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Abstract 
 
Some software testing logic coverage criteria demand 
inputs that guarantee detection of a large set of fault types.  
One powerful such criterion, MUMCUT, is composed of 
three criteria, where each constituent criterion ensures the 
detection of specific fault types.  In practice, the criteria 
may overlap in terms of fault types detected, thereby 
leading to numerous redundant tests, but due to the 
unfortunate fact that infeasible test requirements don’t 
result in tests, all the constituent criteria are needed.  The 
key insight of this paper is that analysis of the feasibility of 
the constituent criteria can be used to reduce test set size 
without sacrificing fault detection.  In other words, 
expensive criteria can be reserved for use only when they 
are actually necessary. This paper introduces a new logic 
criterion, Minimal-MUMCUT, based on this insight.  Given 
a predicate in minimal DNF, a determination is made of 
which constituent criteria are feasible at the level of 
individual literals and terms.  This in turn determines which 
criteria are necessary, again at the level of individual literals 
and terms.  This paper presents an empirical study using 
predicates in avionics software.  The study found that 
Minimal-MUMCUT reduces test set size -- without 
sacrificing fault detection -- to as little as a few percent of 
the test set size needed if feasibility is not considered. 
 
KEY WORDS:  Software Logic Testing, Software Fault, 
Criteria, MUMCUT, Disjunctive Normal Form  

1.  Introduction 
Infeasible test requirements are demands for tests that 
simply do not exist. They are an unfortunate fact of life in 
software testing.  They confound test engineers, who must 
decide if a given test requirement really is infeasible or if a 
more diligent search for a suitable input is in order.  They 
also confound attempts by researchers to relate coverage 
criteria.  By definition, an infeasible test requirement for a 
given criterion does not result in a test. If the corresponding 
test requirement for a “weaker” criterion happens to be 
feasible, the infeasibility can cause an apparently “stronger” 
criterion to fail to subsume the “weaker” one.  Many well 
known cases of this phenomenon pervade the testing 
literature. In this paper, we address infeasibility in the 
context of logic testing criteria designed for the fault 
hierarchy of Lau and Yu [9]. 
 

We consider testing predicates over Boolean variables in 
isolation.  In this finite domain, it is straightforward to 
determine whether a given test requirement is feasible.  Of 
course, when these predicates are buried inside actual 
programs, there is still a difficult controllability problem of 
selecting inputs to drive the variables in the predicate to the 
desired values, but that is not the focus of this research. 
 
A predicate in n variables has at most 2n tests.  For 
applications where n is large, the exhaustive test set is often 
prohibitively expensive. Hence, some logic criteria trade 
fault detection capability for reduced test set size.  This 
paper analyzes feasibility to improve solutions to this 
tradeoff.  We focus on three faults: the Literal Insertion 
Fault (LIF), the Literal Reference Fault (LRF), and the 
Literal Omission Fault [8].  A LIF involves inserting a 
literal, or the negation of a literal, into a term.  A LRF 
involves replacing a literal with a literal, or the negation of 
a literal, from some other term.  A LOF involves omitting a 
literal.  The LIF, LRF, and LOF are important for two 
reasons.  First, they mimic programmer mistakes.  The 
competent programmer hypothesis [1] states that competent 
programmers often write programs that differ from a correct 
version by relatively few simple faults, and so faults in the 
hierarchy are plausible errors for which to test.  Second, the 
fault hierarchy of Lau and Yu [9] assures that detection of 
these faults guarantees detection of other faults.   That is, 
these three faults sit atop the fault hierarchy.  
 
Chen, Lau and Yu [4] developed the MUMCUT coverage 
criterion specifically to guarantee detection of all faults in 
the fault hierarchy.  The MUMCUT criterion integrates 
three constituent criteria: the Multiple Unique True Point 
(MUTP), Multiple Near False Point (MNFP), and 
Corresponding Unique True Point Near False Point 
(CUTPNFP) criteria.  Details of these constituent criteria 
are given in Section 2.  For this paper, the key issue is the 
role of feasibility in whether each constituent criterion is 
necessary.   
 
 Specifically, if MUTP is feasible, it is possible to augment 
it with many fewer tests than those required by CUTPNFP 
or MNFP, and yet still detect the entire fault hierarchy.   
The situation is more complex if MUTP is infeasible.  
Where MUTP is infeasible, but CUTPNFP is feasible, 
MNFP is not needed at all. If both MUTP and CUTPNFP 
are infeasible, then MNFP is required.   A key aspect of this 
paper is that the infeasibility arguments apply at the fine-
grained level of terms and literals, and hence CUTPNFP 
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and, if needed, MNFP, can be used only where they are 
required. 
 
MUMCUT takes the direct approach of simply requiring all 
three constituent criteria.  This certainly works, but it is 
expensive.  CUTPNFP and especially MNFP demand large 
numbers of tests, but, as hinted at above, turn out to be 
necessary only in relatively few cases. 
 
The contributions of this paper are: 
1) Uses an analysis of MUMCUT constituent criterion 
feasibility at the level of terms and literals.  This analysis 
allows test set sizes to be reduced without sacrificing fault 
detection. 
2) Provides a refinement of fault detection relationships in 
Lau and Yu’s hierarchy [9] based on constituent criterion 
feasibility from the MUMCUT criterion (Figure 3.1). 
3) Presents a new logic coverage criterion, Minimal-
MUMCUT, as well as an algorithm to generate Minimal-
MUMCUT test sets. 
4) Gives a case study that shows the reductions in test set 
size possible with Minimal-MUMCUT. 
 
The paper is organized as follows.  The remainder of 
Section 1 reviews relevant Boolean logic terminology and 
related work in logic criteria.  Section 2 reviews MUMCUT 
and the three constituent criteria MUTP, CUTPNFP, and 
MNFP.   Section 3 reviews the fault hierarchy.  Section 4 
develops the results explaining the impact of infeasibility 
on fault detection, presents algorithms to determine 
feasibility for each criterion at the level of terms and 
literals, and finally synthesizes these results into the 
Minimal-MUMCUT algorithm.  Section 5 is a case study to 
assess the reduction in test set size provided by Minimal-
MUMCUT.  Section 6 discusses how this work relates to 
more general issues in testing, and section 7 concludes the 
paper. 

1.1 Boolean Logic Terminology 
Table 1.1 lists the definitions for terms used in this paper. 
 
Table 1.1 Basic Definitions 

Term or Symbol Definition 
1 The Boolean value TRUE 
0 The Boolean value FALSE 
Literals Variables representing clauses in a predicate 
+ OR operator 
Adjacency between literals AND operator 
Term A set of literals connected by AND  
~ negation 
Disjunctive Normal Form 
(DNF) 

Predicate syntax where terms are separated by 
OR and literals are separated by AND 

Implicant A term that when TRUE, means the predicate 
is TRUE 

Prime implicants Implicants where removing a literal could 
potentially change the value of the predicate 

Irredundant DNF 
Predicate syntax where it is possible to make 
each term TRUE in turn while all other terms 
are FALSE 

Term or Symbol Definition 
Minimal DNF Predicate syntax in irredundant DNF where all 

implicants are prime implicants 

Unique True Point (UTP) An assignment of values such that only a 
single term is TRUE.  In ab + cd, UTPs for ab 
are 1100, 1101, 1110. 

Near False Point (NFP) 
An assignment of values such that the 
predicate is FALSE but negating a single 
literal makes the predicate TRUE [3].  In ab + 
cd, NFPs for a are 0100, 0101, 0110. 

Corresponding NFP 

A NFP that differs from an UTP for the 
literal’s term only in the value of that literal.  
In ab + cd, 0100 is a corresponding NFP for a 
as it differs from the UTP 1100 for ab only in 
the value of a. 
 

Feasible A logic criterion is feasible if and only if it is 
possible to construct all required tests. 

  

1.2 Related Work 
Logic criteria have been studied syntactically (assuming a 
predicate is in a particular format) and semantically 
(making no assumption as to format).  Chilenski and Miller 
[6] discuss the modified condition / decision coverage 
(MC/DC) criterion which is the best known semantic logic 
criteria.  However, MC/DC tests do not guarantee detecting 
most faults in Lau and Yu’s hierarchy [7].  Weyuker, 
Goradia, and Singh [13] proposed the MAX-A and MAX-B 
syntactic criteria, whose tests guarantee detecting all faults 
in the hierarchy.  Chen, Lau, and Yu [4] developed the 
MUMCUT criterion, whose tests guarantee detecting all 
faults in the hierarchy with a smaller test set size.  Chen and 
Lau [2] implemented the MUTP Greedy algorithm to 
satisfy the MUTP criterion as a constituent of the 
MUMCUT criterion.  Kaminski, Williams, and Ammann 
[7] proposed the MUTP/NFP criterion, whose tests 
guarantee detection of all faults in the hierarchy while 
further reducing test set size, but only if the criterion is 
feasible.  Sun et al. [12] analyzed how MUMCUT can be 
extended to apply to predicates in any format and Okun, 
Black, and Yesha [11] showed how a logic fault hierarchy 
can apply to predicates in any format.  The seminal work in 
composing a logic fault hierarchy was performed by Kuhn 
[8].  Lau and Yu [9] refined Kuhn’s work by introducing 
new faults and detection relationships. 
 
This paper advances prior research by focusing on criterion 
feasibility for individual terms and literals.  The result is a 
new criterion reducing test set size without sacrificing fault 
detection, even if infeasibility occurs for the predicate as a 
whole.  

2. Logic Criteria 
Exhaustive logic test size grows exponentially, requiring 
tests of O(2n), where n is the number of unique literals.  
Thus, testers have invented less expensive criteria.  Four 
such criteria are described next with an example of ab + cd.  
A summary of each along with a new logic criterion 
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introduced in section 4 is given in Appendix A.  Note that 
for all of these criteria, if an infeasibility occurs the tests 
chosen should satisfy the requirements as fully as possible. 

2.1 MUTP 
Multiple Unique True Point (MUTP): Given a minimal 
DNF predicate, form tests for an UTP for each term such 
that all literals not in the term attain values 1 and 0.  An 
UTP for the first term must have a=1, b=1.  Needed tests 
for c and d to each = 0 and 1 are 1101 and 1110.  An UTP 
for the second term must have c=1 and d=1.  Needed tests 
for a and b to each = 0 and 1 are 0111 and 1011.  A test set 
is {1101,1110,0111,1011}.   

2.2 MNFP 
Multiple Near False Point (MNFP): Given a minimal 
DNF predicate, form tests for a NFP of each literal such 
that all literals not in the literal’s term attain values 1 and 0.   
An UTP for the first term must have a=1, b=1.  NFPs for a 
and b so that c and d each = 0 and 1 are 
0101,0110,1001,1010.  An UTP for the second term must 
have c=1 and d=1.  Needed NFPs for c and d so that a and b 
each = 0 and 1 are 0101,1001,0110,1010.  A test set is  
{0101,0110,1001,1010}. 

2.3 CUTPNFP 
Corresponding Unique True Point Near False Point 
Pair (CUTPNFP): Given a minimal DNF predicate, for 
every literal find an UTP and NFP such that only the literal 
changes value.  An UTP for the first term must have a=1, 
b=1.  If c=0 and d=1, tests for ab are 1101,0101,1001.  An 
UTP for the second term must have c=1, d = 1.  If a=1 and 
b = 0, tests for cd are 1011,1001,1010.  A test set is 
{1101,0101,1001,1011,1010}. 

2.4 MUMCUT 
MUTP/MNFP/CUTPNFP (MUMCUT):  Satisfy the 
CUTPNFP, MUTP, and MNFP criteria.  1101 and 1110 are 
UTPs for ab.  0101 and 0110 are NFPs for a that differ 
from an UTP for ab only in the value a.  1001 and 1010 are 
NFPs for b that differ from an UTP for ab only in the value 
of b.  0111 and 1011 are UTPs for cd.  0101 and 1001 are 
NFPs for c that differ from an UTP of cd only in the value 
of c.  0110 and 1010 are NFPs for d that differ from an UTP 
for cd only in the value of d.  In the NFPs above each literal 
not in the term of interest attains 1 and 0.  A test set is  
{1101,1110,0101,0110,1001,1010,0111,1011}. 

3. Logic Tests and Fault Hierarchy 
One method for evaluating tests is to determine how many 
of the nine minimal DNF faults in Table 3.1 a test set is 
guaranteed to detect [8, 9].   
 
 
 
 

Table 3.1 Typical Minimal DNF Logic Faults 
Fault Description 

Expression Negation Fault (ENF) 
Predicate implemented as its 
negation: ab + c implemented as 
~(ab + c).  

Term Negation Fault (TNF) A term is negated: ab + c  
implemented as ~(ab) + c. 

Operator Reference Fault + (ORF+) Replacing OR with AND: a + b  
implemented as ab.

Operator Reference Fault . (ORF.) Replacing AND with OR: ab  
implemented as a + b.

Literal Negation Fault (LNF) A literal is negated: ab  
implemented as a~b. 

Literal Reference Fault (LRF) 
A literal is replaced by a literal 
or the negation of a literal not in 
the term: ab + cd implemented 
as cb + cd or as ~cb + cd. 

Term Omission Fault (TOF) A term is omitted: ab + cd 
implemented as ab. 

Literal Omission Fault (LOF) A literal is omitted: ab  
implemented as a. 

Literal Insertion Fault (LIF) 
A literal not in a term is inserted 
as itself or as its negation: ab + 
cd implemented as abc + cd or 
as ab~c + cd. 

 
The condition for detecting an LIF is as follows [4].  If 
some literal not intended to be in term X is inserted into X 
as itself or as its negation, then a set of UTPs for X where 
all literals not in X attain the values 0 and 1 detects the 
fault.  MUTP tests are guaranteed to detect an LIF [4].  
However, when the MUTP criterion is infeasible, a LRF 
exists that MUTP tests may not detect (see Theorem 4.1).  
Consider ab + ac + bc and an LIF producing ab~c + ac + 
bc.  The MUTP criterion is infeasible for ab as the only 
UTP for ab is 110.  Therefore, MUTP tests do not detect the 
corresponding LRFs: ~cb + ac + bc and a~c + ac + bc.     
 
MUTP tests are guaranteed to detect a LRF for a literal if 
the MUTP criterion is feasible for that literal’s term [7].  In 
this case, it is only necessary to satisfy the MUTP criterion 
and the NFP criterion (a NFP for each literal in the term) to 
guarantee detecting an LIF, LRF, and LOF in that term [7].  
The NFP for a literal in a MUTP feasible term can overlap 
with NFPs for other literals in other MUTP feasible terms 
and with NFPs in CUTPNFP or MNFP tests since any NFP 
for a literal detects a LOF for that literal [4].  If a term is 
MUTP infeasible but all external literals that cannot be 0 or 
1 in an UTP for the term exist in single-literal terms, LRF 
detection is still guaranteed by MUTP tests.  A LRF 
involving replacing a literal with a literal (or its negation) 
that exists in a single-literal term will result in a TOF, LOF, 
or a TRUE predicate.  Since an UTP guarantees detecting a 
TOF [4] and a NFP guarantees detecting a LOF or a fault 
where the predicate is stuck at 1, a MUTP test set 
supplemented with overlapping NFPs guarantees LRF 
detection.  For example, in a + b, replacing a with b results 
in a TOF for a and replacing a with ~b makes the predicate 
= 1.  In ab + c, replacing a with c results in a TOF for ab 
and replacing a with ~c results in a LOF for a. 
 

368358



                               

The condition for detecting a LRF is as follows [4]. If literal 
x in X is wrongly implemented as some other literal or the 
negation of some other literal not in X, then any of the 
following detects the fault: a set of UTPs for X where all 
literals not in X attain the values 0 and 1; a set of NFPs for 
x where all literals not in X attain the values 0 and 1; an 
UTP-NFP pair where the points differ only in the value of 
x.  The CUTPNFP criterion is designed to produce tests that 
detect a LRF but fails to do so when it is infeasible (see 
Theorem 4.2).  However, when the CUTPNFP criterion is 
infeasible, MNFP tests can be added to guarantee LRF 
detection [4].  Consider abc + abd + ~b~d + ~de.  The 
CUTPNFP criterion is infeasible for b in abc.  The only 
UTP for abc is 11100.  A corresponding NFP of 10100 is 
not possible for b in abc because this is a TRUE point.  
Now consider the LRF a~ec + abd + ~b~d + ~de.  Since 
the CUTPNFP criterion is infeasible for b in abc, this LRF 
goes undetected by CUTPNFP tests.  A single NFP for b in 
abc is not guaranteed to detect a LRF either.  The point 
10111 is a NFP for b in abc, but this point fails to detect the 
LRF.  The MNFP criterion requires that the NFP 10110 be 
used for b in abc, detecting the LRF.   
 
Figure 3.1 displays Lau and Yu’s Fault Hierarchy [9] 
modified based on how criterion feasibility affects fault 
detection.  A solid arrow from a source fault to a destination 
fault indicates that if a test detects a source fault, it also 
detects a corresponding destination fault.  When the MUTP 
criterion is infeasible, a test set detecting all LIFs is not 
guaranteed to detect all LRFs.  Thus the solid arrow 
between the LIF and LRF in Lau and Yu’s hierarchy is 
changed to a dashed arrow.  In Lau and Yu’s hierarchy no 
arrow exists between the LRF and LOF.  A dashed arrow is 
added to represent that when guaranteeing detection of all 
LIFs does not guarantee detection of all LRFs, adding tests 
to detect the undetected LRFs will detect all corresponding 
LOFs (unless the CUTPNFP criterion is infeasible).  The 
reason is that when the MUTP criterion is infeasible but the 
CUTPNFP criterion is feasible, an UTP will not detect a 
LRF but a corresponding NFP will [4].   
 
Figure 3.1 Fault Class Hierarchy 
 

 

4 Using Criterion Feasibility to 
Assess Fault Detection  

An example of how a MUTP test set detects any LRF for 
any literal in a MUTP feasible term is given in Tables 4.1 
and 4.2.  Table 4.2 shows how MUTP tests detect each LRF 
by using the tests in Table 4.1.   
 
Table 4.1 MUTP tests for ab + ~ac 
Test Case Values Test Name 
1 110 MUTP for ab 
2 111 MUTP for ab 
3 001 MUTP for ~ac 
4 011 MUTP for ~ac 
 
Table 4.2 Fault Detection for ab + ~ac 
Fault 
Class 

Faulty 
predicate 

Test Case  
detecting 
fault 

Original 
predicate 
value 

Faulty 
predicate 
value 

LRF cb + ~ac 1 True False 
LRF ~cb + ~ac 2 True False 
LRF ac + ~ac 1 True False 
LRF a~c + ~ac 2 True False 
LRF ab + bc 3 True False 
LRF ab + ~bc 4 True False 
LRF ab + ~ab 3 True False 
LRF ab + ~a~b 4 True False 
 
This section continues with proofs relating criterion 
feasibility to fault detection capability.   
 
Theorem 4.1: 
If the MUTP criterion is infeasible for a multi-literal term 
X, a LRF where the negation of some literal y in some 
multi-literal term Y replaces literal x in X cannot be 
detected by MUTP tests. 
 
Proof: 
Without loss of generality assume y must = 0 in an UTP for 
X.  Consider the fault where ~y is inserted into X.  A 
corresponding LRF is replacing x with ~y.  In an UTP for X 
all literals are such that only X = 1.  Substituting ~y for x 
also makes X = 1 since y must = 0 in an UTP of X.  Since X 
and Y are multi-literal terms, the LRF does not result in a 
TOF or LOF.  The MUTP criterion requires only TRUE 
points for X so MUTP tests fail to detect a LRF. 
End of Proof 
 
An example is mutating ab + bc to a~c + bc.  The MUTP 
criterion is infeasible for ab because 110 is the only UTP 
for ab.  110 does not distinguish between ab and a~c so 
MUTP tests fail to detect the LRF.   
 
An algorithm to determine MUTP feasibility for each term 
in a predicate is given next. 
 
 

 LOF 

ORF. 

 LRF 

 LNF 

 TNF 

 ENF 

 LIF 

TOF 

ORF+ 
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MUTP Feasibility Algorithm 
Input:  All UTPs for each term 
Output: A List of MUTP feasible terms 
Declare list MUTPFeasibleTerms = All terms  
For each term i    
    For each literal x not in term i 
       Boolean doesLiteralEqual_0 = false 
       Boolean doesLiteralEqual_1 = false 
       For each UTP u in the set of UTPs for term i 
          If (literal x = 0 in UTP u) doesLiteralEqual_0 = true 
          Else doesLiteralEqual_1 = true 
          If (doesLiteralEqual_0 && doesLiteralEqual_1) 
             Continue for each literal loop 
        End For 
        Remove term i from MUTPFeasibleTerms 
        Continue for each term loop 
    End For 
End For  
Return MUTPFeasibleTerms 
 
Theorem 4.2: 
If the CUTPNFP criterion is infeasible for literal x in a 
multi-literal term X, a LRF where the negation of some 
literal y in some multi-literal term Y replaces x cannot be 
detected by CUTPNFP tests. 
  
Proof: 
Chen, Lau, and Yu [4] show that in general when the 
MUTP criterion is infeasible, a NFP is needed to detect a 
LRF.  (They do not distinguish between LRFs involving 
single-literal vs. multi-literal terms as Theorem 4.1 does).  
When the CUTPNFP criterion is infeasible for x, a LRF 
cannot be detected by a corresponding NFP as none exists.  
Thus, if it cannot be detected by an UTP for X, CUTPNFP 
tests do not detect it.  MUTP tests do not guarantee LRF 
detection when the MUTP criterion is infeasible so what 
remains to be proved is that when the CUTPNFP criterion 
is infeasible for x, the MUTP criterion is infeasible for X.  
Since no corresponding NFP exists for x, flipping the value 
of x in an UTP for X causes some other term Y to = 1. In 
this case, the MUTP criterion is infeasible for X as the 
following proof by contradiction shows.  Assume the 
MUTP criterion is feasible for X and the CUTPNFP 
criterion is infeasible for x.  Every literal not in X can = 0 or 
1 in an UTP for X.  So every term other than X can = 0 for 
an UTP of X no matter if y = 0 or 1.  Thus, flipping the 
value of x in an UTP for X can form a corresponding NFP, 
contradicting the original assumption.  Since X and Y are 
multi-literal terms, a LRF does not yield a TOF or LOF.  
End of Proof 
 
As an example, consider abc + abd + ~b~d + ~de.  The 
CUTPNFP criterion is infeasible for b in abc.  The only 
UTP for abc is 11100.  A corresponding NFP of 10100 is 
not possible for b in abc because this is a TRUE point.  
Now consider the LRF a~ec + abd + ~b~d + ~de.  Since 
the CUTPNFP criterion is infeasible for b in abc, 
CUTPNFP tests do not detect the LRF.  The MNFP 

criterion would require that the NFP 10110 be used for b in 
abc, which detects the LRF.   
 
An algorithm to determine CUTPNFP criterion feasibility 
for each literal in a predicate is presented next.   
 
CUTPNFP Feasibility Algorithm 
Input:  All UTPs for each term and all NFPs for each literal 
Output: A List of all CUTPNFP feasible literals 
Declare List CUTPNFPFeasibleLiterals 
Declare String nfpComplement 
Declare Boolean isCUTPNFPFeasible 
For each term i 
   For each literal j in term i 
      isCUTPNFPFeasible = false 
      For each nfp k for literal j in term i 
         nfpComplement = k where jth bit is complemented                        
         If the set of utps for term i contains nfpComplement 
            isCUTPNFPFeasible = true 
            Break 
      End For 
      If (isCUTPNFPFeasible) 
         Add literal j to CUTPNFPFeasibleLiterals 
    End For 
 End For  
Return CUTPNFPFeasibleLiterals 
 
A new logic criterion, which we call Minimal-MUMCUT, 
satisfied by a test set produced by the algorithm below, can 
reduce MUMCUT test set size without sacrificing fault 
detection.  The algorithm is based on criterion feasibility to 
1) overlap NFPs when possible and 2) produce CUTPNFP 
and MNFP tests only when necessary on a literal-by-literal 
basis.   
 
Minimal-MUMCUT algorithm 
For each term X 
   Generate MUTP tests for X 
   If the MUTP criterion is infeasible* for X 
      For each literal x in X          
         If the CUTPNFP criterion is feasible for x 
            Generate CUTPNFP tests for x to overlap NFPs** 
         Else Generate MNFP tests for x to overlap NFPs** 
      End For 
   Else 
      Generate a NFP for x to overlap NFPs** 
End For 
 
* The MUTP criterion is infeasible in this algorithm if and 
only if X is a multi-literal term and a literal y in a multi-
literal term Y exists where y cannot attain both truth values 
in an UTP for X.  
 
** Overlapping NFPs is a set covering combinatorial 
optimization problem known to be NP-complete.  An 
heuristic is used in the algorithm to approximate 
minimizing the number of NFPs generated.  
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As an example, consider ab + cd.  1101 and 1110 are UTPs 
for ab and the MUTP criterion is feasible for ab.  0101 and 
1010 are NFPs for a and b, respectively.  0111 and 1011 are 
UTPs for cd and the MUTP criterion is feasible for cd.  
0101 and 1010 are NFPs for c and d, respectively.  A test 
set is {1101,1110,0101,1010,0111,1011} which has two 
less tests than the MUMCUT test set in section 2.4.  

5 Empirical Evaluation 
Chen, Lau, and Yu [4] evaluated MUMCUT test set size 
(using the greedy MUTP algorithm [2]) for 19 minimal 
DNF predicates from an air traffic collision avoidance 
system (TCAS).  There were actually 20 predicates but 
number 12 was excluded due to a missing a right 
parenthesis [13].  The predicates have from 5 to 13 unique 
literals (see Appendix B).  In this study, Minimal-
MUMCUT tests were created for each predicate and MUTP 
feasibility for each term and CUTPNFP feasibility for each 
literal was assessed.  The Minimal-MUMCUT algorithm 
was implemented in Java and used to obtain the results.  
 
The results showed that the CUTPNFP criterion was 
feasible for all 853 literals, so MNFP tests were not needed 
for any literal.  For 204 literals (23.92%), the MUTP 
criterion was feasible for the literal’s term and thus MUTP 
tests detect a LRF.  For the other 649 literals (76.08%), 
CUTPNFP tests detect a LRF.  For four predicates, the 
MUTP criterion was feasible for every term, so CUTPNFP 
tests were not needed.  For 16 predicates, the MUTP 
criterion was feasible for at least one term.  Thus, 
CUTPNFP tests were not needed for literals in at least one 
term in most predicates.  Table 5.1 displays these results.  
Minimal-MUMCUT and MUMCUT test set size were also 
compared.  On average, Minimal-MUMCUT test set size 
was 12.66% of MUMCUT test set size and 2.50% of 
exhaustive test set size.  The greatest savings was for 
predicate 13, where the Minimal-MUMCUT test set size 
was 1.30% of the MUMCUT test set size and 0.54% of the 
exhaustive test set size.  Table 5.2 displays these results.  
Minimal-MUMCUT test set size is always less than 
MUMCUT test set size, except when each literal is in each 
term, in which case test set size is the same (see predicates 
8 and 9).  In this case, each term has only one UTP, each 
literal has only one NFP (which happens to be a 
corresponding NFP), and no LIFs or LRFs exist. 
 
Table 5.1 Criterion Feasibility and LRF detection 

 Number 
of terms 
that are 
MUTP 
feasible 

Number of 
terms that 
are MUTP 
infeasible 

Number of 
literals for 
which 
MUTP 
detects LRF 

Number of 
literals needing 
CUTPNFP to 
detect LRF 

1 1 4 5 24 
2 4 9 33 72 
3 2 23 10 136 
4 1 2 1 6 
5 1 8 1 27 
6 2 4 22 36 

7 4 4 28 32 
8 4 0 32 0 
9 2 0 14 0 
10 0 6 0 60 
11 1 8 6 57 
12* N/A N/A N/A N/A 
13 0 6 0 14 
14 0 6 0 16 
15 1 10 2 30 
16 1 22 2 85 
17 2 4 8 24 
18 2 6 8 30 
19 4 0 20 0 
20 2 0 12 0 
Sum 34 122 204 649 
* number 12 excluded due to a missing a right parenthesis 
 
Table 5.2 Minimal-MUMCUT and MUMCUT Test Set 
Size 
 Minimal-

MUMCUT
MUMCUT  

[4] Percentage 2n 
1 27 40.50 66.67% 128 
2 81 116.00 69.83% 512 
3 157 1026.57 15.29% 4096 
4 9 14.40 62.50% 32 
5 36 232.48 15.49% 512 
6 66 89.96 73.37% 2048 
7 66 119.80 55.09% 1024 
8 36 36.00 100.00% 256 
9 16 16.00 100.00% 128 
10 62 142.83 43.41% 8192 
11 72 888.26 8.11% 8192 
12 N/A N/A N/A N/A 
13 22 1687.00 1.30% 4096 
14 22 73.75 29.83% 128 
15 39 187.39 20.81% 512 
16 107 1595.32 6.71% 4096 
17 40 852.78 4.69% 2048 
18 48 182.54 26.30% 1024 
19 16 65.64 24.38% 256 
20 14 24.00 58.33% 128 
Sum 936 7391.22  37,408 
Avg 49.26 389.01 12.66% 1968.84 
 
Minimal-MUMCUT test sets for predicates 4, 13, and 19 
are given next. 
 
Predicate 4: a~bd + a~cd + e 
 
MUTP test set is: 
10110 term a~bd 
11010 term a~cd 
00001 term e 
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11111 term e 
 
The MUTP criterion is infeasible for a~bd as c must = 1 
and e must = 0 in an UTP for a~bd.  However, e is in a 
single-literal term so CUTPNFP tests are only needed to 
detect a LRF where c replaces a literal in a~bd.  The MUTP 
criterion is infeasible for a~cd as b must = 1 and e must = 0 
in an UTP for a~cd.  However, e is in a single-literal term 
so CUTPNFP tests are only needed to detect a LRF where b 
replaces a literal in a~cd.  Since the MUTP criterion is 
feasible for e and e is in a single-literal term, neither 
CUTPNFP tests nor a NFP are needed for e. 
 
Additional tests needed for a CUTPNFP test set: 
00110 term a~bd, literal a 
11110 term a~bd, literal b and term a~cd, literal c 
10100 term a~bd, literal d 
01010 term a~cd, literal a 
11000 term a~cd, literal d 
 
Predicate 13: a + b + c + ~def~g~h + ij~l + ik~l 
 
MUTP test set is: 
100000000000 term a 
100111111111 term a 
010000000000 term b 
010111111111 term b 
001000000000 term c 
001111111111 term c 
000011000000 term ~def~g~h 
000011001111 term ~def~g~h 
000000001100 term ij~l 
000111111100 term ij~l 
000000001010 term ik~l 
000111111010 term ik~l 
 
The MUTP criterion is infeasible for all terms.  However, 
CUTPNFP tests for a, b, and c are not needed as these 
literals are in single-literal terms.  Likewise, CUTPNFP 
tests to detect a LRF where a, b, or c replaces a literal in 
another term are not needed.  No CUTPNFP tests are 
needed for ~def~g~h as all external literals in multi-literal 
terms can attain both the values 0 and 1 in an UTP for 
~def~g~h.  Any NFP for each literal in ~def~g~h can thus 
be generated to detect a LOF.  The only external literal in a 
multi-literal term that cannot attain both the values 0 and 1 
in an UTP for ij~l is k.  Thus, CUTPNFP tests are needed to 
detect a LRF where ~k replaces a literal in ij~l.  The only 
external literal in a multi-literal term that cannot attain both 
the values 0 and 1 in an UTP for ik~l is j.  Thus, CUTPNFP 
tests are needed to detect a LRF where ~j replaces a literal 
in ik~l.   
 
NFP tests: 
000111000000 term ~def~g~h, literal d 
000001000000 term ~def~g~h, literal e 
000010000000 term ~def~g~h, literal f 
000011100000 term ~def~g~h, literal g 

000011010000 term ~def~g~h, literal h 
 
Additional tests needed for a CUTPNFP test set: 
000000000100 term ij~l, literal i 
000000001000 term ij~l, literal j and term ik~l, literal k 
000000001101 term ij~l, literal l 
000000000010 term ik~l, literal i 
000000001011 term ik~l, literal l 
 
Predicate 19: acefg + ace~fh + bdefg + bde~fh 
 
MUTP test set is: 
10111110 term acefg 
11101111 term acefg 
10111001 term ace~fh 
11101011 term ace~fh 
01111110 term bdefg 
11011111 term bdefg 
01111001 term bde~fh 
11011011 term bde~fh 
 
The MUTP criterion is feasible for all terms so a test set of 
overlapping NFPs is produced. 
 
Overlapping NFP test set is: 
00111111 term acefg, literal a and term bdefg, literal b 
11001111 term acefg, literal c and term bdefg, literal d 
11110110 term acefg, literal e and term bdefg, literal e 
11111010 term acefg, literal f and term ace~fh, literal h    
                 term bdefg, literal f and term bde~fh, literal h 
11111101 term acefg, literal g and term ace~fh, literal f and   
                 term bdefg, literal g and term bde~fh, literal f 
01101001 term ace~fh, literal a and term bde~fh, literal d 
10011011 term ace~fh, literal c and term bde~fh, literal b 
11110011 term ace~fh, literal e and term bde~fh, literal e 
 
This overlap of NFPs is not possible if both CUTPNFP and 
MUTP tests are needed.  As an example, 00111111 is used 
as a NFP for a in acefg and for b in bdefg, but it does not 
satisfy the CUTPNFP criterion for b in bdefg as it does not 
differ from either UTP of bdefg only in the value of b.  So 
although 00111111 is a NFP for b in bdefg, it is not a 
corresponding NFP.  The smallest test set size satisfying the 
CUTPNFP and MUTP criteria is 26, which is 10 greater 
than the Minimal-MUMCUT test set size. 

6 Context   
In order for syntactic logic criteria to be useful in practice, 
three separate issues need to be addressed: the internal 
variable problem, minimal DNF, and predicate size.   
 
The internal variable problem is concerned with what inputs 
give a variable a certain value at some statement in a 
program.  This problem is formally undecidable, but partial 
solutions using constraints exist [10].  For logic testing, 
program inputs must be found such that the predicate is 
reached and literal values make the faulty and original 
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predicate evaluate to different truth values.  In other words, 
program inputs must be such that a criterion is satisfied.   
 
Fault detection that holds for minimal DNF predicates does 
not hold for non-minimal DNF predicates.  This raises two 
issues.  One, how well does the fault hierarchy hold for 
non-minimal DNF predicates?  Two, what types of software 
have minimal DNF predicates?  For the first issue, Yu and 
Lau [14] found that of a sample of 20 non-minimal DNF 
predicates, over 99% of the faults in Figure 3.1 were 
detected by tests that detected the same faults for the 
corresponding minimal DNF predicates.  For the second 
issue, Chilenski [5] found that 95% of 20,256 predicates in 
avionics software were in minimal DNF.  Only 3% of these 
predicates contained five or more unique literals, but 80% 
of these predicates were in minimal DNF. 
 
When a predicate contains less than five unique literals the 
authors conjecture that exhaustive testing is best.  This 
raises the question of what types of software generally have 
predicates with at least five unique literals.  Chilenski and 
Miller [6] report that avionics software often has predicates 
with many literals and Chilenski [5] extracted a predicate 
with 77 unique literals.  Thus, the Minimal-MUMCUT 
criterion should be useful for testing avionics software. 

7 Conclusion 
Logic testing needs efficient solutions to the tradeoff 
problem of reducing test set size without sacrificing fault 
detection.  Several logic criteria have been proposed to 
address this problem, some of which are composed of other 
criteria.  When a constituent criterion is feasible, a smaller 
test set satisfying it can often be used instead of a larger test 
set satisfying the parent criterion without sacrificing fault 
detection.  This paper described an approach where given a 
minimal DNF predicate, a determination is made of which 
criteria are feasible for individual literals and terms.  This in 
turn provides determination of which criteria are necessary 
to detect faults.  The approach was examined on a sample 
of predicates (having from 5 to 13 unique literals) in 
avionics software.  The results showed that a new logic 
criterion (Minimal-MUMCUT) reduced test set size 
(without sacrificing fault detection) to as little as 1.30% of 
the size needed if feasibility is not considered.  Future 
research should focus on determining what inputs cause 
literals to have the values needed to satisfy the Minimal-
MUMCUT criterion. 
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Appendix A: Logic Criteria Summary  
Test Name 

Guaranteed Faults 

Detected 
Subsumes Subsumed by Minimum Test Set Size Maximum Test Set Size 

Multiple Near 
False Point 
(MNFP) 

ENF, TNF, LNF, 
ORF., LOF - MUMCUT When infeasibilities arise: 1. 

Uncertain otherwise. 

mn2

2
 where m is the number of terms and 

n is the number of literals  

Multiple 
Unique True 
Point (MUTP) 

ENF, TNF, LNF, 
TOF, ORF+, LIF - 

Minimal-
MUMCUT, 
MUMCUT 

m to 2m  where m is the 
number of terms  

2m(n-1) where m is the number of terms 
and n is the number of literals  

Corresponding 
Unique True 
Point Near 
False Point 
(CUTPNFP) 

ENF, TNF, LNF, 
TOF, ORF., ORF+, 

LOF  
- MUMCUT 

ni
i

m
+

=
∑ 1

1
 where ni is the 

number of literals in term i 
and m is the number of terms  

2mn where m is the number of terms and n 
is the number of literals  

Minimal-
MUMCUT  

ENF, TNF, LNF, 
TOF, ORF., ORF+, 

LOF, LIF, LRF 
MUTP MUMCUT m + 1 to 2m + 1 where m is 

the number of terms  

Uncertain, but less than  

2m(n-1) +
mn2

2
  where m is the number 

of terms and n is the number of literals  
 

MUMCUT  
ENF, TNF, LNF, 

TOF, ORF., ORF+, 
LOF, LIF, LRF 

MUTP, MNFP, 
CUTPNFP, 
Minimal-

MUMCUT 

- 

When infeasibilities arise:  m 
to 2m + 1 where m is the 
number of terms.  Uncertain 
otherwise. 

2m(n-1) +
mn2

2
  where m is the number 

of terms and n is the number of literals  

 

Appendix B: TCAS Boolean Predicates in Minimal DNF 
 
1. a~bd~e~h~f  +  a~b~de~h~f  +  a~bcd~e~f  +  a~bc~de~f  +  ~ab~de~f 
 
2. a~bc~d~e~gh~i~f  +  a~b~d~e~g~h~if  +  a~b~c~e~g~h~if  +  a~b~c~d~g~h~if  +  a~bc~d~eg~h~f  +        
    a~bc~d~e~hi~f  +  a~b~cd~eg~h~f  +  a~b~cd~e~hi~f  +  a~b~c~deg~h~f  +  a~b~c~de~hi~f  +   
    ~abc~d~e~hi~f  +  ~ab~cd~e~hi~f  +  ~ab~c~de~hi~f 
 
3. ~a~bc~g~i~k~m  +  ~a~bcg~h~l~m  +  ~a~bc~g~hi~m  +  ~a~bcgi~l~m  +  ~a~bcgi~k~m  +   
    ~a~bc~h~k~m  +  ~ab~c~g~i~k  +  a~b~c~g~i~k  +  ~a~bc~i~kf  +  ~ab~c~g~hi  +  ~ab~cg~h~l  +   
    a~b~c~g~hi  +  a~b~cg~h~l  +  ~a~bc~hif  +  ~ab~cgi~k  +  ~ab~cgi~l  +  a~b~cgi~k  +  a~b~cgi~l  +     
    a~b~c~h~k  +  ~ab~c~h~k  +  a~b~cgf  +  ~ab~cgf  +  ~a~bcgf  +  a~b~c~d  +  a~b~c~e 
 
4. a~bd  +  a~cd  +  e 
 
5. a~g~i~k  +  ag~h~l  +  a~g~hi  +  agi~l  +  agi~k  +  a~h~k  +  a~c  +  a~b  +  f 
 
6. ~ab~cdeg~hij~k~f  +  a~bc~deg~hij~k~f  +  ~ab~cde~g~h~jf  +  ~ab~cde~g~h~kf  +  a~bc~de~g~h~jf   
   +  a~bc~de~g~h~kf 
 
7. ~ab~cde~g~i~j  +  ~ab~cde~h~i~k  +  a~bc~de~g~i~j  +  a~bc~de~h~i~k  +  a~bc~de~g~k  +   
    a~bc~de~h~j  +  ~ab~cde~g~k  +  ~ab~cde~h~j 
 
8. ~ab~cde~gh~f  +  a~bc~de~gh~f  +  ~ab~cdeg~hf  +  a~bc~deg~hf 
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9. ~a~b~cd~e~gf  +  ~abc~d~e~gf 
 
10. a~b~cd~eg~j~l~mf  +  a~b~cd~eh~j~l~mf  +  a~b~cd~ei~j~l~mf  +  a~b~cd~egj~k~mf  +   
      a~b~cd~ehj~k~mf  +  a~b~cd~eij~k~mf 
 
11. a~b~c~g~h~i~j~l  +  a~b~c~g~h~ij~k  +  a~b~c~g~h~i~jm  +  a~b~c~d~e~j~l  +  a~b~c~d~e~jm  +   
      a~b~c~d~ej~k  +  a~b~c~j~l~f  +  a~b~cj~k~f  +  a~b~c~jm~f 
 
12. Not included due to a missing right parenthesis 
 
13. a  +  b  +  c  +  ~def~g~h  +  ij~l  +  ik~l 
 
14. ae~h  +  ad~h  +  ace  +  acd  +  be  +  bf 
 
15. bei  +  bdi  +  bci  +  aei  +  aeg  +  adi  +  adg  +  aci  +  ach  +  acg  +  af 
 
16. c~g~i~k~m  +  cg~h~l~m  +  c~g~hi~m  +  cgi~l~m  +  cgi~k~m  +  c~h~k~m  +  b~g~i~k  +  a~g~i~k   
     + b~g~hi  +  bg~h~l  +  a~g~hi  +  ag~h~l  +  bgi~k  +  bgi~l  +  agi~k  +  agi~l  +  a~h~k  +  b~h~k  +   
     ~i~kf +  ~hif  +  gf  +  a~e  +  a~d 
 
17. acegij  +  acehik  +  bdegij  +  bdehik  +  acef  +  bdef 
 
18. ace~j~k  +  ace~h~j  +  ace~g~k  +  bde~j~k  +  bde~h~j  +  bde~g~k  +  bde~i  +  ace~i 
 
19. aceh~f  +  bdeh~f  +  acegf  +  bdegf 
 
20. ~a~bd~e~gf   +   ~abc~e~gf  
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