is preserved, the memory capacity a e of 
a network trained with Hebb's rule drops almost linearly with d, as illustrated 
in Fig. 10.7, where ae and the critical recall quality me = m(ae ) are shown 
as functions of the fraction of destroyed synaptic connections.6 This result 
clearly exhibits the error resistivity of neural networks. Even after elimination 
of a large fraction of synapses the network continues to operate quite reliably. 
Another approach is to dilute the synapses asymmetrically, i.e. to set W i j = 0 
but not necessarily also require Wji = O. This case can be treated analytically 
in the limit d -t 0 [De87c, Cr86] . One finds that the memory capacity per 
remaining synapse is about four times as large, a e = 2dlrr :::::: O.64d, as for a 
fully connected network. 

Virasoro has pointed out that the random destruction of synapses can 
lead to interesting effects when the stored patterns have a hierarchical simi­
larity structure [Vi88] . By this one means that the patterns fall into several 
distinct classes or categories, the patterns belonging to a common class be­
ing strongly correlated [Pa86a, Do86] . A set of patterns with this property 
can be generated in the following way. First choose Q uncorrelated class 
patterns ~f,(i = 1, ... ,Nja = 1, . . . ,Q), where the ~f = ±1 with equal 
probability. For each category a one now generates Po. correlated patterns 
afIL , (i = 1, ... ,NjjL = 1, ... ,po.), taking the value afIL = ±~f with proba­
bility (1 ± m) /2. In the limit m -t 1 the patterns within the same category 
become more and more similar. 

When the memory capabilities of the network deteriorate, e.g. because of 
overloading, the presence of thermal noise, or synaptic dilution, the network 
may reach a stage at which an individual pattern afIL can no longer be 
retrieved, but the recall of the corresponding class ~f is still possible.7 Such 
a behavior can be of great interest, because the network can then perform the 
task of categorization, i.e. identify the class to which a given pattern that is 

6 This implies that the storage efficiency of the network does not really decrease, 
since fewer synapses are required in proportion. One has to keep in mind here 
that the complexity of the neural system is not described by the number N of 
neurons but by the total number of synaptic connections, ~dN(N - 1), so that 
the true memory efficiency is given by ocld. 

7 The visual inability to recognize the difference between similar objects, e.g. hu­
man faces, is called prosopagnosia in clinical psychology. It is distinguished from 
the syndrome of agnosia, where the whole act of visual recognition is impaired, 
and which has been vividly described by Sacks [Sa87]. 


