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Abstract

In this paper, ensemble models are developed to accurately forecast software reliability. Various statistical (multiple linear regression
and multivariate adaptive regression splines) and intelligent techniques (backpropagation trained neural network, dynamic evolving
neuro–fuzzy inference system and TreeNet) constitute the ensembles presented. Three linear ensembles and one non-linear ensemble
are designed and tested. Based on the experiments performed on the software reliability data obtained from literature, it is observed that
the non-linear ensemble outperformed all the other ensembles and also the constituent statistical and intelligent techniques.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Software reliability is defined as the probability of fail-
ure-free software operation for a specified period of time
in a specified environment (ANSI definition). Software reli-
ability modeling has gained a lot of importance in the
recent years. Criticality of software in many of the present
day applications has led to a tremendous increase in the
amount of work being carried out in this area. The use
of intelligent neural network and hybrid techniques in
place of the traditional statistical techniques have shown
a remarkable improvement in the prediction of software
reliability in the recent years. Among the intelligent and
the statistical techniques it is not easy to identify the best
one since their performance varies with the change in data.

In this paper, an ensemble-based approach is followed in
predicting software reliability. Specifically, a non-linear
ensemble trained using backpropagation neural network
(BPNN) is proposed. The proposed approach takes the
advantage of all the techniques’ prediction capabilities
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towards the data and appropriately assigns weights to each
of the techniques based upon their performance.

The rest of the paper is organized in the following man-
ner. In Section 2, a brief review of the works carried out in
the area of software reliability prediction in research is pre-
sented. In Section 3, the various stand-alone intelligent
methods that are applied in this paper are described briefly.
In Section 4, the four ensembles that are developed are pre-
sented. Section 5 presents the experimental methodology;
discussion of the results is presented in Section 6. In Sec-
tion 7, the application of this in accurately modeling oper-
ational risk in banks is presented. Finally, Section 8
concludes the paper.
2. Literature survey

In the last few years many research studies has been car-
ried out in this area of software reliability modeling and
forecasting. They included the application of neural net-
works, fuzzy logic models; Genetic algorithms (GA) based
neural networks, recurrent neural networks, Bayesian neu-
ral networks, and support vector machine (SVM) based
techniques, to name a few. Cai et al. (1991) advocated
the development of fuzzy software reliability models in
place of probabilistic software reliability models (PSRMs).
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Their argument was based on the proof that software reli-
ability is fuzzy in nature. A demonstration of how to
develop a fuzzy model to characterize software reliability
was also presented. Karunanithi et al. (1992) carried out
a detailed study to explain the use of connectionist models
in software reliability growth prediction. It was shown
through empirical results that the connectionist models
adapt well across different datasets and exhibit better pre-
dictive accuracy than the well-known analytical software
reliability growth models. Sitte (1999) made a comparative
study of neural networks and parametric-recalibration
models in software reliability prediction and found neural
networks to be much simpler to use and also to be better
predictors. Also, through empirical results it was shown
that the neural network models are better trend predictors.
Ho et al. (2003) performed a comprehensive study of con-
nectionist models and their applicability to software reli-
ability prediction and found them to be better and more
flexible than the traditional models. A comparaitive study
was performed between their proposed modified Elman
recurrent neural network, with the more popular feedfor-
ward neural network, the Jordan recurrent model, and
some traditional software reliability growth models.
Numerical results show that the proposed network archi-
tecture performed better than the other models in terms
of predictions. Despite of the recent advancements in the
software reliability growth models, it was observed that dif-
ferent models have different predictive capabilities and also
no single model is suitable under all circumstances.

Tian and Noore (2005a) proposed an on-line adaptive
software reliability prediction model using evolutionary
connectionist approach based on multiple-delayed-input
single-output architecture. The proposed approach, as
shown by their results, had a better performance with
respect to next-step predictability compared to existing
neural network model for failure time prediction. Tian
and Noore (2005b) proposed an evolutionary neural net-
work modeling approach for software cumulative failure
time prediction. Their results were found to be better than
the existing neural network models. It was also shown that
the neural network architecture has a great impact on the
performance of the network. According to Bai et al.
(2005) Bayesian networks show a strong ability to adapt
in problems involving complex variant factors. They devel-
oped a software prediction model based on Markov Bayes-
ian networks, and a method to solve the network model
was proposed. Reformat (2005) proposed an approach
leading to a multitechnique knowledge extraction and
development of a comprehensive meta-model prediction
system in the area of corrective maintenance of software.
The system was based on evidence theory and a number
of fuzzy-based models. In addition they carried out a
detailed case study for estimating the number of defects
in a medical imaging system using the proposed approach.
Pai and Hong (2006) have applied support vector machines
(SVMs) for forecasting software reliability where simulated
annealing (SA) algorithm was used to select the parameters
of the SVM model. The experimental results show that the
proposed model gave better predictions than the other
compared methods. Su and Huang (2006) showed how to
apply neural networks to predict software reliability. Fur-
ther they made use of the neural network approach to build
a dynamic weighted combinational model (DWCM) and
experimental results show that the proposed model gave
significantly better predictions. Also recently, neural net-
works were applied for predicting faults in object-oriented
software (Kanmani et al., 2007). The study showed neural
network models to be performing much better than the sta-
tistical methods.

Application of intelligent techniques in place of the sta-
tistical techniques has increased by leaps and bounds in the
recent years. Application of Soft Computing techniques in
software reliability engineering has come up recently (Mad-
sen et al., 2006). Despite the recent advancements in the
software reliability growth models, it was observed that dif-
ferent models have different predictive capabilities and also
no single model is suitable under all circumstances. An
ensemble uses the output obtained from the individual con-
stituents as inputs to it and the data is processed according
to the design of the arbitrator lying at the heart of the
ensemble.
3. Overview of the techniques applied

The following techniques are applied to predict software
reliability (i) backpropagation neural network (BPNN), (ii)
threshold-accepting-based neural network (TANN) (Ravi
and Zimmermann, 2001), (iii) Pi–Sigma network (PSN),
(iv) multivariate adaptive regression splines (MARS), (v)
generalized regression neural network (GRNN), (vi) multi-
ple linear regression (MLR), (vii) dynamic evolving neuro–
fuzzy inference system (DENFIS) and (viii) TreeNet. As
BPNN and MLR are very popular, they are not discussed
here. All the remaining constituents of the ensembles are
described briefly in the subsequent subsections.
3.1. Threshold-acceptance-based neural network

Threshold accepting (TA), originally proposed by
Dueck and Scheuer (1990), is a faster variant of the original
Simulated Annealing algorithm wherein the acceptance of
a new move or solution is determined by a deterministic
criterion rather than a probabilistic one. The predominant
aspect of TA is that it accepts any new solution, which is
not much worse than the current one. The crux of the
TA-based training algorithm (Ravi and Zimmermann,
2001, 2003; Ravi et al., 2005) for the feed forward neural
networks is that the ‘forward pass’ of the back propagation
algorithm is not disturbed and retained ‘as it is’. But, in the
backward pass, which essentially updates all the weights,
TA is used instead of the steepest descent algorithm used
in backpropagation. In this context, the set of weights of
the neural network (both input to hidden and hidden to



578 N. Raj Kiran, V. Ravi / The Journal of Systems and Software 81 (2008) 576–583
output nodes) becomes the vector of decision variables.
The second author coded TANN.

3.2. Pi–Sigma network (PSN)

The Pi–Sigma network (PSN) was originally proposed
by Shin and Ghosh (1991). It is a feed-forward network
with a single hidden layer, where the number of hidden
units (also called as ‘summing units’) represents the order
of the network, which can be varied as required. In the
output layer there are product units whose output is a
function of the product of the individual summing units’
output. In every iteration of the algorithm, until the con-
vergence criterion is met, one of the summing units will
be selected at random and the corresponding weights of
the links connected to that node are updated according
to a rule similar to the delta rule. The first author coded
PSN.

3.3. Multivariate adaptive regression splines (MARS)

Multivariate adaptive regression splines (MARS) was
introduced by Friedman (1991). MARS is an innovative
and flexible modeling tool that automates the building of
accurate predictive models for continuous and binary
dependent variables. It excels at finding optimal variable
transformations and interactions, the complex data struc-
ture that often hides in high-dimensional data. In doing
so, this new approach to regression modeling effectively
uncovers important data patterns and relationships that
are difficult, if not impossible, for other methods to reveal.
Mars available in (http://salford-systems.com/) was used in
the paper.

3.4. Generalized regression neural network (GRNN)

Specht (1991) introduced GRNN. It can be thought of
as a normalized radial basis function (RBF) network in
which there is a hidden unit centered at every training case.
These RBF units are called ‘‘kernels’’ and are usually prob-
ability density functions such as the Gaussian. The hidden-
to-output weights are just the target values, so the output is
simply a weighted average of the target values of training
cases close to the given input case. The only weights that
need to be learned are the widths of the RBF units. These
widths (often a single width is used) are called ‘‘smoothing
parameters’’ or ‘‘bandwidths’’ and are usually chosen by
cross-validation or by more esoteric methods that are not
well known in the neural net literature; gradient descent
is not used. GRNN is a universal approximator for smooth
functions, so it should be able to solve any smooth func-
tion-approximation problem given enough data. The main
drawback of GRNN is that, like kernel methods in general,
it suffers badly from the curse of dimensionality. GRNN
cannot ignore irrelevant inputs without major modifica-
tions to the basic algorithm. GRNN available in MAT-
LAB 6.5 was used in the paper.
3.5. TreeNet

TreeNet was introduced by Friedman (1999). It makes
use of a new concept of ‘‘ultra slow learning’’ in which lay-
ers of information are gradually peeled off to reveal struc-
ture in data. TreeNet models are typically composed of
hundreds of small trees, each of which contributes just a
tiny adjustment to the overall model. TreeNet is insensitive
to data errors and needs no time-consuming data prepro-
cessing or imputation of missing values. TreeNet is resis-
tant to overtraining and is faster than a neural net.
TreeNet available in (http://salford-systems.com/) was
used in the paper.

3.6. Dynamic evolving neuro–fuzzy inference system

(DENFIS)

DENFIS was introduced by Kasabov (2002). DENFIS
evolve through incremental, hybrid (supervised/unsuper-
vised) learning, and accommodate new input data, including
new features, new classes, etc., through local element tuning.
New fuzzy rules are created and updated during the opera-
tion of the system. At each time moment, the output of
DENFIS is calculated through a fuzzy inference system
based on most activated fuzzy rules, which are dynamically
chosen from a fuzzy rule set. A set of fuzzy rules can be
inserted into DENFIS before or during its learning process.
Fuzzy rules can also be extracted during or after the learn-
ing process. DENFIS available in the student version of
the NewCom tool obtained from (http://www.aut.ac.nz/
research/research_institutes/kedri/research_centres/centre_
for_data_mining_and_decision_support_systems/neucom.
htm) was used in this paper.

4. Ensemble forecasting models

The idea behind ensemble systems is to exploit each con-
stituent model’s unique features to capture different pat-
terns that exist in the dataset. Both theoretical and
empirical works indicate that ensembling can be an effec-
tive and efficient way to improve accuracies. Bates and
Granger (1969) in their seminal work showed that a linear
combination of different techniques would give a smaller
error variance than any of the individual techniques work-
ing in stand-alone mode. Since then, many researchers
worked on ensembling or combined forecasts. Makridakis
et al. (1982) reported that combining several single models
has become common practice in improving forecasting
accuracy. Then, Pelikan et al. (1992) proposed combining
several feed-forward neural networks to improve time ser-
ies forecasting accuracy. Some of the ensemble techniques
for prediction problems with continuous dependent vari-
able include linear ensemble (e.g., simple average; Bene-
diktsson et al., 1997), weighted average (Perrone and
Cooper, 1993) and stacked regression (Breiman, 1996)
and non-linear ensemble (e.g., neural-network-based non-
linear ensemble (Yu et al., 2005)).

http://salford-systems.com
http://salford-systems.com
http://www.aut.ac.nz/research/research_institutes/kedri/research_centres/centre_for_data_mining_and_decision_support_systems/neucom.htm
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http://www.aut.ac.nz/research/research_institutes/kedri/research_centres/centre_for_data_mining_and_decision_support_systems/neucom.htm
http://www.aut.ac.nz/research/research_institutes/kedri/research_centres/centre_for_data_mining_and_decision_support_systems/neucom.htm
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Hansen et al. (1992) reported that the generalization
ability of a neural network system could be significantly
improved by using an ensemble of a number of neural net-
works. The purpose is to achieve improved overall accu-
racy on the production data. In general, for classification
problems, an ensemble system combines individual classifi-
cation decisions in some way, typically by a majority voting
to classify new examples. The basic idea is to train a set of
models (experts) and allow them to vote. In majority voting
scheme, all the individual models are given equal impor-
tance. Another way of combining the models is via
weighted voting, wherein the individual models are treated
as unequally important. This is achieved by attaching some
weights to the prediction given by the individual models
and then combine them. Olmeda and Fernandez (1997)
presented a genetic algorithm based ensemble system,
where a GA determines the optimal combination of the
individual models so that the accuracy is maximized. Zhou
et al. (2002) carried out a detailed study on ensembling
neural networks and proposed that using a set of neural
networks to form an ensemble is better than to use all
the neural networks. They proposed an approach that
can be used to select the neural networks to become part
of the ensemble from the available set of neural networks.
BPNN

MARS

MLR

DENFIS

TreeNet

Fig. 1. Generic design of

BPNN

MARS

MLR

DENFIS

TreeNet

Fig. 2. Generic design of th
Genetic algorithm was used to assign weights to the con-
stituent networks.

It is generally the case that for a given dataset one kind
of intelligent technique outperforms the other and the
results can be entirely opposite when a different dataset is
used. In order not to lose any generality and also to com-
bine the advantages of the intelligent techniques, an ensem-
ble uses the outputs of all the stand-alone intelligent
techniques with each being assigned a certain priority level
and provides the output with the help of an arbitrator.

An ensemble uses the output obtained from the individ-
ual constituents as inputs to it and the data is processed
according to the design of the arbitrator. Four different
variants of ensembles are designed and employed as shown
in Figs. 1 and 2. These include (i) linear ensemble based on
average, (ii) linear ensemble based on weighted mean, (iii)
linear ensemble based on weighted median, and finally
(iv) a non-linear ensemble based on BPNN. These ensem-
bles are described briefly below.

4.1. Linear ensemble based on average

For each observation, the output values of the individ-
ual components are taken as the input to the ensemble
Average/Mean/
Median

Output

the linear ensemble.
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Fig. 3. Design of the training patterns.

Table 1
Data of software failures

t Yt t Yt t Yt

0 5.7683 34 10.6301 68 12.5982
1 9.5743 35 8.3333 69 12.0859
2 9.105 36 11.315 70 12.2766
3 7.9655 37 9.4871 71 11.9602
4 8.6482 38 8.1391 72 12.0246
5 9.9887 39 8.6713 73 9.2873
6 10.1962 40 6.4615 74 12.495
7 11.6399 41 6.4615 75 14.5569
8 11.6275 42 7.6955 76 13.3279
9 6.4922 43 4.7005 77 8.9464

10 7.901 44 10.0024 78 14.7824
11 10.2679 45 11.0129 79 14.8969
12 7.6839 46 10.8621 80 12.1399
13 8.8905 47 9.4372 81 9.7981
14 9.2933 48 6.6644 82 12.0907
15 8.3499 49 9.2294 83 13.0977
16 9.0431 50 8.9671 84 13.368
17 9.6027 51 10.3534 85 12.7206
18 9.3736 52 10.0998 86 14.192
19 8.5869 53 12.6078 87 11.3704
20 8.7877 54 7.1546 88 12.2021
21 8.7794 55 10.0033 89 12.2793
22 8.0469 56 9.8601 90 11.3667
23 10.8459 57 7.8675 91 11.3923
24 8.7416 58 10.5757 92 14.4113
25 7.5443 59 10.9294 93 8.3333
26 8.5941 60 10.6604 94 8.0709
27 11.0399 61 12.4972 95 12.2021
28 10.1196 62 11.3745 96 12.7831
29 10.1786 63 11.9158 97 13.1585
30 5.8944 64 9.575 98 12.753
31 9.546 65 10.4504 99 10.3533
32 9.6197 66 10.5866 100 12.4897
33 10.3852 67 12.7201
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and the average of these values is output by the ensemble.
This is the simplest kind of ensemble one can imagine.

4.2. Linear ensemble based on weighted mean

In this ensemble, the individual output values are not
taken as they are but are given weights based upon certain
criteria set by the user. In this case, the criteria of setting
the weightages is based on the mean of the normalized root
mean square error (NRMSE) values over the individual
lags on the test data. The lower the mean the higher the
weightage with the condition that the sum of all the weights
is equal to one. This helps in setting the priority towards a
technique based on its performance.

4.3. Linear ensemble based on weighted median

It is similar to the linear ensemble based on weighted
mean, except that the median of the NRMSE values of
the individual techniques on the test data is considered in
assigning the weightages instead of the mean of the values.

4.4. Neural network based non-linear ensemble

Here, no assumptions are made about the input that is
given to the ensemble. The output values of the individual
techniques are fed into an arbitrator, which is a backprop-
agation neural network (BPNN) which when trained,
assigns the weights accordingly.

5. Experimental design

Because software reliability forecasting has only one
dependent variable and no explanatory variables in the
strict sense and since we have a time-series, we followed
the general time series forecasting model in conducting
our experiments, which is represented in the following form
(as shown in Eq. (1)):

X t ¼ f ðX 0Þ ð1Þ
where X 0 is vector of lagged variables {xt�1,xt�2, . . . , xt�p}.
Hence the key to finding the solution to the forecasting
problems is to approximate the function ‘f’. This can be
done by iteratively adjusting the weights in the modeling
process.

An illustration of how training patterns can be designed
in the neural network modeling process is provided in
Fig. 3 (Xu et al. (2003)). In this figure, ‘p’ denotes the num-
ber of lagged variables and (t � p) denotes the total num-
ber of training samples. In this representation, ‘X’ is a set
of (t � p) vectors of dimension ‘p’ and ‘Y’ is a vector of
dimension (t � p). Thus, in the transformed data set, ‘X’
and ‘Y’ represent the vector of explanatory variables and
dependent variable, respectively.

In this study, the software failure data, presented in
Table 1, is obtained from Musa (1979). It is used to dem-
onstrate the forecasting performance of the proposed
ensembles. The data contains 101 observations of the pair
(t,Yt) pertaining to software failure. Here Yt represents
the time to failure of the software after the tth modification
has been made. SPSS 14.0 obtained from (http://
www.spss.com) was used to find the optimal lag for the
given time-series data. We performed the tests of ‘auto

http://www.spss.com
http://www.spss.com


Table 2
NRMSE values on test data for different techniques in stand-alone mode

Lag1 Lag2 Lag3 Lag4 Lag5

BPNN 0.171375 0.166086 0.151429 0.144949 0.145541
TANN 0.179309 0.183735 0.158407 0.152008 0.150355
PSN 0.186867 0.176708 0.165935 0.164855 0.157922
MARS 0.170584 0.17091 0.161343 0.154821 0.15267
GRNN 0.210247 0.211408 0.176769 0.179869 0.166883
MLR 0.171448 0.167776 0.156537 0.151152 0.147881
TreeNet 0.168286 0.167865 0.168105 0.156998 0.161121
DENFIS 0.170907 0.167306 0.15425 0.148379 0.147641
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correlation function’ and ‘partial auto correlation function’
as prescribed by Box–Jenkins methodology in Time series
forecasting using SPSS 14.0 software on the data set and
found that lag 1 was sufficient for the data set. However,
we wanted to investigate whether NRMSE values would
improve further when we go for higher lags and we tested
up to lag 5. In view of the foregoing discussion on generat-
ing lagged data sets out of the original time series such as
this, we created five datasets corresponding to lag # 1, 2,
3, 4 and 5, respectively.

Since it is a time-series data, performing 10-fold cross-
validation does not make sense, as it involves randomly
choosing samples into the folds and then the time aspect
of the data gets obscured and overlooked. 10-fold cross-
validation is extremely powerful and useful in assessing
the performance of a model, provided we do not deal with
time series or spatial series data. Hence, we carried out
hold-out method of testing viz., splitting the data set into
80% and 20%, respectively for training and testing. In fact,
this check is included in many popular commercial data
mining/statistical tools. The training data is used to iden-
tify the optimal parameters for the model that satisfy the
given error criteria and those parameters are the used to
forecast values on the test set. The value of normalized root
mean square error (NRMSE) is used as the measurement
criteria.

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � ŷiÞ2Pn

i¼1y2
i

s
ð2Þ

where n is the number of forecasting observations; yi is the
actual value at period i; and ŷi is the forecasted value of
software reliability at period i.

6. Results and discussion

For each technique, the appropriate parameters, as spec-
ified by the algorithm, are tweaked to get the most optimal
results. Table 2 illustrates the NRMSE values of different
lags of data obtained over different techniques. The param-
eters are tweaked until the least NRMSE values computed
using Eq. (2) could be obtained and the best values are pre-
sented in Table 2. For a given lag, the test results obtained
from these individual techniques are presented to different
ensembles. The NRMSE values obtained from the ensem-
bles for different lags are presented in Table 3.

The parameters over which BPNN, TANN, PSN and
GRNN gave the best results over different lags are summa-
rized in Tables 4–7, respectively. Also, parameters over
Table 3
NRMSE values on Test data for the various ensembles

Lag1

Linear ensemble based on average 0.168961
Linear ensemble based on weighted mean 0.170045
Linear ensemble based on weighted median 0.170037
Non-linear ensemble based on BPNN 0.130723
which the non-linear ensemble trained with BPNN gave
the best results are presented in Table 8. These values are
obtained by trial and error. In selecting the constituents
for the ensemble, the performance of the individual tech-
niques over all the lags (Tables 2 and 3) is considered
and accordingly the best five among the techniques –
BPNN, MLR, MARS, TreeNet and DENFIS are selected
to become part of the ensemble. Accordingly, TANN, PSN
and GRNN are not included in the ensembles owing to
their bad performance.

Interesting observations can be drawn from Tables 2
and 3. First, there seems to be a correlation between the
lag numbers and the corresponding NRMSE value. We
noticed that as the lag increases the NRMSE value
decreases. Second, for the individual lags, BPNN seemed
to outperform all the other techniques in the stand-alone
mode, although other techniques such as MLR, DENFIS
and MARS performed consistently well over all the lags.
Third, the ensembles yielded better results than any of
the individual techniques with some exceptions. For
instance, for lag1, TreeNet is found to be better than the
three linear ensembles and for lag2, BPNN outperformed
the linear ensembles. Finally, the non-linear ensemble built
using BPNN as the arbitrator, outperformed all the other
constituent techniques in the stand-alone mode and all lin-
ear ensembles over all the lags. Within the non-linear
ensemble, the least NRMSE value is obtained for lag1
and also the difference of the NRMSE values over all other
lags is very minimal.

To refine it further, for lag1 data TreeNet gave the least
NRMSE value over the test data while BPNN, MARS,
DENFIS and MLR are quite close by. For data of lag2,
3, 4 and 5, BPNN yielded the least NRMSE value for the
test data. DENFIS yielded the next best results. TANN
performed well for the data of lags3, 4 and 5. PSN,
although did not give the best results, is considered for
its speed in execution. Except for the data of lag1 and
Lag2 Lag3 Lag4 Lag5

0.166962 0.147629 0.145939 0.143424
0.166926 0.147439 0.146003 0.143463
0.166901 0.147187 0.145898 0.143399
0.136737 0.132911 0.136644 0.136328



Table 4
Details of BPNN structure and parameters over different lags

Lag1 Lag2 Lag3 Lag4 Lag5

Number of input nodes 1 2 3 4 5
Number of hidden nodes 4 4 8 10 8
Learning rate 0.1 0.1 0.1 0.1 0.1
Momentum rate 0.1 0.2 0.2 0.016 0.11

Table 5
Details of TANN structure and parameters over different lags

Lag1 Lag2 Lag3 Lag4 Lag5

Number of input nodes 1 2 3 4 5
Number of hidden nodes 4 7 7 7 7
Value of Pindex 29 33 25 27 27
Value of Epsilon 0.004 0.008 0.03 0.009 0.025

Table 6
Details of PSN structure and parameters over different lags

Lag1 Lag2 Lag3 Lag4 Lag5

Number of input nodes 1 2 3 4 5
Number of hidden nodes 2 3 4 3 3
Learning rate 1.8 1.58 1.6 1.42 1.3

Table 7
Details of GRNN structure and parameters over different lags

Lag1 Lag2 Lag3 Lag4 Lag5

Number of input nodes 1 2 3 4 5
Number of pattern nodes 80 79 78 77 76
Smoothing parameter 1.01 1.77 0.55 1.99 2.46

Table 8
Details of BPNN structure and parameters over different lags for the
ensemble data

Lag1 Lag2 Lag3 Lag4 Lag5

Number of input nodes 5 5 5 5 5
Number of hidden nodes 1 1 1 2 5
Learning rate 0.08 0.02 0.01 0.09 0.1
Momentum rate 0.44 0.36 0.39 0.22 0.15
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lag2, where some techniques are better, the linear ensem-
bles of all kinds showed better performance than the indi-
vidual stand-alone techniques. Non-Linear ensemble is
better than any other technique or ensemble over all kinds
of data. Amongst the linear ensembles, the weighted mean
and weighted median based ensembles yielded similar
NRMSE values for all lags.

In this connection, we observe that ensembling is more
time consuming than using intelligent methods in their
stand-alone mode. However, it is believed that the gains
accrued in the bargain in the form of improved accuracy
more than offset the time lost. Further, we point out that,
when reliability prediction is to be made accurately in an
offline manner, then time is no constraint and non-linear
ensemble should be preferred. However, when time is a
constraint, then, on-line methods like DENFIS should be
preferred, as they need only one-pass or one-iteration to
give predictions.

Further, we observe that Pai and Hong (2006) also used
the same data set to test the efficacy of their support vector
machine simulated annealing (SVMSA) method. However,
since they did not use the lagged data in their experimenta-
tion our results cannot be compared with theirs. Further,
they divided the data set of 101 observations into training
(33 observations), validation (8 observations) and test (60
observations) sets. Since it is a non-standard method of
splitting the data set for experimentation, we chose not to
compare our results with theirs. The NRMSE value
obtained on the test set by their experiments was 0.1562,
which is not as good as the results of the proposed model.

7. Application to operational risk modeling in banks

Risk Management is the most important function of any
organization and is even more so in the case of the banks.
Hence, there is an urgent requirement to manage it better
or else it could lead to very serious consequences forcing a
bank to become bankrupt. It would be easier for the risk
management group if they have more information at hand
in a usable format, which can be utilized by a model describ-
ing the associated risks, their probability of occurrence and
their impact on occurrence. We as part of our work are try-
ing to come out with a model that would be useful to the
risk management group in a bank. Use of software in the
banking applications has increased dramatically in the
recent years. Therefore, having reliable software is very
essential for the banks to operate efficiently. Risk of soft-
ware failures, according to BIS (2001), comes under the
operational risk component for banks.

Operational risk is defined as the risk of loss resulting
from inadequate or failed internal processes, people and
systems or from external events (BIS, 2001).

Although, the risk of failure in systems includes both
hardware and software failures, we address only the risk
of software failures here. Software reliability prediction is
a task where we try to predict the future failures and their
cost using the past failure data of the software. Through
software reliability prediction we intend to cover the soft-
ware part of the technological component of the opera-
tional risk. The prediction results are given to the risk
management team, which takes the appropriate actions
to overcome the risk, thereby leading to a better risk man-
agement solution.

8. Conclusions

In the paper, ensemble models are developed to forecast
software reliability efficiently. Three linear ensembles and
one non-linear ensemble are developed and tested to fore-
cast software reliability. Various statistical and intelligent
techniques constitute the ensembles. They are multiple
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linear regression (MLR) and multivariate adaptive regres-
sion splines (MARS); backpropagation trained neural net-
work (BPNN), dynamic evolving neuro–fuzzy inference
system (DENFIS) and TreeNet. Based on the numerical
experiments conducted by us on the software reliability
data obtained from literature, we noticed that the non-lin-
ear ensemble outperformed all the other ensembles and
also the constituent statistical and intelligent techniques.
Further, we noticed that the linear ensembles also outper-
formed the constituent techniques from lag3 onwards. In
conclusion, the ensembles developed here can be used as
viable alternatives to the existing methods for software reli-
ability prediction.
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