

Using Logic Criterion Feasibility to Reduce Test Set Size While Guaranteeing Fault
Detection

Garrett Kaminski and Paul Ammann
Software Engineering, George Mason University

Fairfax, VA USA
gkaminsk@gmu.edu, pammann@gmu.edu

Abstract

Some software testing logic coverage criteria demand
inputs that guarantee detection of a large set of fault types.
One powerful such criterion, MUMCUT, is composed of
three criteria, where each constituent criterion ensures the
detection of specific fault types. In practice, the criteria
may overlap in terms of fault types detected, thereby
leading to numerous redundant tests, but due to the
unfortunate fact that infeasible test requirements don’t
result in tests, all the constituent criteria are needed. The
key insight of this paper is that analysis of the feasibility of
the constituent criteria can be used to reduce test set size
without sacrificing fault detection. In other words,
expensive criteria can be reserved for use only when they
are actually necessary. This paper introduces a new logic
criterion, Minimal-MUMCUT, based on this insight. Given
a predicate in minimal DNF, a determination is made of
which constituent criteria are feasible at the level of
individual literals and terms. This in turn determines which
criteria are necessary, again at the level of individual literals
and terms. This paper presents an empirical study using
predicates in avionics software. The study found that
Minimal-MUMCUT reduces test set size -- without
sacrificing fault detection -- to as little as a few percent of
the test set size needed if feasibility is not considered.

KEY WORDS: Software Logic Testing, Software Fault,
Criteria, MUMCUT, Disjunctive Normal Form

1. Introduction
Infeasible test requirements are demands for tests that
simply do not exist. They are an unfortunate fact of life in
software testing. They confound test engineers, who must
decide if a given test requirement really is infeasible or if a
more diligent search for a suitable input is in order. They
also confound attempts by researchers to relate coverage
criteria. By definition, an infeasible test requirement for a
given criterion does not result in a test. If the corresponding
test requirement for a “weaker” criterion happens to be
feasible, the infeasibility can cause an apparently “stronger”
criterion to fail to subsume the “weaker” one. Many well
known cases of this phenomenon pervade the testing
literature. In this paper, we address infeasibility in the
context of logic testing criteria designed for the fault
hierarchy of Lau and Yu [9].

We consider testing predicates over Boolean variables in
isolation. In this finite domain, it is straightforward to
determine whether a given test requirement is feasible. Of
course, when these predicates are buried inside actual
programs, there is still a difficult controllability problem of
selecting inputs to drive the variables in the predicate to the
desired values, but that is not the focus of this research.

A predicate in n variables has at most 2n tests. For
applications where n is large, the exhaustive test set is often
prohibitively expensive. Hence, some logic criteria trade
fault detection capability for reduced test set size. This
paper analyzes feasibility to improve solutions to this
tradeoff. We focus on three faults: the Literal Insertion
Fault (LIF), the Literal Reference Fault (LRF), and the
Literal Omission Fault [8]. A LIF involves inserting a
literal, or the negation of a literal, into a term. A LRF
involves replacing a literal with a literal, or the negation of
a literal, from some other term. A LOF involves omitting a
literal. The LIF, LRF, and LOF are important for two
reasons. First, they mimic programmer mistakes. The
competent programmer hypothesis [1] states that competent
programmers often write programs that differ from a correct
version by relatively few simple faults, and so faults in the
hierarchy are plausible errors for which to test. Second, the
fault hierarchy of Lau and Yu [9] assures that detection of
these faults guarantees detection of other faults. That is,
these three faults sit atop the fault hierarchy.

Chen, Lau and Yu [4] developed the MUMCUT coverage
criterion specifically to guarantee detection of all faults in
the fault hierarchy. The MUMCUT criterion integrates
three constituent criteria: the Multiple Unique True Point
(MUTP), Multiple Near False Point (MNFP), and
Corresponding Unique True Point Near False Point
(CUTPNFP) criteria. Details of these constituent criteria
are given in Section 2. For this paper, the key issue is the
role of feasibility in whether each constituent criterion is
necessary.

 Specifically, if MUTP is feasible, it is possible to augment
it with many fewer tests than those required by CUTPNFP
or MNFP, and yet still detect the entire fault hierarchy.
The situation is more complex if MUTP is infeasible.
Where MUTP is infeasible, but CUTPNFP is feasible,
MNFP is not needed at all. If both MUTP and CUTPNFP
are infeasible, then MNFP is required. A key aspect of this
paper is that the infeasibility arguments apply at the fine-
grained level of terms and literals, and hence CUTPNFP

2009 International Conference on Software Testing Verification and Validation

978-0-7695-3601-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICST.2009.14

366

2009 International Conference on Software Testing Verification and Validation

978-0-7695-3601-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICST.2009.14

356

and, if needed, MNFP, can be used only where they are
required.

MUMCUT takes the direct approach of simply requiring all
three constituent criteria. This certainly works, but it is
expensive. CUTPNFP and especially MNFP demand large
numbers of tests, but, as hinted at above, turn out to be
necessary only in relatively few cases.

The contributions of this paper are:
1) Uses an analysis of MUMCUT constituent criterion
feasibility at the level of terms and literals. This analysis
allows test set sizes to be reduced without sacrificing fault
detection.
2) Provides a refinement of fault detection relationships in
Lau and Yu’s hierarchy [9] based on constituent criterion
feasibility from the MUMCUT criterion (Figure 3.1).
3) Presents a new logic coverage criterion, Minimal-
MUMCUT, as well as an algorithm to generate Minimal-
MUMCUT test sets.
4) Gives a case study that shows the reductions in test set
size possible with Minimal-MUMCUT.

The paper is organized as follows. The remainder of
Section 1 reviews relevant Boolean logic terminology and
related work in logic criteria. Section 2 reviews MUMCUT
and the three constituent criteria MUTP, CUTPNFP, and
MNFP. Section 3 reviews the fault hierarchy. Section 4
develops the results explaining the impact of infeasibility
on fault detection, presents algorithms to determine
feasibility for each criterion at the level of terms and
literals, and finally synthesizes these results into the
Minimal-MUMCUT algorithm. Section 5 is a case study to
assess the reduction in test set size provided by Minimal-
MUMCUT. Section 6 discusses how this work relates to
more general issues in testing, and section 7 concludes the
paper.

1.1 Boolean Logic Terminology
Table 1.1 lists the definitions for terms used in this paper.

Table 1.1 Basic Definitions

Term or Symbol Definition
1 The Boolean value TRUE
0 The Boolean value FALSE
Literals Variables representing clauses in a predicate
+ OR operator
Adjacency between literals AND operator
Term A set of literals connected by AND
~ negation
Disjunctive Normal Form
(DNF)

Predicate syntax where terms are separated by
OR and literals are separated by AND

Implicant A term that when TRUE, means the predicate
is TRUE

Prime implicants Implicants where removing a literal could
potentially change the value of the predicate

Irredundant DNF
Predicate syntax where it is possible to make
each term TRUE in turn while all other terms
are FALSE

Term or Symbol Definition
Minimal DNF Predicate syntax in irredundant DNF where all

implicants are prime implicants

Unique True Point (UTP) An assignment of values such that only a
single term is TRUE. In ab + cd, UTPs for ab
are 1100, 1101, 1110.

Near False Point (NFP)
An assignment of values such that the
predicate is FALSE but negating a single
literal makes the predicate TRUE [3]. In ab +
cd, NFPs for a are 0100, 0101, 0110.

Corresponding NFP

A NFP that differs from an UTP for the
literal’s term only in the value of that literal.
In ab + cd, 0100 is a corresponding NFP for a
as it differs from the UTP 1100 for ab only in
the value of a.

Feasible A logic criterion is feasible if and only if it is
possible to construct all required tests.

1.2 Related Work
Logic criteria have been studied syntactically (assuming a
predicate is in a particular format) and semantically
(making no assumption as to format). Chilenski and Miller
[6] discuss the modified condition / decision coverage
(MC/DC) criterion which is the best known semantic logic
criteria. However, MC/DC tests do not guarantee detecting
most faults in Lau and Yu’s hierarchy [7]. Weyuker,
Goradia, and Singh [13] proposed the MAX-A and MAX-B
syntactic criteria, whose tests guarantee detecting all faults
in the hierarchy. Chen, Lau, and Yu [4] developed the
MUMCUT criterion, whose tests guarantee detecting all
faults in the hierarchy with a smaller test set size. Chen and
Lau [2] implemented the MUTP Greedy algorithm to
satisfy the MUTP criterion as a constituent of the
MUMCUT criterion. Kaminski, Williams, and Ammann
[7] proposed the MUTP/NFP criterion, whose tests
guarantee detection of all faults in the hierarchy while
further reducing test set size, but only if the criterion is
feasible. Sun et al. [12] analyzed how MUMCUT can be
extended to apply to predicates in any format and Okun,
Black, and Yesha [11] showed how a logic fault hierarchy
can apply to predicates in any format. The seminal work in
composing a logic fault hierarchy was performed by Kuhn
[8]. Lau and Yu [9] refined Kuhn’s work by introducing
new faults and detection relationships.

This paper advances prior research by focusing on criterion
feasibility for individual terms and literals. The result is a
new criterion reducing test set size without sacrificing fault
detection, even if infeasibility occurs for the predicate as a
whole.

2. Logic Criteria
Exhaustive logic test size grows exponentially, requiring
tests of O(2n), where n is the number of unique literals.
Thus, testers have invented less expensive criteria. Four
such criteria are described next with an example of ab + cd.
A summary of each along with a new logic criterion

367357

introduced in section 4 is given in Appendix A. Note that
for all of these criteria, if an infeasibility occurs the tests
chosen should satisfy the requirements as fully as possible.

2.1 MUTP
Multiple Unique True Point (MUTP): Given a minimal
DNF predicate, form tests for an UTP for each term such
that all literals not in the term attain values 1 and 0. An
UTP for the first term must have a=1, b=1. Needed tests
for c and d to each = 0 and 1 are 1101 and 1110. An UTP
for the second term must have c=1 and d=1. Needed tests
for a and b to each = 0 and 1 are 0111 and 1011. A test set
is {1101,1110,0111,1011}.

2.2 MNFP
Multiple Near False Point (MNFP): Given a minimal
DNF predicate, form tests for a NFP of each literal such
that all literals not in the literal’s term attain values 1 and 0.
An UTP for the first term must have a=1, b=1. NFPs for a
and b so that c and d each = 0 and 1 are
0101,0110,1001,1010. An UTP for the second term must
have c=1 and d=1. Needed NFPs for c and d so that a and b
each = 0 and 1 are 0101,1001,0110,1010. A test set is
{0101,0110,1001,1010}.

2.3 CUTPNFP
Corresponding Unique True Point Near False Point
Pair (CUTPNFP): Given a minimal DNF predicate, for
every literal find an UTP and NFP such that only the literal
changes value. An UTP for the first term must have a=1,
b=1. If c=0 and d=1, tests for ab are 1101,0101,1001. An
UTP for the second term must have c=1, d = 1. If a=1 and
b = 0, tests for cd are 1011,1001,1010. A test set is
{1101,0101,1001,1011,1010}.

2.4 MUMCUT
MUTP/MNFP/CUTPNFP (MUMCUT): Satisfy the
CUTPNFP, MUTP, and MNFP criteria. 1101 and 1110 are
UTPs for ab. 0101 and 0110 are NFPs for a that differ
from an UTP for ab only in the value a. 1001 and 1010 are
NFPs for b that differ from an UTP for ab only in the value
of b. 0111 and 1011 are UTPs for cd. 0101 and 1001 are
NFPs for c that differ from an UTP of cd only in the value
of c. 0110 and 1010 are NFPs for d that differ from an UTP
for cd only in the value of d. In the NFPs above each literal
not in the term of interest attains 1 and 0. A test set is
{1101,1110,0101,0110,1001,1010,0111,1011}.

3. Logic Tests and Fault Hierarchy
One method for evaluating tests is to determine how many
of the nine minimal DNF faults in Table 3.1 a test set is
guaranteed to detect [8, 9].

Table 3.1 Typical Minimal DNF Logic Faults
Fault Description

Expression Negation Fault (ENF)
Predicate implemented as its
negation: ab + c implemented as
~(ab + c).

Term Negation Fault (TNF) A term is negated: ab + c
implemented as ~(ab) + c.

Operator Reference Fault + (ORF+) Replacing OR with AND: a + b
implemented as ab.

Operator Reference Fault . (ORF.) Replacing AND with OR: ab
implemented as a + b.

Literal Negation Fault (LNF) A literal is negated: ab
implemented as a~b.

Literal Reference Fault (LRF)
A literal is replaced by a literal
or the negation of a literal not in
the term: ab + cd implemented
as cb + cd or as ~cb + cd.

Term Omission Fault (TOF) A term is omitted: ab + cd
implemented as ab.

Literal Omission Fault (LOF) A literal is omitted: ab
implemented as a.

Literal Insertion Fault (LIF)
A literal not in a term is inserted
as itself or as its negation: ab +
cd implemented as abc + cd or
as ab~c + cd.

The condition for detecting an LIF is as follows [4]. If
some literal not intended to be in term X is inserted into X
as itself or as its negation, then a set of UTPs for X where
all literals not in X attain the values 0 and 1 detects the
fault. MUTP tests are guaranteed to detect an LIF [4].
However, when the MUTP criterion is infeasible, a LRF
exists that MUTP tests may not detect (see Theorem 4.1).
Consider ab + ac + bc and an LIF producing ab~c + ac +
bc. The MUTP criterion is infeasible for ab as the only
UTP for ab is 110. Therefore, MUTP tests do not detect the
corresponding LRFs: ~cb + ac + bc and a~c + ac + bc.

MUTP tests are guaranteed to detect a LRF for a literal if
the MUTP criterion is feasible for that literal’s term [7]. In
this case, it is only necessary to satisfy the MUTP criterion
and the NFP criterion (a NFP for each literal in the term) to
guarantee detecting an LIF, LRF, and LOF in that term [7].
The NFP for a literal in a MUTP feasible term can overlap
with NFPs for other literals in other MUTP feasible terms
and with NFPs in CUTPNFP or MNFP tests since any NFP
for a literal detects a LOF for that literal [4]. If a term is
MUTP infeasible but all external literals that cannot be 0 or
1 in an UTP for the term exist in single-literal terms, LRF
detection is still guaranteed by MUTP tests. A LRF
involving replacing a literal with a literal (or its negation)
that exists in a single-literal term will result in a TOF, LOF,
or a TRUE predicate. Since an UTP guarantees detecting a
TOF [4] and a NFP guarantees detecting a LOF or a fault
where the predicate is stuck at 1, a MUTP test set
supplemented with overlapping NFPs guarantees LRF
detection. For example, in a + b, replacing a with b results
in a TOF for a and replacing a with ~b makes the predicate
= 1. In ab + c, replacing a with c results in a TOF for ab
and replacing a with ~c results in a LOF for a.

368358

The condition for detecting a LRF is as follows [4]. If literal
x in X is wrongly implemented as some other literal or the
negation of some other literal not in X, then any of the
following detects the fault: a set of UTPs for X where all
literals not in X attain the values 0 and 1; a set of NFPs for
x where all literals not in X attain the values 0 and 1; an
UTP-NFP pair where the points differ only in the value of
x. The CUTPNFP criterion is designed to produce tests that
detect a LRF but fails to do so when it is infeasible (see
Theorem 4.2). However, when the CUTPNFP criterion is
infeasible, MNFP tests can be added to guarantee LRF
detection [4]. Consider abc + abd + ~b~d + ~de. The
CUTPNFP criterion is infeasible for b in abc. The only
UTP for abc is 11100. A corresponding NFP of 10100 is
not possible for b in abc because this is a TRUE point.
Now consider the LRF a~ec + abd + ~b~d + ~de. Since
the CUTPNFP criterion is infeasible for b in abc, this LRF
goes undetected by CUTPNFP tests. A single NFP for b in
abc is not guaranteed to detect a LRF either. The point
10111 is a NFP for b in abc, but this point fails to detect the
LRF. The MNFP criterion requires that the NFP 10110 be
used for b in abc, detecting the LRF.

Figure 3.1 displays Lau and Yu’s Fault Hierarchy [9]
modified based on how criterion feasibility affects fault
detection. A solid arrow from a source fault to a destination
fault indicates that if a test detects a source fault, it also
detects a corresponding destination fault. When the MUTP
criterion is infeasible, a test set detecting all LIFs is not
guaranteed to detect all LRFs. Thus the solid arrow
between the LIF and LRF in Lau and Yu’s hierarchy is
changed to a dashed arrow. In Lau and Yu’s hierarchy no
arrow exists between the LRF and LOF. A dashed arrow is
added to represent that when guaranteeing detection of all
LIFs does not guarantee detection of all LRFs, adding tests
to detect the undetected LRFs will detect all corresponding
LOFs (unless the CUTPNFP criterion is infeasible). The
reason is that when the MUTP criterion is infeasible but the
CUTPNFP criterion is feasible, an UTP will not detect a
LRF but a corresponding NFP will [4].

Figure 3.1 Fault Class Hierarchy

4 Using Criterion Feasibility to
Assess Fault Detection

An example of how a MUTP test set detects any LRF for
any literal in a MUTP feasible term is given in Tables 4.1
and 4.2. Table 4.2 shows how MUTP tests detect each LRF
by using the tests in Table 4.1.

Table 4.1 MUTP tests for ab + ~ac
Test Case Values Test Name
1 110 MUTP for ab
2 111 MUTP for ab
3 001 MUTP for ~ac
4 011 MUTP for ~ac

Table 4.2 Fault Detection for ab + ~ac
Fault
Class

Faulty
predicate

Test Case
detecting
fault

Original
predicate
value

Faulty
predicate
value

LRF cb + ~ac 1 True False
LRF ~cb + ~ac 2 True False
LRF ac + ~ac 1 True False
LRF a~c + ~ac 2 True False
LRF ab + bc 3 True False
LRF ab + ~bc 4 True False
LRF ab + ~ab 3 True False
LRF ab + ~a~b 4 True False

This section continues with proofs relating criterion
feasibility to fault detection capability.

Theorem 4.1:
If the MUTP criterion is infeasible for a multi-literal term
X, a LRF where the negation of some literal y in some
multi-literal term Y replaces literal x in X cannot be
detected by MUTP tests.

Proof:
Without loss of generality assume y must = 0 in an UTP for
X. Consider the fault where ~y is inserted into X. A
corresponding LRF is replacing x with ~y. In an UTP for X
all literals are such that only X = 1. Substituting ~y for x
also makes X = 1 since y must = 0 in an UTP of X. Since X
and Y are multi-literal terms, the LRF does not result in a
TOF or LOF. The MUTP criterion requires only TRUE
points for X so MUTP tests fail to detect a LRF.
End of Proof

An example is mutating ab + bc to a~c + bc. The MUTP
criterion is infeasible for ab because 110 is the only UTP
for ab. 110 does not distinguish between ab and a~c so
MUTP tests fail to detect the LRF.

An algorithm to determine MUTP feasibility for each term
in a predicate is given next.

 LOF

ORF.

 LRF

 LNF

 TNF

 ENF

 LIF

TOF

ORF+

369359

MUTP Feasibility Algorithm
Input: All UTPs for each term
Output: A List of MUTP feasible terms
Declare list MUTPFeasibleTerms = All terms
For each term i
 For each literal x not in term i
 Boolean doesLiteralEqual_0 = false
 Boolean doesLiteralEqual_1 = false
 For each UTP u in the set of UTPs for term i
 If (literal x = 0 in UTP u) doesLiteralEqual_0 = true
 Else doesLiteralEqual_1 = true
 If (doesLiteralEqual_0 && doesLiteralEqual_1)
 Continue for each literal loop
 End For
 Remove term i from MUTPFeasibleTerms
 Continue for each term loop
 End For
End For
Return MUTPFeasibleTerms

Theorem 4.2:
If the CUTPNFP criterion is infeasible for literal x in a
multi-literal term X, a LRF where the negation of some
literal y in some multi-literal term Y replaces x cannot be
detected by CUTPNFP tests.

Proof:
Chen, Lau, and Yu [4] show that in general when the
MUTP criterion is infeasible, a NFP is needed to detect a
LRF. (They do not distinguish between LRFs involving
single-literal vs. multi-literal terms as Theorem 4.1 does).
When the CUTPNFP criterion is infeasible for x, a LRF
cannot be detected by a corresponding NFP as none exists.
Thus, if it cannot be detected by an UTP for X, CUTPNFP
tests do not detect it. MUTP tests do not guarantee LRF
detection when the MUTP criterion is infeasible so what
remains to be proved is that when the CUTPNFP criterion
is infeasible for x, the MUTP criterion is infeasible for X.
Since no corresponding NFP exists for x, flipping the value
of x in an UTP for X causes some other term Y to = 1. In
this case, the MUTP criterion is infeasible for X as the
following proof by contradiction shows. Assume the
MUTP criterion is feasible for X and the CUTPNFP
criterion is infeasible for x. Every literal not in X can = 0 or
1 in an UTP for X. So every term other than X can = 0 for
an UTP of X no matter if y = 0 or 1. Thus, flipping the
value of x in an UTP for X can form a corresponding NFP,
contradicting the original assumption. Since X and Y are
multi-literal terms, a LRF does not yield a TOF or LOF.
End of Proof

As an example, consider abc + abd + ~b~d + ~de. The
CUTPNFP criterion is infeasible for b in abc. The only
UTP for abc is 11100. A corresponding NFP of 10100 is
not possible for b in abc because this is a TRUE point.
Now consider the LRF a~ec + abd + ~b~d + ~de. Since
the CUTPNFP criterion is infeasible for b in abc,
CUTPNFP tests do not detect the LRF. The MNFP

criterion would require that the NFP 10110 be used for b in
abc, which detects the LRF.

An algorithm to determine CUTPNFP criterion feasibility
for each literal in a predicate is presented next.

CUTPNFP Feasibility Algorithm
Input: All UTPs for each term and all NFPs for each literal
Output: A List of all CUTPNFP feasible literals
Declare List CUTPNFPFeasibleLiterals
Declare String nfpComplement
Declare Boolean isCUTPNFPFeasible
For each term i
 For each literal j in term i
 isCUTPNFPFeasible = false
 For each nfp k for literal j in term i
 nfpComplement = k where jth bit is complemented
 If the set of utps for term i contains nfpComplement
 isCUTPNFPFeasible = true
 Break
 End For
 If (isCUTPNFPFeasible)
 Add literal j to CUTPNFPFeasibleLiterals
 End For
 End For
Return CUTPNFPFeasibleLiterals

A new logic criterion, which we call Minimal-MUMCUT,
satisfied by a test set produced by the algorithm below, can
reduce MUMCUT test set size without sacrificing fault
detection. The algorithm is based on criterion feasibility to
1) overlap NFPs when possible and 2) produce CUTPNFP
and MNFP tests only when necessary on a literal-by-literal
basis.

Minimal-MUMCUT algorithm
For each term X
 Generate MUTP tests for X
 If the MUTP criterion is infeasible* for X
 For each literal x in X
 If the CUTPNFP criterion is feasible for x
 Generate CUTPNFP tests for x to overlap NFPs**
 Else Generate MNFP tests for x to overlap NFPs**
 End For
 Else
 Generate a NFP for x to overlap NFPs**
End For

* The MUTP criterion is infeasible in this algorithm if and
only if X is a multi-literal term and a literal y in a multi-
literal term Y exists where y cannot attain both truth values
in an UTP for X.

** Overlapping NFPs is a set covering combinatorial
optimization problem known to be NP-complete. An
heuristic is used in the algorithm to approximate
minimizing the number of NFPs generated.

370360

As an example, consider ab + cd. 1101 and 1110 are UTPs
for ab and the MUTP criterion is feasible for ab. 0101 and
1010 are NFPs for a and b, respectively. 0111 and 1011 are
UTPs for cd and the MUTP criterion is feasible for cd.
0101 and 1010 are NFPs for c and d, respectively. A test
set is {1101,1110,0101,1010,0111,1011} which has two
less tests than the MUMCUT test set in section 2.4.

5 Empirical Evaluation
Chen, Lau, and Yu [4] evaluated MUMCUT test set size
(using the greedy MUTP algorithm [2]) for 19 minimal
DNF predicates from an air traffic collision avoidance
system (TCAS). There were actually 20 predicates but
number 12 was excluded due to a missing a right
parenthesis [13]. The predicates have from 5 to 13 unique
literals (see Appendix B). In this study, Minimal-
MUMCUT tests were created for each predicate and MUTP
feasibility for each term and CUTPNFP feasibility for each
literal was assessed. The Minimal-MUMCUT algorithm
was implemented in Java and used to obtain the results.

The results showed that the CUTPNFP criterion was
feasible for all 853 literals, so MNFP tests were not needed
for any literal. For 204 literals (23.92%), the MUTP
criterion was feasible for the literal’s term and thus MUTP
tests detect a LRF. For the other 649 literals (76.08%),
CUTPNFP tests detect a LRF. For four predicates, the
MUTP criterion was feasible for every term, so CUTPNFP
tests were not needed. For 16 predicates, the MUTP
criterion was feasible for at least one term. Thus,
CUTPNFP tests were not needed for literals in at least one
term in most predicates. Table 5.1 displays these results.
Minimal-MUMCUT and MUMCUT test set size were also
compared. On average, Minimal-MUMCUT test set size
was 12.66% of MUMCUT test set size and 2.50% of
exhaustive test set size. The greatest savings was for
predicate 13, where the Minimal-MUMCUT test set size
was 1.30% of the MUMCUT test set size and 0.54% of the
exhaustive test set size. Table 5.2 displays these results.
Minimal-MUMCUT test set size is always less than
MUMCUT test set size, except when each literal is in each
term, in which case test set size is the same (see predicates
8 and 9). In this case, each term has only one UTP, each
literal has only one NFP (which happens to be a
corresponding NFP), and no LIFs or LRFs exist.

Table 5.1 Criterion Feasibility and LRF detection

 Number
of terms
that are
MUTP
feasible

Number of
terms that
are MUTP
infeasible

Number of
literals for
which
MUTP
detects LRF

Number of
literals needing
CUTPNFP to
detect LRF

1 1 4 5 24
2 4 9 33 72
3 2 23 10 136
4 1 2 1 6
5 1 8 1 27
6 2 4 22 36

7 4 4 28 32
8 4 0 32 0
9 2 0 14 0
10 0 6 0 60
11 1 8 6 57
12* N/A N/A N/A N/A
13 0 6 0 14
14 0 6 0 16
15 1 10 2 30
16 1 22 2 85
17 2 4 8 24
18 2 6 8 30
19 4 0 20 0
20 2 0 12 0
Sum 34 122 204 649
* number 12 excluded due to a missing a right parenthesis

Table 5.2 Minimal-MUMCUT and MUMCUT Test Set
Size
 Minimal-

MUMCUT
MUMCUT

[4] Percentage 2n
1 27 40.50 66.67% 128
2 81 116.00 69.83% 512
3 157 1026.57 15.29% 4096
4 9 14.40 62.50% 32
5 36 232.48 15.49% 512
6 66 89.96 73.37% 2048
7 66 119.80 55.09% 1024
8 36 36.00 100.00% 256
9 16 16.00 100.00% 128
10 62 142.83 43.41% 8192
11 72 888.26 8.11% 8192
12 N/A N/A N/A N/A
13 22 1687.00 1.30% 4096
14 22 73.75 29.83% 128
15 39 187.39 20.81% 512
16 107 1595.32 6.71% 4096
17 40 852.78 4.69% 2048
18 48 182.54 26.30% 1024
19 16 65.64 24.38% 256
20 14 24.00 58.33% 128
Sum 936 7391.22 37,408
Avg 49.26 389.01 12.66% 1968.84

Minimal-MUMCUT test sets for predicates 4, 13, and 19
are given next.

Predicate 4: a~bd + a~cd + e

MUTP test set is:
10110 term a~bd
11010 term a~cd
00001 term e

371361

11111 term e

The MUTP criterion is infeasible for a~bd as c must = 1
and e must = 0 in an UTP for a~bd. However, e is in a
single-literal term so CUTPNFP tests are only needed to
detect a LRF where c replaces a literal in a~bd. The MUTP
criterion is infeasible for a~cd as b must = 1 and e must = 0
in an UTP for a~cd. However, e is in a single-literal term
so CUTPNFP tests are only needed to detect a LRF where b
replaces a literal in a~cd. Since the MUTP criterion is
feasible for e and e is in a single-literal term, neither
CUTPNFP tests nor a NFP are needed for e.

Additional tests needed for a CUTPNFP test set:
00110 term a~bd, literal a
11110 term a~bd, literal b and term a~cd, literal c
10100 term a~bd, literal d
01010 term a~cd, literal a
11000 term a~cd, literal d

Predicate 13: a + b + c + ~def~g~h + ij~l + ik~l

MUTP test set is:
100000000000 term a
100111111111 term a
010000000000 term b
010111111111 term b
001000000000 term c
001111111111 term c
000011000000 term ~def~g~h
000011001111 term ~def~g~h
000000001100 term ij~l
000111111100 term ij~l
000000001010 term ik~l
000111111010 term ik~l

The MUTP criterion is infeasible for all terms. However,
CUTPNFP tests for a, b, and c are not needed as these
literals are in single-literal terms. Likewise, CUTPNFP
tests to detect a LRF where a, b, or c replaces a literal in
another term are not needed. No CUTPNFP tests are
needed for ~def~g~h as all external literals in multi-literal
terms can attain both the values 0 and 1 in an UTP for
~def~g~h. Any NFP for each literal in ~def~g~h can thus
be generated to detect a LOF. The only external literal in a
multi-literal term that cannot attain both the values 0 and 1
in an UTP for ij~l is k. Thus, CUTPNFP tests are needed to
detect a LRF where ~k replaces a literal in ij~l. The only
external literal in a multi-literal term that cannot attain both
the values 0 and 1 in an UTP for ik~l is j. Thus, CUTPNFP
tests are needed to detect a LRF where ~j replaces a literal
in ik~l.

NFP tests:
000111000000 term ~def~g~h, literal d
000001000000 term ~def~g~h, literal e
000010000000 term ~def~g~h, literal f
000011100000 term ~def~g~h, literal g

000011010000 term ~def~g~h, literal h

Additional tests needed for a CUTPNFP test set:
000000000100 term ij~l, literal i
000000001000 term ij~l, literal j and term ik~l, literal k
000000001101 term ij~l, literal l
000000000010 term ik~l, literal i
000000001011 term ik~l, literal l

Predicate 19: acefg + ace~fh + bdefg + bde~fh

MUTP test set is:
10111110 term acefg
11101111 term acefg
10111001 term ace~fh
11101011 term ace~fh
01111110 term bdefg
11011111 term bdefg
01111001 term bde~fh
11011011 term bde~fh

The MUTP criterion is feasible for all terms so a test set of
overlapping NFPs is produced.

Overlapping NFP test set is:
00111111 term acefg, literal a and term bdefg, literal b
11001111 term acefg, literal c and term bdefg, literal d
11110110 term acefg, literal e and term bdefg, literal e
11111010 term acefg, literal f and term ace~fh, literal h
 term bdefg, literal f and term bde~fh, literal h
11111101 term acefg, literal g and term ace~fh, literal f and
 term bdefg, literal g and term bde~fh, literal f
01101001 term ace~fh, literal a and term bde~fh, literal d
10011011 term ace~fh, literal c and term bde~fh, literal b
11110011 term ace~fh, literal e and term bde~fh, literal e

This overlap of NFPs is not possible if both CUTPNFP and
MUTP tests are needed. As an example, 00111111 is used
as a NFP for a in acefg and for b in bdefg, but it does not
satisfy the CUTPNFP criterion for b in bdefg as it does not
differ from either UTP of bdefg only in the value of b. So
although 00111111 is a NFP for b in bdefg, it is not a
corresponding NFP. The smallest test set size satisfying the
CUTPNFP and MUTP criteria is 26, which is 10 greater
than the Minimal-MUMCUT test set size.

6 Context
In order for syntactic logic criteria to be useful in practice,
three separate issues need to be addressed: the internal
variable problem, minimal DNF, and predicate size.

The internal variable problem is concerned with what inputs
give a variable a certain value at some statement in a
program. This problem is formally undecidable, but partial
solutions using constraints exist [10]. For logic testing,
program inputs must be found such that the predicate is
reached and literal values make the faulty and original

372362

predicate evaluate to different truth values. In other words,
program inputs must be such that a criterion is satisfied.

Fault detection that holds for minimal DNF predicates does
not hold for non-minimal DNF predicates. This raises two
issues. One, how well does the fault hierarchy hold for
non-minimal DNF predicates? Two, what types of software
have minimal DNF predicates? For the first issue, Yu and
Lau [14] found that of a sample of 20 non-minimal DNF
predicates, over 99% of the faults in Figure 3.1 were
detected by tests that detected the same faults for the
corresponding minimal DNF predicates. For the second
issue, Chilenski [5] found that 95% of 20,256 predicates in
avionics software were in minimal DNF. Only 3% of these
predicates contained five or more unique literals, but 80%
of these predicates were in minimal DNF.

When a predicate contains less than five unique literals the
authors conjecture that exhaustive testing is best. This
raises the question of what types of software generally have
predicates with at least five unique literals. Chilenski and
Miller [6] report that avionics software often has predicates
with many literals and Chilenski [5] extracted a predicate
with 77 unique literals. Thus, the Minimal-MUMCUT
criterion should be useful for testing avionics software.

7 Conclusion
Logic testing needs efficient solutions to the tradeoff
problem of reducing test set size without sacrificing fault
detection. Several logic criteria have been proposed to
address this problem, some of which are composed of other
criteria. When a constituent criterion is feasible, a smaller
test set satisfying it can often be used instead of a larger test
set satisfying the parent criterion without sacrificing fault
detection. This paper described an approach where given a
minimal DNF predicate, a determination is made of which
criteria are feasible for individual literals and terms. This in
turn provides determination of which criteria are necessary
to detect faults. The approach was examined on a sample
of predicates (having from 5 to 13 unique literals) in
avionics software. The results showed that a new logic
criterion (Minimal-MUMCUT) reduced test set size
(without sacrificing fault detection) to as little as 1.30% of
the size needed if feasibility is not considered. Future
research should focus on determining what inputs cause
literals to have the values needed to satisfy the Minimal-
MUMCUT criterion.

8 References
[1] A.T. Acree, T.A. Budd, R.A. DeMillo, R.J. Lipton, and

F.G. Saywood. “Mutation Analysis,” Technical Report
GIT-ICS-79/08, School of Information and Computer
Science, Georgia Institute Of Technology, Atlanta GA,
Sept 1979.

 [2] T.Y. Chen and M.F. Lau. An Empirical Study on the

Effectiveness of the Greedy MUTP Criterion.

Software Engineering: Education and Practice, 1998.
Proceedings, 1998 International Conference. January,
1998. Pages 338 – 344.

[3] T.Y. Chen and M.F. Lau. Test Case Selection

Strategies Based on Predicates. Software Testing,
Verification, and Reliability, 11(1):165-180, November
2001.

[4] T.Y. Chen, M.F. Lau, and Y.T. Yu. MUMCUT: A

Fault-Based Criterion for Testing Predicates. Software
Engineering Conference, December, 1999. (APSEC
’99) Proceedings. Sixth Asia Pacific. Takamatsu,
Japan. Pages 606-613.

[5] J.J. Chilenski. An Investigation of Three Forms of the

Modified Condition Decision Coverage (MCDC)
Criterion. Final Technical Report, DOT/FAA/AR-
01/18, April 2001.

[6] J.J Chilenski and S.P. Miller. Applicability of Modified

condition/decision coverage to Software Testing.
IEE/BCS Software Engineering Journal, 9(5): 193-200,
September 1994.

[7] G. Kaminski, G. Williams, and P. Ammann.

Reconciling Perspectives of Logic Testing for
Software. Software Testing, Verification, and
Reliability, 18(3):149-188, September 2008.

[8] D. Richard Kuhn. Fault Classes and Error Detection

Capability of Predicate Based Testing. ACM
Transactions on Software Engineering and
Methodology, 8(4): 411-424, October 1999.

[9] M.F. Lau and Y.T. Yu. An Extended Fault Class

Hierarchy for Predicate-Based Testing. ACM
Transactions on Software Engineering and
Methodology, 14(3): 247-276, July 2005.

[10] A.J. Offutt and J. Pan. Automatically Detecting

Equivalent Mutants and Infeasible Paths. Software
Testing, Verification, and Reliability, 7(3):165-192,
September 1997.

[11] V. Okun, P. Black, and Y. Yesha. Comparison of

Fault Classes in Specification-Based Testing.
Information & Software Technology, 46(8): 525-533,
June 2004.

[12] Chang-ai Sun, Yunwei Dong, R. Lai, K.Y. Sim, and

T.Y. Chen. Analyzing and Extending MUMCUT for
Fault-based Testing of General Boolean Expressions.
Proceedings of the Sixth IEEE International
Conference on Computer Information Technology,
September, 2006. Pages: 184-189.

373363

[13] E. Weyuker, T. Goradia, and A. Singh. Automatically
Generating Test Data from a Predicate. IEEE
Transactions on Software Engineering, 20(5): 353-363,
May 1994.

[14] Y.T Yu and M.F. Lau. Comparing Several Coverage
Criteria for Detecting Faults in Predicates. In
Proceedings QSIC 2004: 4th International Conference
on Quality Software, Pages 14-21.

Appendix A: Logic Criteria Summary
Test Name

Guaranteed Faults

Detected
Subsumes Subsumed by Minimum Test Set Size Maximum Test Set Size

Multiple Near
False Point
(MNFP)

ENF, TNF, LNF,
ORF., LOF - MUMCUT When infeasibilities arise: 1.

Uncertain otherwise.

mn2

2
 where m is the number of terms and

n is the number of literals

Multiple
Unique True
Point (MUTP)

ENF, TNF, LNF,
TOF, ORF+, LIF -

Minimal-
MUMCUT,
MUMCUT

m to 2m where m is the
number of terms

2m(n-1) where m is the number of terms
and n is the number of literals

Corresponding
Unique True
Point Near
False Point
(CUTPNFP)

ENF, TNF, LNF,
TOF, ORF., ORF+,

LOF
- MUMCUT

ni
i

m
+

=
∑ 1

1
 where ni is the

number of literals in term i
and m is the number of terms

2mn where m is the number of terms and n
is the number of literals

Minimal-
MUMCUT

ENF, TNF, LNF,
TOF, ORF., ORF+,

LOF, LIF, LRF
MUTP MUMCUT m + 1 to 2m + 1 where m is

the number of terms

Uncertain, but less than

2m(n-1) +
mn2

2
 where m is the number

of terms and n is the number of literals

MUMCUT
ENF, TNF, LNF,

TOF, ORF., ORF+,
LOF, LIF, LRF

MUTP, MNFP,
CUTPNFP,
Minimal-

MUMCUT

-

When infeasibilities arise: m
to 2m + 1 where m is the
number of terms. Uncertain
otherwise.

2m(n-1) +
mn2

2
 where m is the number

of terms and n is the number of literals

Appendix B: TCAS Boolean Predicates in Minimal DNF

1. a~bd~e~h~f + a~b~de~h~f + a~bcd~e~f + a~bc~de~f + ~ab~de~f

2. a~bc~d~e~gh~i~f + a~b~d~e~g~h~if + a~b~c~e~g~h~if + a~b~c~d~g~h~if + a~bc~d~eg~h~f +
 a~bc~d~e~hi~f + a~b~cd~eg~h~f + a~b~cd~e~hi~f + a~b~c~deg~h~f + a~b~c~de~hi~f +
 ~abc~d~e~hi~f + ~ab~cd~e~hi~f + ~ab~c~de~hi~f

3. ~a~bc~g~i~k~m + ~a~bcg~h~l~m + ~a~bc~g~hi~m + ~a~bcgi~l~m + ~a~bcgi~k~m +
 ~a~bc~h~k~m + ~ab~c~g~i~k + a~b~c~g~i~k + ~a~bc~i~kf + ~ab~c~g~hi + ~ab~cg~h~l +
 a~b~c~g~hi + a~b~cg~h~l + ~a~bc~hif + ~ab~cgi~k + ~ab~cgi~l + a~b~cgi~k + a~b~cgi~l +
 a~b~c~h~k + ~ab~c~h~k + a~b~cgf + ~ab~cgf + ~a~bcgf + a~b~c~d + a~b~c~e

4. a~bd + a~cd + e

5. a~g~i~k + ag~h~l + a~g~hi + agi~l + agi~k + a~h~k + a~c + a~b + f

6. ~ab~cdeg~hij~k~f + a~bc~deg~hij~k~f + ~ab~cde~g~h~jf + ~ab~cde~g~h~kf + a~bc~de~g~h~jf
 + a~bc~de~g~h~kf

7. ~ab~cde~g~i~j + ~ab~cde~h~i~k + a~bc~de~g~i~j + a~bc~de~h~i~k + a~bc~de~g~k +
 a~bc~de~h~j + ~ab~cde~g~k + ~ab~cde~h~j

8. ~ab~cde~gh~f + a~bc~de~gh~f + ~ab~cdeg~hf + a~bc~deg~hf

374364

9. ~a~b~cd~e~gf + ~abc~d~e~gf

10. a~b~cd~eg~j~l~mf + a~b~cd~eh~j~l~mf + a~b~cd~ei~j~l~mf + a~b~cd~egj~k~mf +
 a~b~cd~ehj~k~mf + a~b~cd~eij~k~mf

11. a~b~c~g~h~i~j~l + a~b~c~g~h~ij~k + a~b~c~g~h~i~jm + a~b~c~d~e~j~l + a~b~c~d~e~jm +
 a~b~c~d~ej~k + a~b~c~j~l~f + a~b~cj~k~f + a~b~c~jm~f

12. Not included due to a missing right parenthesis

13. a + b + c + ~def~g~h + ij~l + ik~l

14. ae~h + ad~h + ace + acd + be + bf

15. bei + bdi + bci + aei + aeg + adi + adg + aci + ach + acg + af

16. c~g~i~k~m + cg~h~l~m + c~g~hi~m + cgi~l~m + cgi~k~m + c~h~k~m + b~g~i~k + a~g~i~k
 + b~g~hi + bg~h~l + a~g~hi + ag~h~l + bgi~k + bgi~l + agi~k + agi~l + a~h~k + b~h~k +
 ~i~kf + ~hif + gf + a~e + a~d

17. acegij + acehik + bdegij + bdehik + acef + bdef

18. ace~j~k + ace~h~j + ace~g~k + bde~j~k + bde~h~j + bde~g~k + bde~i + ace~i

19. aceh~f + bdeh~f + acegf + bdegf

20. ~a~bd~e~gf + ~abc~e~gf

375365

