ELSEVIER

Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells

Zia Abbas*, Mauro Olivieri

Department of Information, Electronics and Telecommunication Engineering (DIET), University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Lazio, Italy

ARTICLE INFO

Article history: Received 18 April 2013 Received in revised form 21 October 2013 Accepted 23 October 2013 Available online 14 November 2013

Keywords: CMOS Scaling Standard cell Sub-threshold leakage Gate leakage Junction leakage

ABSTRACT

Leakage estimation is an important step in nano-scale technology digital design flows. While reliable data exist on leakage trends with bulk CMOS technology scaling in stand-alone devices and circuits, there is a lack of public domain results on the effect of scaling on leakage power consumption for a complete standard cell set. We present an analysis on a standard cell library applying a logic-level estimation model, supported by SPICE BSIM4 comparison. The logic-level model speedup over SPICE is $> 10^3$ with average accuracy below 1% error. We therefore explore the effects of scaling on the whole standard cell set with respect to different leakage mechanisms (sub-threshold, body, gate) and to input pattern dependence. While body leakage appears to be dominant, sub-threshold leakage is expected to increase more than other components with scaling. Detailed data of the whole analysis are reported for use in further research on leakage aware digital design.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Broadly speaking, power dissipation in digital circuits can be grouped in two different components:

- 1. Dynamic power resulting from the currents needed to charge and discharge load capacitances during signal switching and from short circuit current in transitions when both the pull-up and pull-down networks are simultaneously on.
- 2. Static power occurring even if there is no signal transition, due to leakage currents in the devices.

Leakage currents depend in a complex manner on the device structure properties like doping profile, gate oxide thickness, channel dimensions etc., as they are due to different physical phenomena such as gate oxide tunneling, sub-threshold conduction and reverse bias junction conduction. As per International Technology Road-map for Semiconductors (ITRS) for the trend of power dissipation with respect to technology progress, static power dissipation in bulk CMOS is expected to exceed dynamic power dissipation [5]. Fig. 1 shows that while dynamic power was the dominant source of power dissipation in past years, now it is comparable or even surpassed by the sub-threshold leakage and junction leakage, while gate oxide leakage has been limited by the introduction high-K dielectrics [5].

As a consequence, design-level leakage reduction techniques have been proposed, such as input-pattern selection [2], supply and body voltage biasing [7,9], sleep transistors and dual threshold [15]; at the same time leakage current estimation is an increasingly critical step in the design flows for predicting the effectiveness of the applied technique, also because of the extremely high dependence of leakage currents on technology parameter variations [7,15].

Technology scaling, pushed by the market demand for more and more functions in ICs, has always been done for the sake of increasing transistor count and operating frequency. However, scaling always promotes unwanted leakage power dissipation for several reasons. As an example, downsizing of the channel length gives rise to short channel effects, which increases the sub-threshold current; scaling oxide thickness increases the gate tunneling currents and affects the threshold voltage which in turns increases sub-threshold current [19]. Ultimately, neither the thermal voltage (KT/q) nor the silicon band gap change with scaling. Constant thermal voltage results in non-scaling of the inverse sub-threshold voltage slope while constant silicon band gap results in non-scalability of built-in junction potential and depletion layer width. Therefore transistor density, functionality and speed have increased with technology scaling on one hand, but power density and variability have also increased on the other hand [24].

In such scenario, it is of great interest to have a clear assessment of the impact of scaling on leakage power behavior and composition, in a complete cell library rather than in single devices or isolated simple test circuits. An early and accurate estimation of the leakage currents in the design flow is valuable

^{*} Corresponding author. Tel.: + 39 06 44585557. *E-mail addresses*: ziaabbaszaidi@gmail.com (Z. Abbas), olivieri@die.uniroma1.it (M. Olivieri).

^{0026-2692/}\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.mejo.2013.10.013

for considering technology-based and design-based countermeasures. Estimation of leakage currents at SPICE level guarantees the most accurate results, but it is not feasible means for estimating leakage currents in medium/high complexity integrated circuits (IC), and even less when Monte Carlo iterations are needed for the statistical analysis of technology variation effects on leakage currents. Moreover, SPICE-level simulation does not allow a straightforward distinction among the contributions of different physical sources of leakage in a complex IC, which would allow a more clear definition of countermeasure trade-offs. On the other hand, logic level estimation models can be used for its inherently faster computation. Many efforts have been done in the last years in order to define fast leakage power calculation at logic level with as high as possible accuracy, which could be applied before getting to the circuit implementation of the design [10,13,1]. The technique described in [1] presents an approach at logic level HDL modeling of leakage currents, which is capable of obtaining very good accuracy and is equally valid for scaled technologies.

This work presents an analysis of calculated leakage currents for a whole standard cell library when scaling bulk CMOS technology, reporting the verification at SPICE level of the obtained conclusions. We analyze the impact of leakage currents with technologies scaled

Fig. 1. Trends of major sources of power dissipation in nano-CMOS transistor. (As in [23], adapted from [5].)

Table 1Parameter values in three-technology node used.

Threshold voltage (Vth0)	399										
Threshold voltage (Vth0)											
PMOS -0.23122 -0.24123 -0.25399											
NMOS 0.3423 0.3558 0.3692											
Channel doping concentration (NDEP)											
PMOS 2.3e18 3.5e18 4.4e18											
NMOS 6.5e18 8.7e18 1.2e19											
Low field mobility (U0)											
PMOS 0.00391 0.00306 0.0023											
NMOS 0.02947 0.0238 0.0181											
Source-drain junction depth (Xj)											
PMOS 1.4e-008 1.008e-008 7.2e-009	09										
NMOS 1.4e-008 1e-008 7.2e-009	09										
Electrical oxide thickness (toxe)											
PMOS 9.2e-010 7.7e-010 6.7e-010	010										
NMOS 9.0e-010 7.5e-010 6.5e-010	010										
Physical oxide thickness (toxp)											
PMOS 6.5e - 010 5.0e - 010 4.0e - 010	010										
NMOS 6.5e-010 5.0e-010 4.0e-010	010										

from 45 nm technology to 32 nm and 22 nm (Table 1). By utilizing the capabilities of the model described in [1], we also show the impact of technology scaling separately on the three major leakage component i.e. gate leakage, sub-threshold leakage and junction leakage, including input pattern dependence and stacking effects up to three stacked MOSFETs. Loading effect can be also included, though in the given technologies our experiments showed that the overall impact is not relevant. The paper is organized as follows: in Section 2, six-leakage current model of static power dissipation is explained and interpreted in the view of the logic level calculation model: Section 3 discusses the leakage calculation model and the used implementation. Section 4 reports the leakage results through SPICE and VHDL along with error % between them in three scaled technologies for all input patterns in 16 standard cells, sub-categorized by their fan-in. Section 5 is devoted to the input combination dependent analysis of the three major leakage components in the three scaled technologies for the 16 cells, followed by Conclusions in Section 6.

2. Review of leakage mechanisms in scaled technologies

In nano-scale traditional bulk CMOS technologies, six leakage mechanisms contributing to total static power dissipation have been identified [15], as shown in Fig. 2. The six leakage current mechanisms are as follows (shown for n-MOS):

Reverse junction bias current and band-to-band tunneling (I_1) : Drain/source to body PN junction reverse bias current occurs both in *off* and *on* states. The current occurs when transistor terminals are held at high voltages, the parasitic diodes are strongly reverse biased and therefore give rise to a junction reverse bias current modeled in BSIM4 [4] as follows:

$$I_{junc} = \mu_0 C_{ox} \frac{W}{L_{eff}} V_{therm}^2 e^{1.8}$$
(1)

where μ_0 is the zero bias mobility, C_{ox} is the gate oxide capacitance per unit area, W is the width of device, L_{eff} is the effective length of the transistor and V_{therm} is the thermal voltage [21]. Band-to-bandtunneling (BTBT) occurs due to gated drain/substrate diode in off state, BTBT takes place in the deeply depleted region between the gate oxide and the heavily doped drain junction. If the present electric is large enough to bend the band that exceeds the tunneling gap from conduction to valence band of the drain/ substrate diode, therefore a current flows from the drain-gate overlap region to the substrate. BTBT is increasing because of the reduction in junction depletion width, calculated as follows [22]:

$$J_{BTBT} = A \frac{EV_R}{\sqrt{E_g}} \exp\left(-B\frac{E_g^{3/2}}{E}\right)$$
(2)

where J_{BTBT} is the current density, *A* and *B* are the carrier effective mass dependent constant, *E* is the electric field across the junction, V_R is the applied voltage across the junction and E_g is the band gap

Fig. 2. Leakage mechanism in nano-CMOS transistor [16].

at the junction [20]. A recent introduction of BTBT in BSIM4 has been reported [14].

Sub-threshold currents (I_2): Sub-threshold current is due to the flow of minority carriers flowing diffusion through substrate from source to drain, occurring in *off* state. Sub-threshold is increasing (i) with reduction in the threshold voltage, (ii) with decrease in channel length i.e. scaled technologies, (iii) with temperature, (iv) with short channel effects, and (v) with drain induced barrier

Fig. 3. Terminal state dependent flow of various leakages (shown for nMOS device).

lowering (DIBL) effect. Therefore, sub-threshold effect becomes one of the dominating sources of power leakage in modern nano-CMOS devices. The BSIM model calculates the subthreshold current accounted for DIBL as follows [4]:

$$I_{Sub-Vt} = I_{junc} \left[1 - \exp\left(\frac{-V_{DS}}{V_{therm}}\right) \right] \exp\left(\frac{V_{GS} - V_{th} - V_{off}}{nV_{therm}}\right)$$
(3)

where I_{junc} is the junction reverse current, V_{DS} is the applied drain source voltage, V_{GS} is the applied gate source voltage, V_{th} is the threshold voltage, n is the DIBL coefficient and V_{off} is the offset voltage calculated by BSIM internally accounted for body effect and DIBL on threshold voltage. Drain-Induced Barrier Lowering (DIBL) is a direct consequence of physical proximity of the source and drain regions in nano-CMOS.

Tunneling through and into gate oxide (I_3) : Tunneling of electrons through and into gate oxide occurs when the high electric field is coupled with low oxide thickness (in typical 45 nm technology, t_{ox} =1.4 nm), therefore sizeable current flows to/from the gate terminal. At 65 nm technology node or higher, its impact was fairly small, but with 45 nm channel length and below, its effect becomes more severe and even may surpass the

Fig. 4. Internal node voltage circuits for two N-type and two P-type stacked devices (only one internal node).

Fig. 5. Internal node voltage circuits for three N-type and two P-type stacked devices (two internal nodes). NMOS stacks are considered accordingly.

sub-threshold currents. The mechanism can be primarily divided into Fowler–Nordheim and direct tunneling [15,18].

Injection of hot carriers from substrate to gate oxide (I_4) : Hot carrier injection from substrate to gate happens due to the high electric fields in the gate-drain overlap region apart from GIDL currents. At high electric fields, electrons are energetic enough i.e. hot enough to overcome the barrier heights of oxides and pass to the gate. Hot carrier injection can occur in both on and off states. This current calculated in BSIM as follows [4]:

$$I_{5} = \frac{ALPHA0 + ALPHA1 \ L_{eff}}{L_{eff}}$$
$$(V_{DS} - V_{DSeff}) \exp\left(\frac{BETA0}{V_{DS} - V_{DSeff}}\right) I_{dsNoSCBE}$$
(4)

where ALPHA0, ALPHA1 and BETA0 are the model parameters, V_{DSeff} is the internally computed drain-source voltage for having smooth transition from triode to saturation region and $I_{dsNoSCBE}$ is the drain-source current.

Gate induced drain leakage (GIDL) (I_5): The scaling in the oxide thickness results in high electric fields in the gate oxide region even with small applied voltages near drain junction [20,16,24]. With sufficiently high electric field an electron-hole pair can be generated in the drain-gate overlap region, and while the majority carrier recombine in the heavily doped drain region, the minority carrier is swept away in the substrate producing a GIDL current. GIDL occurs in *off* state. The following equation represents the BSIM calculations for GIDL currents [4]:

$$I_{GIDKL} = AGIDL.W_{effCJ}N_f \frac{V_{DS} - V_{GS} - EGIDL}{3T_{ox}}$$
$$exp\left(-\frac{3.BGIDL.T_{ox}}{V_{DS} - V_{GS} - EGIDL}\right) \frac{V_{DB}^3}{CGIDL V_{DB}^3}$$
(5)

where *AGIDL*, *BGIDL*, *CGIDL* and *EGIDL* are the model parameters, obtained through experimental data, W_{effCJ} is the effective width of the drain diffusion and N_f is the number of fingers in the device.

Punch through (I_6) : Punch-through current is the outcome of physical closeness of the source and drain region in scaled CMOS [19]. When the depletion regions of drain/substrate (p-n junction) and source/substrate (p-n junction) touches each other, as a result a conducting path establishes between them and therefore punch-through current flows in the bulk and occurs in off state.

In digital circuits below 65 nm technology node, junction reverse bias currents (I_1), sub-threshold currents (I_2) and gate leakages (I_3) are the dominant sources of leakage [11] and are the focus of estimation/ reduction techniques. These sources of leakages behave differently so it is important to estimate each individually. In our analysis, the contributions of GIDL currents and punch-through currents are considered in sub-threshold currents occurring in off states while band to band tunneling currents have been considered in body leakages (junction currents). Gate currents due to hot carrier injection are contributed over gate leakages.

Fig. 3 shows the flow of the major leakage components subthreshold, gate and body leakage in NMOS transistor depending on the input state (NMOS-on and NMOS-off):

- When NMOS is *off* and drain and source terminals are supposed to be at different voltages:
 - Sub-threshold leakage, from drain to source terminal.
 - Gate leakage, from drain to gate terminal.
 - Body leakage, from drain to substrate terminal.
- When NMOS is *on* and drain and source terminals are supposed to be at practically the same voltage:
 - Gate leakage, flowing from gate to drain and source terminals.
 - Body leakage, flowing from gate to substrate terminal.

Fig. 6. Two-input standard cells (NAND2, NOR2, AND2, and XOR2).

There are two special effects that can modify the leakage currents in the transistor: the stacking effect and the loading effect. The former occurs whenever transistors are stacked in a drain-source-drain series connection, and very strongly affects all leakage components, due the substantial change in the internal

 Table 2

 Pattern dependent leakages in single and two-input cells. Values in nA.

Standard Signal cell name pattern		45 nm Technology			32 nm Technology			22 nm Technology			Body bias. 45 nm tec.			Body bias. 32 nm tec			Body bias. 22 nm tec		
cen name	pattern	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %
NOT	0 1 Aver.	34.47 39.77 37.12	34.48 39.78 37.13	0.01 0.03 0.02	39.88 44.61 42.25	39.89 44.63 42.26	0.02 0.05 0.04	45.49 50.85 48.17	45.51 50.90 48.21	0.05 0.10 0.08	30.35 29.82 30.09	30.30 29.94 30.12	0.17 0.38 0.10	33.87 33.67 33.77	33.80 33.73 33.76	0.18 0.15 0.02	36.89 37.68 37.28	36.87 37.98 37.43	$-0.04 \\ 0.80 \\ 0.38$
2-Input NAND gate	00 01 10 11 Aver.	57.63 38.55 72.27 107.07 68.88	57.61 38.78 72.31 107.15 68.96	-0.04 0.58 0.07 0.07 0.12	66.82 43.73 85.66 124.00 80.05	66.82 44.31 85.75 124.14 80.26	0.00 1.31 0.11 0.11 0.25	72.09 46.87 96.93 144.01 89.97	72.10 47.67 97.13 144.32 90.30	0.01 1.67 0.21 0.22 0.37	55.43 63.61 31.97 87.51 59.63	55.33 63.82 32.56 87.46 59.79	0.18 0.34 1.83 0.06 0.28	61.81 73.61 35.57 102.48 68.37	61.76 74.21 36.09 102.39 68.61	0.09 0.82 1.43 0.09 0.36	65.08 38.08 81.47 118.76 75.85	65.07 38.07 82.33 118.56 76.01	0.02 0.02 1.04 0.17 0.21
2-Input NOR gate	00 01 10 11 Aver.	123.14 123.29 55.59 37.92 84.98	123.23 123.69 55.65 37.71 85.07	0.08 0.32 0.11 - 0.56 0.10	147.40 145.01 59.30 40.19 97.97	147.58 145.74 59.31 39.97 98.15	0.12 0.50 0.03 -0.54 0.18	171.77 171.71 62.80 38.66 111.23	172.16 173.44 62.96 38.42 111.74	0.23 1.00 0.26 -0.63 0.46	113.10 38.93 100.94 35.83 72.20	113.03 39.82 100.91 35.39 72.29	0.07 2.25 0.03 1.26 0.12	130.00 42.80 116.61 38.63 82.01	129.87 43.07 116.57 38.42 81.98	0.10 0.61 0.03 0.55 0.03	146.27 45.89 135.89 37.56 91.40	146.02 45.78 135.38 37.56 91.18	0.17 0.24 0.38 0.01 0.24
2-Input AND gate	00 01 10 11 Aver.	97.49 78.49 112.24 141.54 107.44	97.39 78.56 112.10 141.62 107.42	-0.11 0.09 -0.12 0.06 -0.02	111.60 88.63 130.62 163.89 123.69	111.55 88.12 130.38 164.03 123.52	-0.05 -0.58 -0.19 0.09 -0.13	123.26 98.29 148.53 189.55 139.91	123.00 98.57 148.03 189.83 139.86	-0.22 0.28 -0.34 0.15 -0.04	85.27 61.51 93.45 117.36 89.40	85.32 62.59 93.85 117.75 89.88	0.06 1.72 0.43 0.33 0.53	95.29 69.05 107.09 135.01 101.61	95.58 69.97 108.11 136.16 102.46	0.31 1.31 0.95 0.85 0.83	102.76 75.75 119.15 153.76 112.86	103.26 76.37 120.70 155.41 113.93	0.48 0.81 1.28 1.06 0.95
2-Input XOR gate	00 01 10 11 Aver.	276.10 239.23 239.26 285.80 260.09	270.88 238.78 239.41 281.50 257.64	-1.92 -0.19 0.06 -1.53 -0.95	320.16 281.41 281.50 328.02 302.77	317.30 280.04 281.75 326.78 301.47	-0.90 -0.49 0.09 -0.38 -0.43	370.50 320.67 320.89 377.96 347.51	370.03 318.94 321.32 380.81 347.78	-0.13 -0.54 0.13 0.75 0.08	227.79 207.91 207.91 225.82 217.36	229.33 208.98 208.98 228.09 218.85	0.67 0.51 0.51 1.00 0.68	260.06 238.84 238.84 259.35 249.28	262.91 239.98 239.99 261.85 251.18	1.08 0.47 0.48 0.96 0.76	296.80 266.60 266.60 298.33 282.08	299.08 267.33 267.38 299.40 283.30	0.76 0.27 0.29 0.36 0.43

node voltages [3,15]. The latter occurs when the gate leakage of a cell driven by another cell, is such to induce a voltage difference ΔV on the output terminal of the driving cell, thus affecting the leakage in both. It has been shown that in complex circuits the effect is not cumulative, rather exhibiting a compensation between positive and negative effects in different cells [17,11].

3. Leakage calculation model

All the characterizations at the basis of our analysis were performed at SPICE level using Berkeley Short-channel IGFET Model (BSIM4) [4] with 45 nm, 32 nm and 22 nm Metal-Gate traditional bulk CMOS based on predictive technology model parameters (PTM) [12]. The SPICE simulator used in our analysis is NGSPICE [6,14].

The logic level leakage estimation technique [1] used in our analysis relies on the implementation of two VHDL packages:

- Single_MOS_leakage.vhd: This package contains the data arrays of all extracted leakage currents from four single MOS (NMOSon, NMOS-off, PMOS-on and PMOS-off) in the form of matrices.
- Single_cell_voltage_leakage.vhd: In this package, data arrays contains all the internal node voltages (needed to correctly evaluate the leakage) are available in the form matrices.

The single-MOS characterization aims to print the current values at drain, gate, source and substrate terminals for each variation in width (*W*) from 1 to 8 times the minimum value, each variation in voltage from 0 V to 1.2 V with 0.05 V steps, at temperature 30 °C and 100 °C. Thereafter all the extracted leakage currents, referring to multiples of the minimum channel width, were saved in the *Single_MOS_leakage.vhd* package in the form of matrices. Therefore 24 such matrices were created, each matrices containing 48 rows, the first 24 rows for 30 °C and later 24 rows for 100 °C temperature. All the results presented in the following

refer to 30 $^\circ\text{C}$, corresponding to low activity circuits where leakage estimation has more practical relevance.

In the *Single_MOS_leakage.vhd* package, three VHDL functions I_{sub} , I_{gate} and I_{body} are defined, corresponding to *sub-threshold*, *gate* and *junction* leakage respectively, evaluating the currents at logic level using the characterized data. The declarations of the three functions is as follows:

function Isub (Wmin: in integer;	–gate length [nm], technology
	NWmin: in integer;	-gate width as multiple of Wmin
	Vds: in real;	-Vds
	temperature: in integer	<pre>—temperature [°C])</pre>
function Igate	(Wmin: in integer;	–gate length [nm], technology parameter
	NWmin: in integer;	–gate width as multiple of Wmin
	Vdsg: in real;	-Vdg or Vsg
	temperature: in integer	<pre>-temperature [°C])</pre>
function Ibody	(Wmin: in integer;	-gate length[nm], technology parameter
	NWmin: in integer;	-gate width as multiple of Wmin
	Vdsb: in real;	-Vdb or Vsb
	Vgb: in real;	-Vgb
	temperature: in integer	<pre>-temperature [°C])</pre>

The internal node voltage characterization is needed for correctly evaluating currents in structures including stacked transistors, which

Fig. 7. Three-input standard cells (NAND3, NOR3, AND3, AO12, MUX21, and Full Adder).

Table 3 Pattern dependent leakage in three-input cells. Values in nA.

Standard cell name	Signal pattern	45 nm T	echnology		32 nm Te	chnology		22 nm Te	chnology		Body bia	ıs. 45 nm t	ec.	Body bia	as. 32 nm t	ec	Body bias	. 22 nm tec	
		SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %
3-Input NAND	000	86.05	85.74	-0.36	100.44	100.27	-0.16	109.03	108.96	-0.07	83.01	83.08	0.08	93.15	93.18	0.03	98.72	98.73	0.02
	001	57.49	57.77	0.49	66.62	67.27	0.97	72.01	73.32	1.78	53.90	54.55	1.19	60.68	60.99	0.51	64.53	64.50	0.04
	010	45.00	66.99 45.72	0.47	77.32	/8.18 /0.00	1.10	83.75 54.07	85.09 54.05	1.57	64.15 36.14	03.38 36.66	1.20	71.67	/1.31	0.51	/5.82	/5.80	0.02
	100	101.21	101.18	- 0.03	119.37	119.38	0.00	132.27	132.29	0.02	98.38	98.58	0.20	113.27	114.20	0.82	123.79	125.32	1.22
	101	84.95	85.33	0.44	99.53	100.48	0.95	110.98	112.34	1.21	74.36	76.12	2.31	87.07	88.91	2.07	97.44	98.96	1.54
	110	137.53	137.70	0.12	166.10	166.42	0.19	192.99	193.70	0.37	124.21	124.90	0.56	147.58	149.51	1.30	168.83	171.61	1.62
	111	201.83	202.10	0.13	238.05	238.52	0.20	279.26	280.27	0.36	171.63	172.52	0.51	203.17	205.89	1.32	237.59	241.55	1.64
	Aver.	97.60	97.82	0.22	114.75	115.06	0.27	129.30	130.11	0.63	88.22	88.72	0.57	102.02	103.06	1.01	113.69	114.90	1.06
3-Input NOR	000	265.78	266.27	0.18	322.11	323.08	0.30	377.94	379.94	0.53	248.39	247.97	0.17	288.56	287.86	0.24	328.14	326.83	0.40
	001	260.14	261.69	0.59	311.44	314.32	0.92	369.73	376.46	1.79	224.15	223.82	0.15	261.70	260.79	0.35	306.12	302.99	1.04
	010	125.02	155.//	- 1.04	145.25	180.34	-0.26	203.18	199.65	- 1.//	127.99	130.87	2.20	124.67	148.32	1.34	165.31	165.03	0.17
	100	75 54	124.73	-0.23	145.35	145.05	-0.21	159.84 84.23	159.50	-0.22 1.48	51 38	52.62	0.39	55.08	134.88 56.47	0.16	145.40 59.86	60.02	0.46
	100	57 21	56 70	-0.90	61 77	62.44	1.07	62.06	61.96	-0.17	51.58	51.87	0.75	57.62	57.24	0.67	57.62	58.27	1 11
	110	41.70	41.36	-0.82	43.41	42.92	- 1.15	41.38	40.80	-1.40	37.28	37.72	1.17	39.79	40.48	1.69	38.75	39.38	1.58
	111	53.23	52.72	-0.96	57.87	57.24	-1.09	56.82	55.85	-1.75	51.26	51.23	0.06	57.15	56.57	1.03	56.61	56.09	0.91
	Aver.	129.50	129.40	-0.08	150.33	150.73	0.27	169.40	169.96	0.33	113.87	114.33	0.41	130.11	130.33	0.16	144.73	144.33	0.27
3-Input AND	000	125.91	125.52	-0.30	145.19	144.90	-0.20	160.18	159.86	-0.20	112.86	113.07	0.19	126.63	126.99	0.29	136.39	136.90	0.37
	001	97.36	97.56	0.20	111.40	111.91	0.45	123.20	124.22	0.83	83.74	84.54	0.94	94.16	94.82	0.70	102.21	102.69	0.47
	010	106.54	106.77	0.21	122.11	122.82	0.57	134.96	135.99	0.76	90.99	89.16	2.05	105.14	105.14	0.01	113.49	114.01	0.45
	011	85.06	84.65	-0.47	95.53	94.62	-0.96	105.58	104.25	-1.27	64.98	66.68	2.55	73.06	74.37	1.76	80.48	81.08	0.74
	100	141.09	140.96	- 0.09	164.17	164.01	-0.10	183.49	183.20	-0.16	128.22	128.57	0.28	146.75	148.04	0.87	101.4/	103.53	1.26
	110	124.92	123.11	-0.04	211 16	211.05	-0.05	244.83	244 60	-0.09	154.05	154 95	0.58	121.55	122.01	0.76	206 51	210.08	1.00
	111	236.31	236.57	0.01	277.92	278.41	0.18	324.81	325.77	0.30	201.94	202.78	0.41	236.98	239.63	1.11	274.48	278.37	1.40
	Aver.	136.84	136.83	-0.01	159.00	159.10	0.07	179.94	180.14	0.11	117.62	118.24	0.52	135.79	136.90	0.81	151.27	153.00	1.13
AO12	000	213.47	213.29	-0.08	253.31	253.05	-0.10	290.74	290.21	-0.18	194.31	194.38	0.03	222.67	223.00	0.15	248.38	249.00	0.25
	001	209.17	209.43	0.13	247.64	248.14	0.20	289.76	290.91	0.40	180.81	180.82	0.00	207.92	207.95	0.01	237.04	236.74	0.13
	010	201.04	200.85	-0.09	196.43	196.64	0.11	225.18	225.22	0.02	144.30	145.40	0.75	165.24	166.19	0.57	185.13	185.87	0.40
	011	182.28	182.57	0.16	214.19	214.74	0.26	249.87	251.30	0.57	155.57	155.69	0.07	179.31	179.77	0.25	204.86	205.07	0.10
	100	107.32	107.31	0.00	238.30	238.07	-0.12	2/5.2/	274.07	-0.22	170.24	1/0.04	0.23	203.27	204.30	0.50	228.53	230.11	0.69
	101	162.22	164 57	_2 71	188 17	186.42	_0.34	206.89	207.69	0.08	130.57	134 70	2.94	1/9.51	179.09	1.69	204.80	166.65	0.20
	111	115.11	114.93	-0.16	130.26	130.76	0.38	140.57	140.25	-0.23	106.96	106.47	0.46	119.97	121.07	0.91	127.88	130.08	1.69
	Aver.	179.95	179.45	-0.28	210.34	210.36	0.01	241.05	241.51	0.19	155.56	156.23	0.43	178.32	179.20	0.49	200.22	201.10	0.44
MUX	000	143.43	143.17	-0.19	164.94	164.30	-0.39	185.96	184.92	-0.56	124.89	125.22	0.27	140.98	141.89	0.64	154.46	155.79	0.85
	001	148.80	148.47	-0.22	169.78	169.04	-0.44	191.53	190.32	-0.64	124.43	124.92	0.39	140.65	141.92	0.90	155.25	157.10	1.18
	010	186.19	186.35	0.08	214.56	215.17	0.28	247.80	248.22	0.17	149.94	150.37	0.29	170.10	171.19	0.64	191.27	192.99	0.89
	011	190.83	191.27	0.23	218.00	219.20	0.55	250.58	252.47	0.75	148.48	148.60	0.08	167.19	167.58	0.23	187.98	188.39	0.22
	100	103.37	101.27	0.11	213.32	213.93	0.28	245.30	240.30	0.38	148.94	149.01	0.04	167.52	107.72	0.12	187.20	187.41	0.11
	110	149.01	148 12	-0.01	170 50	168 17	-1.38	191.00	187.46	-1.89	129.81	129.95	0.52	144 69	145.05	0.72	152.00	157.34	0.36
	111	154.24	154.36	0.08	175.08	175.48	0.23	196.15	196.53	0.20	129.35	129.54	0.12	144.36	144.88	0.36	157.56	158.30	0.47
	Aver.	168.68	168.61	-0.04	193.16	193.06	-0.05	220.13	219.86	-0.12	138.16	138.45	0.20	155.66	156.40	0.48	172.82	173.90	0.62
Full Adder	000	892.19	896.24	0.45	1068.57	1077.56	0.83	1239.59	1250.16	0.85	808.23	811.29	0.38	936.81	940.29	0.37	1060.75	1065.29	0.43
	001	905.55	911.14	0.61	1083.32	1099.61	1.48	1271.37	1291.61	1.57	789.10	796.35	0.91	918.09	928.86	1.16	1055.55	1067.58	1.13
	010	782.44	786.63	0.53	929.75	935.57	0.62	1084.66	1073.97	-1.00	665.38	676.63	1.66	775.17	787.39	1.55	878.44	901.06	2.51
	011	667.82	667.75	-0.01	791.31	799.66	1.04	919.21	928.08	0.96	572.58	577.42	0.84	666.79	672.96	0.92	762.75	768.86	0.79
	100	690.02	696.76	0.97	824.21	821.49	-0.33	958.76	961.53	0.29	593.32	599.57	1.04	689.83	697.84	1.15	788.95	798.26	1.17

0.62 0.97 1.67 0.79

833.49 851.32 740.60 878.31

828.31

725.99 748.88 664.64 770.86

718.42 741.66 662.72 763.69

613.67 635.13 567.82 655.65

% 0.77

843.04 752.99 871.35

1.04 0.96 0.29 0.93

1.40 0.78 0.73 0.95

622.36 640.12 572.01 661.97

> 0.41 0.42 0.56

1005.55 995.64 830.85 1042.17

22 nm Te SPICE 997.83 991.58 827.40 1036.30

> Er % 0.10 0.41 1.58 0.74

> > 857.61 865.27 755.41 901.52

> > > 861.75 743.47 894.89

% 0.39 0.22 0.23 0.44

> 728.79 731.12 645.25 757.96

SPICE 725.98 729.49 643.77 754.66

> 101 110 111 Aver

SPICE 856.72

Er %

VHDL

SPICE

Er %

VHDL

SPICE

E

VHDL

Body b SPICE

E

VHDL

Body bias. 22 nm tec

30dy bias. 32 nm tec

tec.

bias. 45 nm

nm Technology

32 nm Technology

45 nm Technology

pattern

Signal

Standard cell name

VHDL

E

VHDL

(continued
ŝ
e
[qp]

is essential for modeling real cells. Each basic structure was using a DC sweep at 30 °C and 100 °C for all input signal combinations i.e. all input patterns. All the resulting internal node voltages were saved in a matrix in the *Single_Cell_voltage_leakage.vhd* VHDL package. The characterization of the internal node voltages covered all the basic structures shown in Figs. 4 and 5.

Given a standard cell circuit, it is possible to identify the basic circuit structures in it, so to recover the internal node voltages for any input pattern of logic signals. Once node voltages are determined, one can recover leakage currents values for virtually all the transistors in the cell, correctly taking into account stacking effects on all the leakage components. Actually, in order to calculate the total leakage current flowing in the cell from the external power supply, we have to sum all the currents directly flowing to the ground node [3,1].

The adopted model also include loading effect calculation, occurring when the gate leakage of a cell driven by another cell introduces a voltage difference ΔV on the output terminal of the driving cell, thus affecting the leakage in both the ones. The loading effect may either increase or reduce the total leakage of the gate. In our analysis, the implementation of the loading effect model is based on the characterization of ΔV by SPICE BSIM4 simulation of all possible combinations and device widths of pull-up, pull-down and load. It must be pointed out that due to the small ΔV values found and to the compensation between positive and negative effects, we found a practically not relevant impact.

In the following, we report a sample of the VHDL code of the NAND to show, how leakage estimation model accesses the data from the tables in the packages.

constant Wmin: integer:=22;	-to set gate length [nm]
<pre>constant NWmin: integer:=1;</pre>	-to set gate width as a
	multiple of Wmin
constant temperature:	-to set temperature [$^{\circ}C$],
integer:=30;	25, 30 or 100
constant Vdd: real:=1.0;	-to set power supply
	voltage
	- 1

variable comb: std_logic_vector (1 downto 0);

- assigned with the input signals;

variable matrix: matrix_23NP:=choosematrix(temperature, Vdd);

 chooses the matrix in INV packages based on temperature and supply voltage values.

variable a00Vdd: real:=-matrix(48).Vn1;

variable a01Vdd: real:=matrix(49).Vn1;

variable a10Vdd: real:=matrix(50).Vn1;

variable a11Vdd: real:=matrix(51).Vn1;

- these are variables assigned with node voltages for the four input combinations

 – of NAND cell. Matrix 48, 49, 50 and 51 corresponds to line number

- in the chosen matrix, while.Vn1 corresponds to the node.

- < other omitted code here >

case comb is

when "00" = > - < omitted code >

when "01" = > PrintLeakages (

Isub(Wmin,2*NWmin,a01Vdd, temperature),

2.0*Ibody (Wmin, 2*NWmin, + a01Vdd, 0.0, temperature) +

Ibody(Wmin,2*NWmin, Vdd, 0.0,temperature),

2.0*Igate(1,Wmin,2*NWmin,Vdd,temperature)+Igate(0, Wmin,2*NWmin,a01Vdd,temperature));

- equation for "01" input combination; current functions are

invoked with node voltage values.

similar equations written for other input combinations.
 equations are derived from the topology of the involved stacks;

4. Comparison of estimated leakage currents in scaled technologies

In the presented data, we focus on minimum-size standard cells, however the technique was equally applied to resized cells. We found leakage currents grow approximately linear with the resizing factor of the cells.

In the three technology nodes device sizes have been scaled according to the minimum feature size in each technology, while V_{DD} has been kept at 1 V as this is compatible with high-speed libraries in the target technology nodes [5]. The reported results also include the case of reverse body biasing applied in each of the three technologies. Body biasing was applied as -0.2 V in N-type devices and V_{DD} + 0.2 V in P-type devices.

The two-input standard cells of our library are detailed in Fig. 6, with highlighted symbolic name and type of stack needed to access the internal node voltage tables (INV) for the specific input combination in Single_cell_voltage_leakage.vhd package. All stacks in two-input cells have one internal node voltage. Table 2 shows the leakage currents for two-input cells calculated by the estimation model in VHDL and by NGSPICE, along with error percentage. The data are reported for all input patterns in 45 nm, 32 nm and 22 nm technology nodes, and the vast majority of the results are showing error percentage below 1%. The different accuracy for different input patterns might be referred to quantization errors in internal voltage values. The results related to reverse body biasing generally show that in the target technologies the technique is not effective for leakage reduction because sub-threshold leakage is often dominated by gate leakage and because the modification of internal node voltages in the cells limit the reduction of sub-threshold leakage.

Accordingly, three-input standard cells are detailed in Fig. 7, highlighting the type of stacks to access the internal node voltage tables. The stacks contain two internal nodes except for standard cell

MUX21 that does not have floating internal nodes. Table 3 reports the leakage results for three-input standard cells calculated by VHDL model and by NGSPICE, along with error percentage.

The sequential standard cells D-latch and Flip-Flop are shown in Fig. 8. For these cells, the reference pattern must include the output signal value, as the leakage currents are not fully determined by the input pattern only. These cells do not have internal floating nodes, because the internal node of the stack formed by the pass gate and the feedback is always actively driven, either from the input of from the feedback path. The voltage drop on the internal node resulting from parasitic currents was actually taken into account when using the node voltage to access the leakage tables. It must be said that the impact of the voltage drop was practically negligible; it would be different in case the node could be left floating, which never happens. In the presented library, pass transistor networks never have floating internal nodes. In general, such occurrence could be modeled by introducing dedicated stacks of transmission gates in the basic circuit structures. The leakage current results for sequential cells are reported in Table 4 according to the signal pattern including input, clock, and output, along with comparison with NGSPICE results.

Finally, Fig. 9 shows four-input standard cells, highlighting the type of stacks to access the internal node voltage tables, and Table 5 reports the leakage results, along with error percentage with respect to NGSPICE.

The application of the obtained leakage data to benchmark circuits composed of multiple cells include an 8-bit parity checker, an 8-bit ripple carry adder, an 18-input generic combinational unit (AO31 based) and a 4-bit magnitude Comparator (AO22 based). Resulting accuracy was respectively 0.19%, 0.2%, 0.00%, 0.28% in 45 nm technology [1], and respectively 0.24%, 0.71%, 0.05%, 0.32% in 22 nm technology. The runtime speedup with respect to SPICE is between 10^3 and 10^4 .

As an additional analysis we tested the effectiveness of the logiclevel estimation flow to model technology parameter variations. For this purpose we generated random variations in oxide thickness Tox and device width W, generating an array of characterization matrices (device current matrix and node voltage matrix) composed of 10^3 elements. We used the array of characterization

Table 4
Pattern dependent leakage in sequential cells. Values in nA.

Standard cell name	Signal pattern	45 nm T	Technology		32 nm T	echnology		22 nm Technology			Body bias. 45 nm tec.			Body bias. 32 nm tec			Body bias. 22 nm tec		
		SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %
DLatch	000	142.54	142.28	- 0.18	161.14	160.69	-0.27	182.84	181.88	-0.53	119.61	119.93	0.27	132.70	133.44	0.55	145.20	146.39	0.81
	001	182.15	182.36	0.12	207.30	207.73	0.21	238.54	239.39	0.35	98.56	97.38	- 1.21	109.08	108.57	-0.47	119.01	117.63	-1.17
	010	162.27	162.84	0.36	184.31	186.21	1.02	210.14	212.60	1.16	133.36	134.03	0.50	150.27	151.93	1.09	167.15	169.62	1.46
	100	185.04	184.90	-0.08	210.28	210.08	-0.10	243.72	243.19	-0.22	144.65	144.94	0.20	161.82	162.48	0.41	182.01	183.05	0.57
	101	145.98	145.66	-0.22	165.22	164.63	-0.35	185.55	184.46	-0.59	123.37	122.40	-0.80	137.36	137.61	0.18	152.86	154.30	0.93
	111	159.18	158.41	-0.48	180.80	178.89	-1.06	204.08	201.27	-1.39	93.59	92.88	-0.76	113.57	112.46	-0.98	124.79	123.86	-0.75
	Aver.	162.86	162.74	-0.07	184.84	184.71	-0.07	210.81	210.46	-0.16	118.86	118.59	-0.22	134.13	134.42	0.21	148.50	149.14	0.43
D FF	001	308.20	309.32	0.36	360.17	363.07	0.80	417.32	421.79	1.06	258.94	259.16	0.09	295.87	296.66	0.27	333.65	334.64	0.30
	010	325.95	325.85	-0.03	376.78	376.80	0.01	446.68	446.39	-0.06	253.41	254.03	0.25	289.31	290.91	0.55	335.24	337.82	0.77
	011	274.66	274.44	-0.08	319.46	319.24	-0.07	371.57	370.71	-0.23	230.63	231.13	0.22	262.18	263.43	0.47	295.60	297.73	0.72
	100	280.21	279.75	-0.16	324.63	323.99	-0.20	377.88	376.11	-0.47	230.16	230.87	0.31	261.85	262.94	0.42	296.39	297.92	0.52
	101	323.31	323.42	0.03	375.17	376.00	0.22	441.77	441.54	-0.05	256.24	257.13	0.35	296.69	295.93	-0.26	340.65	341.40	0.22
	110	322.64	322.37	-0.08	373.64	373.37	-0.07	438.41	437.42	-0.23	255.21	255.82	0.24	290.97	292.49	0.52	333.19	335.77	0.77
	111	286.99	286.72	-0.09	332.75	332.90	0.05	387.78	386.61	-0.30	237.08	238.32	0.52	270.72	273.70	1.09	306.85	312.01	1.66
	Aver.	303.14	303.12	0.00	351.80	352.20	0.11	411.63	411.51	-0.03	245.95	246.64	0.28	281.08	282.30	0.43	320.22	322.47	0.70

matrices to iterate a logic-level Monte-Carlo evaluation of the cell leakage. Variations were Gaussian with 10% deviation at 3σ . The frequency distribution obtained by tracing the obtained leakage

values subject to technology parameter variations are shown in Fig. 10 for a subset of the cell library. The data are overlapped with the distributions obtained by performing a SPICE Monte-Carlo analysis with the same technology variations. Interestingly the resulting leakage distribution is closely but not perfectly Gaussian in all the cells.

5. Analysis of leakage components subject to scaling effects

Having verified the accuracy of total leakage calculation with respect to SPICE BSIM4 results, we were able to proceed in using the logic level model in order to analyze the impact of technology scaling and of input patterns on the three major leakage current components individually, i.e. gate, sub-threshold and body leakage.

Table 6 reports the results of the three major leakage components for all input patterns in single-input and 2-input standard cells. All leakage components are estimated in 45 nm, 32 nm and 22 nm technology. Obviously, all leakage component summed together corresponds to the total leakage current for a particular input combination in the respective technology node. Table 7 reports the sub-threshold leakage, body leakage and gate leakage estimated values for all input patterns in three-input standard cells, while Tables 8 and 9 report the estimation results of

Table 5

Pattern dependent leakages in four-input cells. Values in nA.

Standard	Signal	45 nm Technology		gy	32 nm Technology			22 nm Technology			Body bias. 45 nm tec.			Body bias. 32 nm tec			Body bias. 22 nm tec		
cen name	pattern	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %	SPICE	VHDL	Er %
AO112	0000	383.57	383.46	-0.03	462.52	462.45	-0.02	538.77	538.57	-0.04	355.84	355.77	0.02	412.42	412.54	0.03	466.50	466.83	0.07
	0001	373.46	374.90	0.38	448.54	451.43	0.64	529.58	535.49	1.10	330.32	330.15	0.05	384.25	383.67	0.15	443.55	441.30	-0.51
	0010	270.39	270.03	-0.14	317.29	313.85	-1.10	361.55	362.33	0.22	234.08	237.02	1.24	268.80	270.88	0.77	302.67	302.54	-0.04
	0011	237.90	237.58	-0.13	281.65	281.31	-0.12	317.85	317.43	-0.13	224.90	224.67	0.11	256.85	257.37	0.20	282.38	283.44	0.37
	0100	343.89	343.89	0.00	413.43	413.58	0.03	482.22	482.47	0.05	313.41	311.70	0.55	358.99	362.49	0.97	402.17	411.41	2.25
	0101	319.14	320.67	0.48	380.75	383.60	0.74	448.13	454.66	1.44	2/8./3	2/8.66	1.03	324.33	324.09	0.07	3/4.96	3/2.85	-0.57
	0110	184.01	183 70	0.55	230.13	246.05	-0.85	201.04	279.52	-0.85	162.02	105.75	0.02	209.05	198 21	0.57	234.28	234.90	0.29
	1000	310 22	310 35	0.04	371.60	372.14	0.15	432.35	433.00	0.15	287.21	280.48	2.40	326 32	324 44	0.57	372.98	367.29	-155
	1001	319.04	320.67	0.51	380.57	383.60	0.79	447.82	454.66	1.50	278.73	278.57	0.06	324.33	323.94	0.12	374.96	372.58	-0.64
	1010	216.34	216.17	-0.08	250.05	246.92	-1.27	281.50	282.80	0.46	182.62	185.67	1.64	209.03	211.56	1.20	234.28	234.83	0.23
	1011	183.99	183.70	-0.15	214.63	214.35	-0.13	238.17	237.83	-0.14	173.44	173.38	0.04	197.08	198.17	0.55	214.00	215.91	0.89
	1100	206.62	207.02	0.19	226.48	225.13	-0.60	246.04	241.02	-2.08	157.42	158.76	0.84	171.17	176.35	2.94	191.23	192.66	0.74
	1101	140.37	141.73	0.96	157.64	156.08	-1.00	169.75	172.37	1.52	127.39	127.67	0.21	140.73	144.63	2.69	156.05	155.69	-0.23
	1110	120.36	118.49	- 1.58	134.65	132.85	-1.36	144.10	144.42	0.22	109.80	109.57	0.21	122.40	123.73	1.07	130.14	132.33	1.65
	1111	127.34	128.59	0.97	145.55	148.48	1.97	157.05	160.59	2.21	119.47	120.61	0.94	135.82	137.89	1.50	144.98	147.66	1.82
4022	Aver.	247.06	247.38	0.13	290.64	290.51	-0.04	332.17	333.42	0.38	220.59	220.74	0.07	252.41	253.85	0.57	283.69	284.27	0.20
AU22	0000	203.09	203.55	-0.05	314.01 257.10	313.88	-0.04	357.00	357.37	-0.08	245.08	245.58	0.04	281.80	282.03	0.00	312.83	313.28	0.15
	0010	251.52	251 12	-0.04	299.13	298.90	-0.08	342.10	341.83	-013	227.61	227.90	0.45	262.46	263.41	0.32	292.97	294 48	0.18
	0010	308.50	309.43	0.30	364.51	366.24	0.47	430.83	434.91	0.94	259.70	259.62	0.03	301.47	301.75	0.09	350.47	349.94	0.15
	0100	217.56	217.58	0.01	257.08	257.48	0.15	292.01	292.39	0.13	195.68	196.57	0.45	224.44	225.18	0.33	249.59	250.10	0.20
	0101	173.22	171.61	-0.94	200.32	201.06	0.37	226.63	227.37	0.33	145.66	147.66	1.35	167.00	168.50	0.89	186.33	187.11	0.42
	0110	210.10	211.26	0.55	242.25	245.59	1.36	276.73	276.71	0.00	175.62	178.91	1.84	203.69	206.60	1.41	236.71	231.35	2.32
	0111	281.23	281.75	0.18	330.27	330.42	0.04	389.07	391.52	0.62	234.46	234.30	0.07	272.86	273.22	0.13	318.30	317.41	0.28
	1000	251.28	251.12	-0.06	298.97	298.91	-0.02	342.01	341.84	-0.05	227.62	227.80	0.08	262.47	263.26	0.30	292.97	294.29	0.45
	1001	205.14	205.14	0.00	242.25	242.50	0.10	276.73	276.83	0.04	177.60	178.91	0.73	205.04	206.60	0.76	229.72	231.35	0.71
	1010	238.84	238.68	-0.07	284.17	283.93	-0.08	326.77	326.28	-0.15	209.54	210.16	0.29	243.07	244.70	0.67	273.11	275.57	0.89
	1011	281.10	282.70	0.57	330.49	333.19	0.81	389.49	395.91	1.62	234.46	234.41	0.02	2/2.86	2/3.42	0.20	318.30	31/./6	0.17
	1100	205.14	1/0.15	-0.75	193.33	196.06	1.40	213.04	210.59	- 1.45	138.33	137.54	0.72	10/ 26	100.30	2.72	221 58	1/1.13	1.40
	1110	210.01	204.24	-1.20	236.04	236.81	0.03	258.79	251.58	-2.70	170.02	175.84	0.76	199.17	199.30	0.13	211.58	218.52	3.28
	1111	165.45	165.06	-0.23	189.94	189.58	-0.19	207.80	207.39	-0.20	152.23	156.29	2.60	185.07	180.58	2.49	198.39	197.37	0.52
	Aver.	228.21	228.04	-0.08	267.24	267.90	0.25	305.07	304.79	-0.09	198.51	198.99	0.24	228.71	229.26	0.24	257.08	257.41	0.13
AO31	0000	269.01	268.56	-0.17	320.81	320.40	-0.13	368.23	367.65	-0.16	248.14	248.37	0.09	285.20	285.60	0.14	318.27	318.89	0.20
	0001	260.47	260.72	0.10	310.23	310.70	0.15	361.87	362.94	0.29	230.45	230.40	0.02	265.50	265.48	0.01	301.38	301.07	0.10
	0010	257.05	256.85	-0.08	305.87	305.60	-0.09	350.95	350.41	-0.16	237.25	237.63	0.16	274.12	275.44	0.48	307.09	309.27	0.70
	0011	257.05	257.43	0.15	294.50	292.71	-0.61	343.87	341.71	-0.63	218.88	219.19	0.14	254.00	254.99	0.39	289.96	291.14	0.40
	0100	222.50	222.36	-0.06	263.82	263.56	-0.10	302.42	301.92	-0.17	203.03	202.43	0.30	232.52	232.55	0.01	259.12	259.74	0.24
	0101	217.86	216.//	-0.50	256.32	249.04	- 2.92	298.56	292.28	- 2.15	180.87	186.58	3.06	209.99	214.18	1.96	237.11	243.44	2.60
	0110	200.52	200.25	-0.05	278 50	270.38	-0.05	371.45	371.24	-0.05	200.00	237.73	0.57	2/7.24	279.00	0.64	212.00	280.00	0.88
	1000	213 34	213.45	0.15	278.33	273.50	0.20	290.69	291 44	0.50	192 78	193.61	0.23	242.50	244.40	0.78	278.52	280.55	0.00
	1000	247 35	247 76	0.05	294 27	295.05	0.22	343.46	345 11	0.20	218 88	219.07	0.09	254.00	25477	0.32	289.96	290.77	0.23
	1010	213.74	213.86	0.06	252.26	252.81	0.22	289.37	289.89	0.18	187.00	188.96	1.04	216.74	219.02	1.04	244.49	246.79	0.93
	1011	234.27	234.80	0.23	278.38	279.38	0.36	325.07	327.25	0.67	207.31	207.82	0.25	242.50	244.22	0.70	278.52	280.67	0.76
	1100	173.88	173.95	0.05	203.32	203.81	0.24	232.44	233.01	0.24	147.78	149.50	1.15	169.25	170.58	0.78	189.86	190.56	0.37
	1101	234.06	234.80	0.31	278.01	279.38	0.49	324.42	327.25	0.86	207.31	207.62	0.15	242.50	243.85	0.55	278.52	280.05	0.54
	1110	273.85	276.01	0.78	309.92	315.60	1.80	345.21	353.53	2.35	219.67	225.76	2.69	253.34	259.60	2.41	287.42	291.48	1.39
	1111	184.55	183.05	-0.82	214.84	214.73	-0.05	239.17	238.89	-0.12	175.16	174.41	0.43	202.11	204.63	1.23	223.40	228.24	2.12
	Aver.	234.98	235.09	0.05	277.07	277.16	0.03	319.54	320.11	0.18	207.42	208.56	0.55	240.19	241.95	0.73	271.71	273.81	0.77

sub-threshold leakage, body leakage and gate leakage in sequential cells and four-input cells, respectively.

As expected, the general trend from Table 6 is that all of the three leakage components are increasing with technology scaling. Interestingly, in each cell input pattern dependence in the three

target technologies shows an almost constant ratio between leakage values associated to any two different patterns. This effect is relevant for differential power analysis techniques for attacking cryptographic integrated circuits, where the possibility of successful attacks based on static power associated to logic

Fig. 10. Results of logic-level and SPICE Monte Carlo analysis of leakage variations.

Table 6

Impact of scaling on major leakage components in single-input and two-input cells. (S=Sub-threshold, B=Body, G=Gate.)

Standard cell name	Input pattern	45 nm Tecl	nnology		32 nm Tecl	nnology		22 nm Technology				
		S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]		
NOT	0	6.844	0.848	26.783	7.766	2.343	29.782	11.103	3.399	31.006		
	1	24.000	0.084	15.697	27.150	0.217	17.266	33.840	0.276	16.785		
NAND2	00	1.301	1.696	54.610	0.886	4.686	61.248	0.603	6.797	64.695		
	01	10.298	1.040	27.437	10.644	2.876	30.794	11.027	4.180	32.459		
	10	15.656	1.040	55.618	19.083	2.876	63.792	24.268	4.181	68.682		
	11	48.000	0.384	58.762	54.300	1.067	68.772	67.681	1.564	75.079		
NOR2	00	13.689	3.604	105.940	15.532	10.239	121.810	22.206	15.594	134.350		
	01	51.001	2.210	70.847	59.327	5.337	81.167	77.455	8.073	87.911		
	10	37.030	1.886	17.145	39.680	0.217	19.326	43.577	0.276	19.110		
	11	5.080	0.168	32.026	4.450	0.435	35.550	2.691	0.553	35.178		
AND2	00	25.302	1.780	70.307	28.107	4.903	78.536	34.443	7.074	81.481		
	01	39.656	1.124	71.314	37.239	3.094	47.786	58.108	4.457	85.468		
	10	54.845	1.232	85.545	46.229	3.094	81.057	78.784	4.963	106.080		
	11	34.298	1.124	43.134	62.065	3.410	98.554	44.867	4.457	49.244		
XOR2	00	102.770	5.684	162.430	114.550	15.991	186.740	143.240	23.956	202.830		
	01	56.799	4.072	177.910	64.642	11.523	203.870	80.238	17.433	221.270		
	10	56.799	4.704	177.910	64.642	13.233	203.870	80.238	19.820	221.270		
	11	137.080	4.156	140.260	153.320	11.740	161.710	188.710	17.710	174.390		

levels has been demonstrated [8]. Our results show that the success of the attack can be expected to be technology independent. The effect is also relevant for leakage limitation techniques based on input pattern selection in idle units, as from our results we can expect that the achievable relative leakage reduction is practically technology independent. Also, NAND2 and NAND3 gates show a dramatic difference (more than one order of magnitude) in sub-threshold leakage current associated to input patterns "0..0" and "1..1", differently from other cells; this could be taken into account when designing logic units with input-pattern-based leakage management.

The average incremental trends of each leakage component are individually illustrated in Fig. 11 for single-input and two-input cells, in Fig. 12 for three-input cells, and in Fig. 13 for four-input and sequential cells. The number in percentage over the bars represents the average % increase over the preceding technology in respective leakage component in particular cell. We observe that, on average, the increment in sub-threshold leakage for 2-input basic cells scaling from 45 nm to 32 nm is approximately 12%, while it is around 25% when scaling from 32 nm to 22 nm technology. Interestingly, while in both the scaling steps the reduction factor of geometric feature size is around 0.7, the second

Table 7

impact of scaling on major leakage components in three-input cells. (S=Sub-threshold, B=Bod	, $G = Gate.$)
---	-----------------

Standard cell name	Input pattern	45 nm Tech	nology		32 nm Tech	nnology		22 nm Technology			
		S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]	
NAND3	000	0.742	2.544	82.455	0.497	7.028	92.744	0.331	10.197	98.429	
	001	1.941	1.996	53.837	1.125	5.535	60.613	0.902	8.084	64.334	
	010	4.737	1.996	60.254	4.245	5.535	68.404	3.872	8.086	73.128	
	011	15.127	1.449	29.145	15.520	1.700	32.770	16.143	4.180	34.630	
	100	2.034	1.996	97.152	1.411	5.535	112.430	0.993	8.086	123.220	
	101	16.095	1.449	67.785	16.957	4.042	79.485	18.170	5.974	88.197	
	110	24.463	1.449	111.790	30.387	4.042	131.990	39.951	5.977	147.770	
	111	72.001	0.901	129.190	81.449	2.549	154.520	101.520	3.863	174.880	
NOR3	000	20.533	8.267	237.470	23.298	23.688	276.090	33.310	36.585	310.050	
	001	77.938	5.596	178.150	91.361	16.009	206.950	120.990	24.666	230.810	
	010	58.272	0.084	97.410	61.301	0.217	118.820	68.134	0.277	131.240	
	011	8.439	2.924	113.360	6.146	8.331	130.580	4.208	12.748	142.540	
	100	55.313	2.840	17.821	57.301	8.113	15.040	61.653	12.470	11.374	
	101	17.542	2.924	36.238	16.084	8.331	38.026	14.631	12.746	34.580	
	110	8.195	0.084	33.081	5.886	0.217	36.816	3.948	0.277	36.578	
	111	3.142	1.225	48.354	2.752	0.652	53.834	1.450	0.827	53.570	
AND3	000	24.742	2.628	98.152	27.647	7.246	110.010	34.172	10.473	115.210	
	001	25.941	2.080	69.534	28.275	5.753	77.879	34.742	8.362	81.119	
	010	28.737	2.080	75.951	31.395	5.753	85.670	37.712	8.362	89.913	
	011	39.127	0.685	44.842	42.670	1.917	50.036	49.983	2.853	51.415	
	100	26.034	2.080	112.850	28.561	5.753	129.690	34.834	8.362	140.000	
	101	40.095	1.533	83.481	44.107	4.260	96.751	52.010	6.251	104.980	
	110	48.463	1.533	127.480	57.537	4.260	149.250	73.791	6.253	164.550	
	111	78.845	1.749	155.980	89.215	4.892	184.300	112.620	7.262	205.890	
A012	000	32.146	5.490	175.650	35.802	15.576	201.670	45.546	23.666	221.000	
	001	57.828	4.536	147.070	67.056	12.799	168.290	88.621	19.269	183.020	
	010	46.501	3.880	150.470	45.560	10.990	140.090	55.970	16.652	152.590	
	011	57.820	2.818	121.940	67.037	7.897	139.800	88.558	11.747	150.990	
	100	41.143	3.880	122.290	53.998	10.990	173.080	69.211	16.652	188.810	
	101	57.820	2.926	121.940	67.037	8.213	139.800	88.558	12.254	150.990	
	110	79.759	3.034	81.779	83.221	8.529	94.672	92.450	12.760	102.480	
	111	16.789	1.316	96.820	15.789	3.627	111.340	15.994	5.239	119.010	
MUX12	000	37.689	1.780	103.700	42.682	4.903	116.710	56.047	7.076	121.800	
	001	54.845	1.016	92.612	62.066	2.778	104.200	78.784	3.953	107.580	
	010	77.348	2.343	106.660	88.920	6.391	119.860	114.170	9.058	124.990	
	011	94.504	2.248	94.521	108.300	6.188	104.710	136.910	8.914	106.650	
	100	77.348	2.820	105.610	88.920	7.780	117.230	114.170	11.258	120.870	
	101	94.504	1.292	95.571	108.300	3.529	107.340	136.910	5.011	110.770	
	110 111	37.689 54.845	2.032	108.570 97.481	42.682 62.066	5.121 5.555	120.370 107.860	56.047 78.784	7.355 7.906	124.060 109.840	
FA	000	108.920	21.457	765.860	124.970	61.125	891.470	158.860	93.509	997.780	
	001	217.520	21.949	671.670	270.440	62.508	766.660	342.090	95.580	853.940	
	010	187.050	17.584	582.000	198.340	50.026	687.200	271.840	76.368	725.770	
	011	185.120	13.519	469.110	213.700	38.394	547.570	263.550	58.446	606.090	
	100	200.680	12.072	484.010	224.740	34.234	562.510	285.620	51.977	623.940	
	101	211.820	13.519	503.450	233.120	38.394	586.100	299.650	58.449	647.460	
	110	185.930	11.909	533.370	207.330	33.808	624.130	250.190	51.435	694.020	
	111	271.360	7.844	366.050	198.120	22.175	535.120	224.080	33.502	573.260	

Table 8

Impact of scaling on major leakage components in sequential cells. (S=Sub-threshold, B=Body, G=Gate.)

Standard cell name	Signal pattern	45 nm Technology			32 nm Technology			22 nm Technology		
		S [nA]	B [nA]	G [nA]	S [nA]	B [mA]	G [nA]	S [nA]	B [nA]	G [nA]
DLatch	000	48.189	1.864	92.225	53.743	5.121	101.830	71.551	7.352	102.980
	001	84.192	2.151	96.020	96.686	5.858	105.180	125.270	8.276	105.840
	010	65.345	2.140	95.358	73.127	5.871	107.210	94.289	8.408	109.900
	100	87.848	1.864	95.184	99.981	5.121	104.970	129.670	7.352	106.170
	101	44.533	2.151	98.979	50.448	5.858	108.330	67.150	8.277	109.030
	111	61.689	1.579	95.144	69.832	4.266	104.790	89.887	5.936	105.450
DFF	001	98.821	5.660	204.840	114.300	15.893	232.880	148.800	23.728	249.260
	010	162.190	3.014	160.640	188.190	8.196	180.420	246.700	11.548	188.140
	011	90.848	4.337	179.260	105.010	12.044	202.190	139.630	17.638	213.450
	100	108.000	3.573	168.170	124.390	9.919	189.680	162.360	14.515	199.230
	101	147.660	3.573	172.180	170.630	9.919	195.450	220.490	14.515	206.540
	110	147.660	3.573	171.130	170.630	9.919	192.820	220.490	14.516	202.420
	111	108.000	3.573	175.140	124.390	9.919	198.590	162.360	14.515	209.730

 Table 9

 Impact of scaling on major leakage component in four-input cells. (S=Sub-threshold, B=Body, G=Gate.)

Standard cell name	Signal pattern	45 nm Technology			32 nm Technology			22 nm Technology		
		S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]	S [nA]	B [nA]	G [nA]
A0112	0000	38.990	11.107	333.370	43.568	31.802	387.080	56.650	49.056	432.864
	0001	84.769	9.486	280.650	99.097	26.985	325.340	131.993	41.183	362.310
	0010	65.118	9.199	195.720	69.071	26.248	218.530	79.244	40.259	242.824
	0011	15.283	6.528	215.770	13.912	18.570	248.830	15.311	28.341	273.777
	0100	53.348	8.543	282.000	61.770	24.439	327.370	80.329	37.643	364.499
	0101	84.744	6.636	229.300	99.041	18.886	265.670	131.819	28.847	293.991
	0110	65.116	5.788	146.220	69.067	16.543	162.440	79.237	25.448	174.638
	0111	15.283	3.964	164.460	13.912	11.207	189.230	15.311	16.928	205.590
	1000	47.987	8.543	253.820	53.326	24.439	294.370	67.074	37.643	328.285
	1001	84.744	6.636	229.300	99.041	18.886	265.670	131.819	28.847	293.991
	1010	65.116	6.636	144.430	69.067	18.886	158.970	79.237	28.847	174.712
	1011	15.283	3.964	164.460	13.912	11.207	189.230	15.311	16.928	205.590
	1100	112.420	3.988	90.612	115.650	11.306	98.167	125.492	17.156	98.371
	1101	35.128	4.072	102.540	33.174	11.523	111.380	33.663	17.432	121.276
	1110	20.347	3.224	94.926	18.429	9.181	105.240	18.222	14.035	112.163
	1111	8.728	1.401	118.470	9.125	3.845	135.510	12.008	5.515	143.065
A022	0000	26.603	7.291	229.660	28.921	20.695	264.260	35.046	31.464	290.860
	0001	35.600	5.682	176.360	38.679	16.109	202.800	45.470	24.449	222.660
	0010	40.958	5.682	204.480	47.118	16.109	235.680	58.711	24.449	258.670
	0011	108.800	4.836	195.800	126.310	13.649	226.290	166.010	20.556	248.340
	0100	35.600	5.682	176.310	38.679	16.109	202.690	45.470	24.449	222.470
	0101	44.597	4.072	122.940	48.437	11.523	141.100	55.894	17.434	154.050
	0110	49.957	2.164	159.140	56.881	5.970	182.740	69.149	8.638	198.930
	0111	108.800	2.272	170.690	126.310	6.286	197.820	166.010	9.144	216.360
	1000	40.958	5.682	204.490	47.118	16.109	235.680	58.711	24.449	258.680
	1001	49.955	4.072	151.120	56.876	11.523	174.100	69.135	17.434	190.260
	1010	55.313	4.072	179.300	65.315	11.523	207.090	82.376	17.434	226.470
	1011	108.800	3.226	170.690	126.310	9.063	197.820	166.010	13.542	216.360
	1100	83.053	4.836	82.262	87.271	13.649	95.143	98.258	17.156	95.177
	1101	83.053	3.875	117.320	87.271	10.960	136.030	98.258	13.540	139.780
	1110	83.053	3.226	121.250	87.271	9.063	140.480	98.258	13.542	139.780
	1111	17.881	1.617	145.570	15.736	4.477	169.360	16.485	6.527	184.380
A031	0000	31.587	7.291	229.680	35.413	20.695	264.290	45.275	31.464	290.906
	0001	57.831	6.338	196.560	67.062	17.918	225.720	88.642	27.065	247.229
	0010	32.879	5.790	218.190	36.327	16.425	252.850	45.937	24.955	279.514
	0011	57.828	3.988	195.620	67.056	11.306	214.340	88.621	17.157	235.936
	0100	35.582	5.490	181.290	39.161	15.576	208.830	48.816	23.668	229.433
	0101	57.828	4.836	154.110	67.056	13.649	168.330	88.621	20.556	183.107
	0110	55.308	4.288	206.640	65.303	12.156	241.290	84.894	18.446	267.904
	0111	57.820	3.334	173.650	67.037	9.379	202.970	88.558	14.046	224.643
	1000	32.785	5.790	174.880	36.231	16.425	201.040	45.846	24.955	220.640
	1001	57.828	4.836	185.100	67.056	13.649	214.340	88.621	20.556	235.936
	1010	46.940	4.288	162.640	51.873	12.156	188.780	63.114	18.446	208.331
	1011	57.820	3.334	173.650	67.037	9.379	202.970	88.558	14.046	224.643
	1100	45.971	3.988	124.000	50.436	11.306	142.070	61.086	17.158	154.764
	1101	57.820	3.334	173.650	67.037	9.379	202.970	88.558	14.046	224.643
	1110	113.420	3.551	159.040	117.300	10.011	188.290	127.864	15.058	210.613
	1111	19.025	1.833	162.200	18.029	5.109	191.590	18.007	7.537	213.350

Fig. 11. Scaling effect on sub-threshold, body, and gate leakage in single-input and two-input cells; average values with respect to input pattern.

scaling step shows a double percentage increase in sub-threshold current than the first scaling step. This is not the case for body and gate leakage where we observe an opposite behavior, with a much smaller increase in the 32-to-22 nm scaling step with respect to the 45-to-32 nm step. The super-linear behavior of the sub-threshold current might be ascribed to its exponential dependence on the threshold voltage, which in turn depends on oxide thickness scaling.

Examples of leakage reduction techniques that can benefit from an in-depth characterization of leakage current data are various. For instance, input pattern based techniques can be applied to arithmetic units during idle periods. Considering a 32+32 bit ripple carry adder implemented in 22 nm technology, the application of the minimum consumption input pattern FFFFFFF_{HEX} to both input operands leads to an idle power consumption of $32 \times 831 = 26587$ nW, saving 21% power with respect to the average 33349 nW that would result from allowing a random input pattern during idle periods.

As another example, if we consider a 32 bit binary equality comparator, whose core logic is composed of 32 *xor* operators, we

Fig. 12. Scaling effect on sub-threshold, body, and gate leakage in three-input cells; average values with respect to input pattern.

may choose to implement each xor by a XOR2 cell, or by 2 NOT and 3 NAND2 cells (nand-nand synthesis), or by 2 NOT cells and one AO22 cell (and-or synthesis). Of the three technology mapping solutions, the single XOR cell would have the minimum average leakage, leading to $32 \times 831 = 11129$ nW idle consumption. However, if we know that the statistically prevalent input pattern of the comparator is composed of strings of '1' bit values, the minimum leakage would result from the nand-nand solution, leading to $32 \times (50+50+48+48+72)=8576$ nW. The advantage of the latter solution is due to the dominance of gate leakage in the NAND and XOR cells of our library. In a cell library with sub-threshold dominated leakage, the optimal solution would be different.

Overall, based on the analysis of leakage currents calculated through the estimation model for the whole cell library, we predict the trend of three major leakage component with technology scaling as shown in Fig. 14. As a general trend, the increase in the body leakage is enormous despite its absolute quantity is presently less important than other contributions, but in technology nodes below 22 nm we can expect a saturated behavior of body leakage. Gate leakage shows an almost linear increase. On the contrary, sub-threshold leakage seems to maintain more than

Fig. 13. Scaling effect on sub-threshold, body, and gate leakage in four-input and sequential cells; average values with respect to input pattern.

linear growth in future CMOS technologies so that we expect that countermeasures should be focused on sub-threshold current limitation.

6. Conclusions

We have presented the characterization of the effect of technology scaling on different leakage current components in a complete standard cell set, referring to 45 nm, 32 nm and 22 nm traditional bulk CMOS process. The analysis was conducted according to a logic-level estimation method, supported by comparison with SPICE BSIM4 with less than 1% average error. An outcome of the analysis is that input pattern dependence shows significant differences from one cell to another, but maintain the same ratio between any two different input patterns independently of technology scaling, which is of interest in pattern-based leakage limitation approaches. Also, we saw that while sub-threshold current impact on the cell library leakage shows a more-than-linear increase with scaling (12% from 45 nm to 32 nm, 25% from 32 nm to 22 nm), the gate current and body current impact shows a mitigation in their increase as the geometry reduces. Overall, the reported data can be used for analysis and verification of leakage reduction design techniques.

Fig. 14. Estimated average trend of different leakage currents in cell library, normalized to 45 nm values.

References

- Z. Abbas, V. Genua, M. Olivieri, A novel logic level calculation model for leakage currents in digital nano CMOS circuits, in: Proceedings of the 7th Conference on PhD Research in Microelectronics & Electronics, 3–7 July, Madonna di Campiglio, Trento, Italy.
- [2] A. Abdollahi, F. Fallah, M. Pedram, Leakage current reduction in CMOS VLSI circuits by input vector control, IEEE Trans. Very Large Scale Integration (VLSI) Systems 12 (2) (2004). (pp. 140, 154).
- [3] A. Agarwal, S. Mukhopadhyay, A. Raychowdhury, K. Roy, C.H. Kim, Leakage power analysis and reduction for nanoscale circuits, IEEE Micro 26 (2) (2006) 68–80.
- [4] M.W. Dunga, W. Yang, X. Xi, J. He, W. Liu, M. Cao, X. Jin, J. Ou, M. Chan, A.M. Niknejad, C. Hu, Bsim 4.6.1 Mosfet Model – User's Manual (Technical Report), EECS Department, University of California, Berkeley, 2007.
- [5] International Technology Roadmap for Semiconductors. International SEMA-TECH, Austin, TX. (http://public.itrs.net).
- [6] F. Lannutti, P. Nenzi, M. Olivieri, KLU sparse direct linear solver implementation into NGSPICE, in: Proceedings of the 19th International Conference on Mixed Design of Integrated Circuits and Systems, MIXDES 2012, IEEE, pp. 69, 2012.
- [7] M. Olivieri, G. Scotti, A. Trifiletti, A novel yield optimization technique for digital CMOS circuits design bt means of process parameters run-time estimation and body bias active control, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 13 (5) (2005).

- [8] F. Menichelli, R. Menicocci, M. Olivieri, A. Trifiletti, High level side channel attack modeling and simulation for security-critical systems-on-chips, IEEE Trans. Secure Dependable Comput. 5 (3) (2008).
- [9] F. Menichelli, M. Olivieri, Static minimization of total energy consumption in memory subsystem for scratchpad-based systems-on-chips, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 17 (2) (2009) 161–171.
- [10] S. Mukhopadhyay, A. Raychowdhury, K. Roy, Accurate estimation of total leakage current in scaled CMOS logic circuits based on compact current modeling, in: Proceedings of the IEEE/ACM Design Automation Conference. (DAC '03), pp. 169–174, 2003.
- [11] S. Mukhopadhyay, S. Bhunia, K. Roy, Modeling and analysis of loading effect in leakage of nano-scaled bulk-CMOS logic circuits, IEEE Trans. Comput. Aided Des. Electron. Circuits Syst. 25 (8) (2006).
- [12] Predictive Technology Model. (http://ptm.asu.edu/).
- [13] R. Rao, J. Burns, A. Devgan, R. Brown, Efficient techniques for gate leakage estimation, in: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED'03), 2003, pp. 100–103.
- [14] F. Ramundo, P. Nenzi, M. Olivieri, First integration of MOSFET band-to-bandtunneling current in BSIM4, Microelectron. J. 44 (1) (2013) 26–32. (Elsevier).
- [15] K. Roy, S. Mukhopadhyay, H.M. Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, Proceedings of IEEE (2003) 305–327.

- [16] K. Roy, S.C. Prasad, Low Power CMOS VLSI Circuits, Wiley, USA, 2000.
- [17] A. Sanyal, A. Rastogi, W. Chen, K. Roy, S. Kundu, An efficient technique for leakage current estimation in nanoscaled CMOS circuits incorporating selfloading effects, IEEE Trans. Comput. 59 (7) (2010) 922–932.
- [18] K. Schuegraf, C. Hu, Hole injection SiO₂ breakdown model for very low voltage lifetime extrapolation, IEEE Trans. Electron Devices 41 (1994) 761–767.
- [19] A.K. Sultania, D. Sylvester, S.S. Sapatnekar, Gate oxide leakage and delay tradeoffs for dual-Tox circuits, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 13 (2005) 1362–1375.
- [20] Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, USA, 1998.
- [21] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edition, Oxford University Press, USA, 2003.
- [22] S.H. Voldman, J.A. Brachitta, D.J. Fitzgerald, Band-to-band tunneling and thermal generation gate-induced drain leakage, IEEE Trans. Electron Devices 35 (12) (1988) 2433.
- [23] J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 65 nm CMOS technology and beyond, Integration VLSI J. 43 (4) (2010) 353–364.
- [24] K.S. Yeo, K. Roy, Low-Voltage, Low-Power VLSI Subsystems, McGraw Hill, USA, 2005.