

# تاثیر مقیاس پذیری فناوری در کمبود قدرت سلول های استاندارد دیجیتال CMOS در مقیاس نانو

چکیدہ

تخمین کمبود یک گام مهم در جریان طراحی دیجیتال با تکنولوژی نانو است. درحالی که دادههای قابل اعتماد بر روند کمبود فن آوری CMOS در دستگاههای مستقل و مدارها وجود دارد، فقدان نتایج عمومی در اثر مقیاس پذیری در کمبود مصرف برق برای مجموعه استاندارد سلولی کامل است. تجزیه و تحلیلی بر روی کتابخانه سلول استاندارد بااستفاده از بر آورد سطح منطق مدل، که توسط مقایسه SPICE BSIM لپشتیبانی شده است ارائه می کنیم. افزایش سرعت مدل سطح منطق برروی SPICE > 10<sup>3</sup> با متوسط دقت خطای زیر 1٪ است. بنابراین تاثیر مقیاس پذیری را در کل مجموعه سلولی استاندارد با توجه به مکانیزمهای مختلف کمبود (زیر آستانه، بدنه، گیت) بنا به وابستگی الگوی ورودی گسترش می دهیم. در حالی که کمبود بدنه به نظر غالب می رسد، انتظار می رود کمبود زیر آستانه بیش از دیگر قطعات مقیاس پذیری افزایش یابد. اطلاعات دقیق از کل تجزیه و تحلیل برای استفاده در بیشتر تحقیقات در مورد طراحی دیجیتال گزارش شده است.

كليدواژهها: CMO ، مقياس پذيرى، سلول استاندارد، كمبود زير آستانه، كمبود Gate، كمبود محل اتصال

1. معرفی

به طور کلی، اتلاف توان در مدارات دیجیتال می تواند در دو جزء مختلف گروه بندی شود:

 1. قدرت پویا – ناشی از جریانهای مورد نیاز برای شارژ و تخلیه بار خازن در طول سوئیچینگ سیگنال و جریان اتصال کوتاه در معابر زمانی که هر دو بهطور همزمان به شبکه Pull-Up و PULL-DOWN می شوند.
 2. قدرت استاتیک – زمانی رخ می دهد که حتی اگر هیچ انتقال سیگنالی با توجه به کمبود جریان در دستگاه وجود

نداشته باشد.

کمبودجریان به شیوهای پیچیده بر روی خواص ساختار دستگاه مانند دوپینگ مشخصات، ضخامت اکسید، ابعاد کانال و غیره بستگی دارد، همانگونه که آنها به دلایل مختلف فیزیکی مانند گیت اکسید تونل، انتقال زیرآستانه و معکوس بایاس انتقال محل اتصال بستگی دارد. همانند استراتژی فناوری بین المللی برای نیمههادیها (ITRS) برای روند تلفات توان با توجه به پیشرفت تکنولوژی، تلفات استاتیک قدرت در CMOS نیز انتظار میرود که بیش از توان تلفات پویا باشد [5]. هانگونه که شکل 1 نشان می دهد توان پویا منبع غالب اتلاف انرژی در سالهای گذشته بوده است، در حالیکه کمبود اکسید تون تلفات بویا باشد [5]. هانگونه که شکل. 1 نشان میدهد توان پویا منبع غالب اتلاف انرژی در سالهای گذشته بوده است، در حالیکه کمبود اکسید تون تلفات پویا باشد [5]. هانگونه که شکل. 1 نشان میدهد توان پویا منبع غالب اتلاف انرژی در سالهای گذشته بوده است، در حال حاضر قابل مقایسه است و حتی از کمبود زیرآستانه و کمبود اتصال پیشی گرفته است، در حالیکه کمبود اکسید گیت توسط معرفی دی الکتریک بالای K

بهعنوان یک نتیجه، کمبود روشهای کاهش طراحی سطح مانند انتخاب الگوی ورودی [2]، تحویل و بایاس ولتاژ بدنه [7،9]، ترانزیستور خواب و آستانه دوتایی [15] ارائه شده است، همزمان برآورد فعلی کمبود، یک گام مهم و فزایندهای در طراحی جریان برای پیشبینی اثربخشی روش اعمال شده، همچنین بهدلیل وابستگی بسیار بالای کمبود جریان در تغییرات پارامتر تکنولوژی است [7،15].

مقیاس پذیری فن آوری، بنا به تقاضای بازار توابع بیشتری را در مدارات مجتمع می طلبد، به همین خاطر تعداد ترانزیستور و فرکانس عامل افزایش یافته است. بااین حال، مقیاس پذیری همواره موجب ترویج ناخواسته اتلاف انرژی به دلایلی مختلفی شده است. به عنوان مثال، کوچک سازی طول کانال اثرات کانال را کاهش می دهد، که باعث افزایش زیرآستانه فعلی؛ مقیاس گذاری ضخامت جریان اکسید گیت و تاثیر گذاری در ولتاژ آستانه که در حال افزایش زیرآستانه است [19]. در نهایت، نه تنها ولتاژ حرارتی (A / KT) بلکه سیلیکون نیز با مقیاس پذیری تغییر می یابد. ولتاژ ثابت حرارتی، در غیرمقیاس پذیری معکوس شیب ولتاژ زیرآستانه نتیجه شده است در حالی که باند سیلیکون ثابت از شکاف درغیرمقیاس پذیری و در محل اتصال بالقوه و عرض لایه تخلیه ساخته شده است. بنابراین تراکم ترانزیستور، قابلیت و سرعت مقیاس پذیری تکنولوژی از یک سو افزایش یافته است. میاس پذیری تکنولوژی از یک سو افزایش یافته است.

در چنین مواقعی، ارزیابی واضح تاثیر مقیاس پذیری بر رفتار قدرت کمبود و ترکیب، در یک کتابخانه سلولی کامل، نه در دستگاهها یا مدارهای جدا شده و ساده آزمون از منافع بزرگ است. برآورد زود هنگام و دقیق جریان کمبود در جریان طراحی برای در نظر گرفتن گرفتن اقدامات متقابل مبتنی بر فنآوری و مبتنی بر طراحی با ارزش است. برآورد جریان نشتی در سطح SPICE نتایج دقیق را تضمین می کند، اما برآورد جریان نشتی در مدارهای یکپارچه (IC) با پیچیدگی بالا/متوسط و حتی کمتر عملی نیست از زمانی که تکرار مونت کارلو برای تجزیه وتحلیل آماری اثرات تغییرات تکنولوژی بر نشت جریان مورد نیاز قرار گرفت. علاوه بر این، شبیه سازی سطح SPICE اجازه نمی دهد که یک تمایز ساده در میان کمکهای مختلف منابع فیزیکی نشت در یک IC پیچیده وجود داشته باشد، که یک تعریف روشنی از اقدام متقابل مبادلات است. از سوی دیگر، مدل های برآورد سطح منطق را می توان برای محاسبات سریع تر استفاده کرد. است، که می تواند قبل از اجرای مدار طراحی [10.13.1] به کار برده شود. تکنیک ارائه شده در [1] یک رویکرد در است، که می تواند قبل از اجرای مدار طراحی [10.13.1] به کار برده شود. تکنیک ارائه شده در [1] یک رویکرد در مدل سازی جریانهای نشتی در سطح منطق الطا ارائه می کند، که قادر است دقت بسیار خوبی به دست آورد و به همان اندازه برای فنآوری های نشتی در سطح منطق را می توان برای محاسبات سریع تر استفاده کرد.

این کار، تجزیهوتحلیلی از جریانهای نشتی محاسبه شده برای یک کتابخانه سلول استاندارد کلی ارائه میکند هنگامی که مقیاس پذیری تکنولوژی CMOS، تأییدی در سطح SPICE از نتایج به دست آمده گزارش میکند. ما تاثیر جریانهای نشتی با فنآوریهای مقیاس پذیر از فنآوری 45 نانومتر به 32 نانومتر و 22 نانومتر (جدول 1) را تحلیل میکنیم.



شكل 1: روند تلفات منابع اصلى قدرت در ترانزيستور نانو CMOS. (همانند[23] با اقتباس از [5].)

| Parameter              | 45 nm            | 32 nm      | 22 nm    |
|------------------------|------------------|------------|----------|
| Threshold voltage (V   | th0)             |            |          |
| PMOS                   | -0.23122         | -0.24123   | -0.25399 |
| NMOS                   | 0.3423           | 0.3558     | 0.3692   |
| Channel doping cond    | entration (NDEP) |            |          |
| PMOS                   | 2.3e18           | 3.5e18     | 4.4e18   |
| NMOS                   | 6.5e18           | 8.7e18     | 1.2e19   |
| Low field mobility (L  | JO)              |            |          |
| PMOS                   | 0.00391          | 0.00306    | 0.0023   |
| NMOS                   | 0.02947          | 0.0238     | 0.0181   |
| Source-drain junction  | n depth (Xj)     |            |          |
| PMOS                   | 1.4e-008         | 1.008e-008 | 7.2e-009 |
| NMOS                   | 1.4e-008         | 1e-008     | 7.2e-009 |
| Electrical oxide thick | ness (toxe)      |            |          |
| PMOS                   | 9.2e-010         | 7.7e-010   | 6.7e-010 |
| NMOS                   | 9.0e-010         | 7.5e – 010 | 6.5e-010 |
| Physical oxide thickn  | less (toxp)      |            |          |
| PMOS                   | 6.5e-010         | 5.0e-010   | 4.0e-010 |
| NMOS                   | 6.5e-010         | 5.0e-010   | 4.0e-010 |

جدول 1: مقادیر پارامتر در گره سه تکنولوژی استفاده شده

با استفاده از قابلیتهای مدل موجود در [1]، تاثیر تکنولوژی مقیاس پذیری را به طور جداگانه در سه جزء اصلی نشت به عنوان مثال نشست Gate، نشت زیر آستانه و نشت اتصال، از جمله الگوی ورودی وابستگی و اثرات انباشتگی تا سه انباشتگی تا سه MOSFET نشان می دهیم. بار گذاری اثر را نیز می توان در فن آوری داده شده آزمایشهای ما گنجاند که تاثیر کلی آن نامر تبط است. مقاله به شرح زیر ساختار بندی شده است: در بخش 2، شش مدل فعلی نشت از تلفات توان از نظر مدل محاسبه نشت و پیاده سازی است. فعلی نشت از تلفات مده آزمایشهای ما گنجاند که ما تشیر کلی آن نامر تبط است. مقاله به شرح زیر ساختار بندی شده است: در بخش 2، شش مدل فعلی نشت از تلفات توان از نظر مدل محاسبه نشت و پیاده سازی استفاده مده را مورد بحش و پیاده ازی استفاده توان از نظر مدل محاسبه نشت و پیاده سازی استان از می در انتان از طریق SPICE و SPICE و SPIC همراه با خطای بین آنها در

سه فن آوری مقیاس پذیر برای همه الگوهای ورودی در 16 سلول استاندارد بیان می کند. بخش 5 به تجزیه و تحلیل وابسته به ترکیب ورودی از سه نشست بزرگ قطعات در سه فن آوری مقیاس پذیر برای 16 سلول اختصاص داده شده است، در بخش 6 نتیجه گیری بیان شده است.

2. بررسی مکانیسمهای نشت در فن آوریهای مقیاس پذیر

در فن آوری CMOS با مقیاس نانو، شش مکانیسم نشت برای کمک به کل تلفات توان استاتیک شناسایی شده است [15]، همان طور که در شکل 2 نشان داده شده است. در حال حاضر شش مکانیزم نشت به شرح زیر است (برای -N MOS نشان داده شده است):

معکوس جریان بایاس اتصال و تونل زنی باند به باند (I<sub>1</sub>): تخلیه/ جریان بایاس معکوس منبع متصل به PN در هر دو حالت روشن و خاموش رخ میدهد. وقتی پایانههای ترانزیستور در ولتاژهای بالا قرار گیرند، دیودهای پارازیتی به شدت به حالت روشن و میکوس مده و در نتیجه منجر به ایجاد یک جریان اتصال بایاس معکوس مدل شده در [4] 4BSIM به شرح زیر می گردد:

$$I_{junc} = \mu_0 C_{ox} \frac{W}{L_{eff}} V_{therm}^2 e^{1.8} \tag{1}$$

 $L_{eff}$  من که در آن  $\mu_0$  تحرک بایاس صفر است،  $C_{ox}$  خازن اکسید گیت است در واحد سطح، W عرض دستگاه،  $L_{eff}$  من که در آن  $\mu_0$  ترانزیستور و  $V_{therm}$  ولتاژ حرارتی [21] است. تونلزنی باند به باند (BTBT) با توجه به تخلیه دیود رخ می دهد، BTBT عمیقا در ناحیه بین تخلیه اکسید گیت و محل اتصال تخلیه جای می گیرد. اگر برق موجود بهاندازه کافی بزرگ باشد فاصله تونلزنی از انتقال ظرفیت نوار تخلیه / بستر دیود تجاوز می کند، بنابراین یک جریان از منطقه می وشانی بزرگ باشد فاصله تونلزنی از انتقال ظرفیت نوار تخلیه / بستر دیود تجاوز می کند، بنابراین یک جریان از منطقه می وشانی تخلیه گیت به می وشانی تخلیه آتصال در حال افزایش است، و به می وشانی تخلیه گیت به بستر دیود تجاوز می کند، بنابراین یک جریان از منطقه می وشانی تخلیه گیت به بستر جریان می یابد.

$$J_{BTBT} = A \frac{EV_R}{\sqrt{E_g}} \exp\left(-B \frac{E_g^{3/2}}{E}\right)$$
(2)

که در آن  $J_{
m BTBT}$ چگالی جریان است، A و B حامل موثر جرم ثابت وابسته هستند ، E میدان الکتریکی در سراسر اتصال است،  $V_{
m R}$  ولتاژ اعمالی در سراسر اتصال است و  $E_{
m g}$  شکاف باند در اتصال است.



شكل 2: مكانيسم نشت در ترانزيستور نانو CMOS [16].

معرفی اخیر BTBT در BTBT گزارش شده است [14]. جریانهای زیرآستانه (I<sub>2</sub>): درحال حاضر زیرآستانه با توجه به جریان انتشار حامل اقلیت جریان از طریق بستر از طریق منبع، در حالت خاموش اتفاق میافتد. زیرآستانه (1) با کاهش ولتاژ آستانه، (2) با کاهش طول کانال فنآوری بهعنوان مثال فناوری مقیاس پذیر، (3) با درجه حرارت، (4) با اثرات کانال کوتاه و (5) با مانع ناشی از تخلیه کاهنده (DIBL) درحال افزایش است.



شکل 3: جریان وابسته حالت ترمینال از نشتیهای مختلف (برای دستگاه NMOS نشان داده شده است).



شکل A: مدارهای ولتاژ گره داخلی برای دو دستگاه انباشته نوع N و دو نوع P (تنها یک گره داخلی).



شکل 5: مدارهای ولتاژ گره داخلی برای سه دستگاه انباشته نوع N و دو نوع P (دو گره داخلی). پشته NMOS بر این اساس در نظر گرفته شده است.

بنابراین، اثر زیرآستانه یکی از منابع تسلط نشت قدرت در دستگاههای مدرن نانو CMOS است. مدل BSIM جریان زیرآستانه برای DIBL را به شرح زیر محاسبه می کند [4]:

$$I_{Sub-Vt} = I_{junc} \left[ 1 - \exp\left(\frac{-V_{DS}}{V_{therm}}\right) \right] \exp\left(\frac{V_{GS} - V_{th} - V_{off}}{nV_{therm}}\right)$$
(3)

به طوری که  $I_{junc}$  محل اتصال معکوس جریان است،  $V_{DS}$  تخلیه ولتاژ منبع اعمال شده است،  $V_{GS}$  ولتاژ منبع گیت DIBL محل اتصال شده است، BSIM داخلی و V\_{off و U\_{off }} آفست ولتاژ محاسبه شده توسط SIM داخلی و DIBL اعمال شده است،  $V_{th}$ 

در ولتاژ آستانه است. تخلیه ناشی از سد کاهنده (DIBL) یک نتیجه مستقیم از مجاورت فیزیکی منبع و تخلیه مناطق در نانو CMOS است.

تونلزنی از طریق و به گیت اکسید (I<sub>3</sub>): تونلزنی الکتریکی از طریق و به گیت اکسید رخ میدهد هنگامی که برق بالا با ضخامت اکسید کم ترکیب میشود (در نمونه 45 نانومتر فنآوری، t<sub>ox</sub> = 1.4 nm)، بنابراین جریان قابل ملاحظه ای به/ از ترمینال گیت عبور می کند. در گره تکنولوژی 65 نانومتر و یا بالاتر، تاثیر آن نسبتا کوچک است، اما با طول کانال 45 نانومتر و پایین تر، اثر آن شدیدتر می شود و حتی ممکن است از جریان های زیر آستانه پیش بیافتد.

در درجه اول مکانیسم میتواند به Nordheim-Fowler و تونلزنی مستقیم تقسیم شود [15،18]. تزریق حامل گرم از بستر به اکسید گیت (I<sub>4</sub>): داغ تزریق حامل از بستر به گیت با توجه به میدانهای الکتریکی بالا در منطقه همپوشانی گیت تخلیه جدا از جریان GIDL اتفاق میافتد. در میدانهای الکتریکی بالا، الکترونها بهاندازه کافی پرانرژی هستند بهعنوان مثال، برای غلبه بر ارتفاع مانع از اکسید و عبور از گیت بهاندازه کافی گرم هستند. تزریق حامل داغ میتواند در هر دو حالت روشن و خاموش رخ دهد. این جریان در BSIM به صورت زیر محاسبه میشود [4]:

$$I_{5} = \frac{ALPHA0 + ALPHA1 \ L_{eff}}{L_{eff}}$$

$$(V_{DS} - V_{DSeff}) \exp\left(\frac{BETA0}{V_{DS} - V_{DSeff}}\right) I_{dsNoSCBE}$$
(4)

که در آن ALPHA<sub>1</sub> ، ALPHA<sub>0</sub> و BETA پارامترهای مدل، V<sub>DSeff</sub> محاسبه ولتاژ داخلی تخلیه منبع برای داشتن گذری از لامپ سه قطبی به منطقه اشباع و I<sub>dsNoSCBE</sub> تخلیه جریان منبع است.

گیت ناشی از نشت تخلیه (GIDL) (I<sub>5</sub>) (I<sub>5</sub>). مقیاس پذیری در ضخامت اکسید در میدانهای الکتریکی بالا در منطقه اکسید گیت حتی با ولتاژ کوچک به کار برده شده در نزدیکی محل اتصال تخلیه نتیجه می شود [20،16،24]. با میدان الکتریکی به اندازه کافی بالا، یک جفت الکترون-حفره می تواند در منطقه هم پوشانی تخلیه گیت تولید شده و در حالی که اکثریت حامل در منطقه تخلیه شدت ترکیب می شود، اقلیت حامل در بستر تولید یک جریان GIDL قرار گیرند. GIDL در حالت خاموش رخ می دهد. معادله زیر نشان دهنده محاسبات BSIM برای جریان GIDL [4] است:

$$I_{GIDKL} = AGIDL.W_{effCJ}N_f \frac{V_{DS} - V_{GS} - EGIDL}{3T_{ox}}$$
$$exp\left(-\frac{3.BGIDL.T_{ox}}{V_{DS} - V_{GS} - EGIDL}\right) \frac{V_{DB}^3}{CGIDL V_{DB}^3}$$
(5)

که در آن CGIDL ،BGIDL ،AGIDL و EGIDL پارامترهای مدل به دست آمده از طریق دادههای تجربی هستند، WeffCI عرض موثر انتشار و N<sub>F</sub> به تعداد انگشتان دست در دستگاه است.

از طریق Punch (I<sub>6</sub>)؛ درحالحاضر این روش نزدیکی فیزیکی از منبع و خروجی در مقیاس پذیری CMOS است [19]. هنگامیکه مناطق تخلیه / بستر (اتصال p-n) و منبع / بستر (اتصال p-n) به یکدیگر می سند به عنوان نتیجه یک مسیر بین آنها برقرار می شود و در نتیجه Punch از طریق جریان جاری و در خارج از حالت رخ می دهد. در مدارات دیجیتال زیر 65 نانومتر گره تکنولوژی، اتصال جریان معکوس بایاس (I<sub>1</sub>)، جریانهای زیرآستانه (I<sub>2</sub>) و نشت گیت (I<sub>3</sub>) منابع غالب نشت [11] و تمرکز برآورد/ تکنیکهای کاهش هستند. این منابع نشتی برای برآورد جداگانه هر مورد رفتار متفاوتی دارند که بسیار مهم هستند. در تجزیهوتحلیل ما، جریان GIDL و جریان از طریق Punch بهعنوان جریانهای زیرآستانه درنظر گرفته می شوند. جریان گیت به دلیل تزریق حامل داغ بیش از نشت گیت کمک کرده است.

شکل. 3 جریان اجزای عمده نشت زیرآستانه، گیت و نشت بدنه در ترانزیستور NMOS بسته به حالتهای ورودی (NMOS در off NMOS) را نشان میدهد:

- هنگامی که NMOS خاموش است و پایانههای زهکشی و منبع در ولتاژهای متفاوت پشتیبانی می شوند:
  - نشت زیرآستانه، از تخلیه به ترمینال منبع.
    - · گیت نشت، از تخلیه به ترمینال گیت.
    - نشت بدنه، از تخلیه به ترمینال بستر.
  - هنگامی که NMOS روشن است و پایانههای زهکشی و منبع در ولتاژ یکسانی قرار دارند:
    - · نشت گیت، از گیت به پایانه تخلیه و منبع جریان مییابد.
      - نشت بدنه، از گیت به ترمینال جریان می یابد.



شكل 6: سلول استاندارد دو ورودى (NAND، NAND، و AND2 و 2XOR).

دو تاثیر ویژه وجود دارد که میتواند جریان نشت در ترانزیستور را تغییر دهد: اثر انباشتن و اثر بارگذاری. پیشین زمانی رخ میدهد که ترانزیستور در یک اتصال تخلیه منبع انباشته شده باشد و تمام اجزای نشت را بهدلیل تغییر قابل توجه در ولتاژ داخلی بهشدت تحت تاثیر قرار میدهد.

جدول 2: الگوی نشتی وابسته در سلولهای تک و دو ورودی. مقادیر در NA

| Standard<br>cell name   | Signal                        | 45 nm                                          | Technolo                                       | gy                                           | 32 nm 1                                        | Technolo                                       | gy                                           | 22 nm                                          | Technolo                                       | gy                                       | Body b                                         | ias. 45 ni                                     | n tec.                               | Body b                                         | as. 32 ni                                      | m tec                                | Body b                                         | ias. 22 ni                                     | n tec                                |
|-------------------------|-------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------|
|                         | pattern                       | SPICE                                          | VHDL                                           | Er %                                         | SPICE                                          | VHDL                                           | Er %                                         | SPICE                                          | VHDL                                           | Er %                                     | SPICE                                          | VHDL                                           | Er %                                 | SPICE                                          | VHDL                                           | Er %                                 | SPICE                                          | VHDL                                           | Er %                                 |
| NOT                     | 0<br>1<br>Aver.               | 34.47<br>39.77<br>37.12                        | 34.48<br>39.78<br>37.13                        | 0.01<br>0.03<br>0.02                         | 39.88<br>44.61<br>42.25                        | 39.89<br>44.63<br>42.26                        | 0.02<br>0.05<br>0.04                         | 45.49<br>50.85<br>48.17                        | 45.51<br>50.90<br>48.21                        | 0.05<br>0.10<br>0.08                     | 30.35<br>29.82<br>30.09                        | 30.30<br>29.94<br>30.12                        | 0.17<br>0.38<br>0.10                 | 33.87<br>33.67<br>33.77                        | 33.80<br>33.73<br>33.76                        | 0.18<br>0.15<br>0.02                 | 36.89<br>37.68<br>37.28                        | 36.87<br>37.98<br>37.43                        | -0.04<br>0.80<br>0.38                |
| 2-Input<br>NAND<br>gate | 00<br>01<br>10<br>11<br>Aver. | 57.63<br>38.55<br>72.27<br>107.07<br>68.88     | 57.61<br>38.78<br>72.31<br>107.15<br>68.96     | -0.04<br>0.58<br>0.07<br>0.07<br>0.12        | 66.82<br>43.73<br>85.66<br>124.00<br>80.05     | 66.82<br>44.31<br>85.75<br>124.14<br>80.26     | 0.00<br>1.31<br>0.11<br>0.11<br>0.25         | 72.09<br>46.87<br>96.93<br>144.01<br>89.97     | 72.10<br>47.67<br>97.13<br>144.32<br>90.30     | 0.01<br>1.67<br>0.21<br>0.22<br>0.37     | 55.43<br>63.61<br>31.97<br>87.51<br>59.63      | 55.33<br>63.82<br>32.56<br>87.46<br>59.79      | 0.18<br>0.34<br>1.83<br>0.06<br>0.28 | 61.81<br>73.61<br>35.57<br>102.48<br>68.37     | 61.76<br>74.21<br>36.09<br>102.39<br>68.61     | 0.09<br>0.82<br>1.43<br>0.09<br>0.36 | 65.08<br>38.08<br>81.47<br>118.76<br>75.85     | 65.07<br>38.07<br>82.33<br>118.56<br>76.01     | 0.02<br>0.02<br>1.04<br>0.17<br>0.21 |
| 2-Input<br>NOR<br>gate  | 00<br>01<br>10<br>11<br>Aver. | 123.14<br>123.29<br>55.59<br>37.92<br>84.98    | 123.23<br>123.69<br>55.65<br>37.71<br>85.07    | 0.08<br>0.32<br>0.11<br>- 0.56<br>0.10       | 147.40<br>145.01<br>59.30<br>40.19<br>97.97    | 147.58<br>145.74<br>59.31<br>39.97<br>98.15    | 0.12<br>0.50<br>0.03<br>-0.54<br>0.18        | 171.77<br>171.71<br>62.80<br>38.66<br>111.23   | 172.16<br>173.44<br>62.96<br>38.42<br>111.74   | 0.23<br>1.00<br>0.26<br>- 0.63<br>0.46   | 113.10<br>38.93<br>100.94<br>35.83<br>72.20    | 113.03<br>39.82<br>100.91<br>35.39<br>72.29    | 0.07<br>2.25<br>0.03<br>1.26<br>0.12 | 130.00<br>42.80<br>116.61<br>38.63<br>82.01    | 129.87<br>43.07<br>116.57<br>38.42<br>81.98    | 0.10<br>0.61<br>0.03<br>0.55<br>0.03 | 146.27<br>45.89<br>135.89<br>37.56<br>91.40    | 146.02<br>45.78<br>135.38<br>37.56<br>91.18    | 0.17<br>0.24<br>0.38<br>0.01<br>0.24 |
| 2-Input<br>AND<br>gate  | 00<br>01<br>10<br>11<br>Aver. | 97.49<br>78.49<br>112.24<br>141.54<br>107.44   | 97.39<br>78.56<br>112.10<br>141.62<br>107.42   | -0.11<br>0.09<br>-0.12<br>0.06<br>-0.02      | 111.60<br>88.63<br>130.62<br>163.89<br>123.69  | 111.55<br>88.12<br>130.38<br>164.03<br>123.52  | - 0.05<br>- 0.58<br>- 0.19<br>0.09<br>- 0.13 | 123.26<br>98.29<br>148.53<br>189.55<br>139.91  | 123.00<br>98.57<br>148.03<br>189.83<br>139.86  | -0.22<br>0.28<br>-0.34<br>0.15<br>-0.04  | 85.27<br>61.51<br>93.45<br>117.36<br>89.40     | 85.32<br>62.59<br>93.85<br>117.75<br>89.88     | 0.06<br>1.72<br>0.43<br>0.33<br>0.53 | 95.29<br>69.05<br>107.09<br>135.01<br>101.61   | 95.58<br>69.97<br>108.11<br>136.16<br>102.46   | 0.31<br>1.31<br>0.95<br>0.85<br>0.83 | 102.76<br>75.75<br>119.15<br>153.76<br>112.86  | 103.26<br>76.37<br>120.70<br>155.41<br>113.93  | 0.48<br>0.81<br>1.28<br>1.06<br>0.95 |
| 2-Input<br>XOR<br>gate  | 00<br>01<br>10<br>11<br>Aver. | 276.10<br>239.23<br>239.26<br>285.80<br>260.09 | 270.88<br>238.78<br>239.41<br>281.50<br>257.64 | - 1.92<br>- 0.19<br>0.06<br>- 1.53<br>- 0.95 | 320.16<br>281.41<br>281.50<br>328.02<br>302.77 | 317.30<br>280.04<br>281.75<br>326.78<br>301.47 | - 0.90<br>- 0.49<br>0.09<br>- 0.38<br>- 0.43 | 370.50<br>320.67<br>320.89<br>377.96<br>347.51 | 370.03<br>318.94<br>321.32<br>380.81<br>347.78 | - 0.13<br>- 0.54<br>0.13<br>0.75<br>0.08 | 227.79<br>207.91<br>207.91<br>225.82<br>217.36 | 229.33<br>208.98<br>208.98<br>228.09<br>218.85 | 0.67<br>0.51<br>0.51<br>1.00<br>0.68 | 260.06<br>238.84<br>238.84<br>259.35<br>249.28 | 262.91<br>239.98<br>239.99<br>261.85<br>251.18 | 1.08<br>0.47<br>0.48<br>0.96<br>0.76 | 296.80<br>266.60<br>266.60<br>298.33<br>282.08 | 299.08<br>267.33<br>267.38<br>299.40<br>283.30 | 0.76<br>0.27<br>0.29<br>0.36<br>0.43 |

حالت دوم زمانی رخ میدهد که نشت گیت یک سلول توسط سلولهای دیگر مانند القاء اختلاف ولتاژ  $\Delta \, v$  در ترمینال خروجی از سلول رانده شود، در نتیجه بر هر دو نشت مؤثر است. در مدارهای پیچیده نشان داده شده است که تاثیر آن در مقایسه با اثرات مثبت و منفی در سلولهای مختلف، تجمعی نیست [17،11].

3. مدل محاسبه نشت

تمام خصوصیات براساس تحلیل انجام شدهی ما در سطح SPICE با استفاده از مدل کانال کوتاه IGFET (BSIM) [4] با 45 نانومتر، 32 نانومتر و 22 نانومتر فلز گیت CMOS بر اساس پارامترهای مدل فنآوری پیش بینی (PTM) [12] است. شبیه ساز SPICE استفاده شده در تحلیل ما NGSPICE است [6،14].

روش برآورد سطح منطق نشت [1] که در تحلیل ما مورد استفاده قرار گرفته است متکی بر اجرای دو بسته VHDL است:

• Single\_MOS\_leakage.vhd : این بسته شامل آرایههای دادهای از همه جریانهای نشتی از چهار MOS

تکی (PMOS-on،NMOS-off،NMOS-onوPMOS-on) به شکل ماتریس است.

• Single\_cell\_voltage\_leakage.vhd : در این بسته، آرایه های داده ای شامل تمام ولتاژهای گره داخلی (مورد نیاز برای ارزیابی به درستی نشت) به شکل ماتریس در دسترس هستند.

هدف از خصوصیات تک MOS برای چاپ مقادیر در تخلیه، گیت، منبع و بستر پایانه برای هر تنوعی در عرض (W) از 1 تا 8 برابر حداقل مقادیر، هر تنوعی در ولتاژ از 0 ولت تا 1.2 ولت با 0.05 ولت گام، در دمای 30 درجه و 100 درجه است. بنابراین همهی استخراجهای جریان نشت، اشاره به مضرب حداقل عرض کانال دارند که در بسته درجه است. بنابراین همهی استخراجهای مریان نشت، اشاره به مضرب حداقل عرض کانال دارند که در بسته ماتریس حاوی 48 سطر، 24 سطر اول برای 30 درجه و 24 ردیف بعدی برای 100 درجه حرارت است. همه نتایج ارائه شده در زیر به 30 درجه اشاره دارد.

در بسته Single\_MOS\_leakage.vhd، سه تابع I<sub>gate</sub> ، I<sub>sub</sub> ،VHDL و I<sub>body</sub> ، مربوط به زیرآستانه، گیت و نشت اتصال بهترتیب تعریف شده است، ارزیابی جریان در سطح منطق با استفاده از دادههای مشخص انجام می شود. جزئیات سه تابع به شرح زیر است:

| function Isub  | (Wmin: in integer;      | -gate length      |
|----------------|-------------------------|-------------------|
|                |                         | [nm], technology  |
|                |                         | parameter         |
|                | NWmin: in integer:      | ate width as      |
|                | Nyviiiii. III liitegei, | -guie which us    |
|                |                         | multiple of wmin  |
|                | Vds: in real;           | -Vds              |
|                | temperature: in integer | —temperature      |
|                |                         | [°C])             |
| function Igate | (Wmin: in integer;      | -gate length      |
| 0              |                         | [nm], technology  |
|                |                         | narameter         |
|                | NWmin: in integer:      | ate width as      |
|                | Novinini, in integer,   | -gute which us    |
|                |                         |                   |
|                | Vdsg: in real;          | -Vdg or Vsg       |
|                | temperature: in integer | —temperature      |
|                |                         | [°C])             |
| function Ibody | (Wmin: in integer;      | -gate length[nm], |
| -              |                         | technology        |
|                |                         | narameter         |
|                | NWmin: in integer:      | ate width as      |
|                | Novinini, in integer,   | -gute which us    |
|                | Milely in sector        |                   |
|                | Vdsb: in real;          | -Vab or Vsb       |
|                | Vgb: in real;           | –Vgb              |
|                | temperature: in integer | –temperature      |
|                |                         | [°C])             |
|                |                         |                   |

خصوصیات ولتاژ گره داخلی برای ارزیابی درست جریان در سازهها از جمله ترانزیستور انباشته مورد نیاز است، که جدول 2 برای ملسازی سلولهای واقعی موردنیاز است.



شكل 7: سلولهاى استاندارد سه ورودى (NAND، و AND، 3 AND، 3 AND، و تمام جمع كننده).

جدول 3: الگوی نشت وابسته در سلول سه ورودی. مقادیر در NA

| Standard cell name | Signal pattern | 45 nm T          | echnology        |        | 32 nm Te         | chnology      |       | 22 nm Te      | chnology         |        | Body bia | as. 45 nm t | tec. | Body bi          | as. 32 nm ( | tec  | Body bia      | s. 22 nm teo  | 2            |
|--------------------|----------------|------------------|------------------|--------|------------------|---------------|-------|---------------|------------------|--------|----------|-------------|------|------------------|-------------|------|---------------|---------------|--------------|
|                    |                | SPICE            | VHDL             | Er %   | SPICE            | VHDL          | Er %  | SPICE         | VHDL             | Er %   | SPICE    | VHDL        | Er % | SPICE            | VHDL        | Er % | SPICE         | VHDL          | Er %         |
| 3-Input NAND       | 000            | 86.05            | 85.74            | -0.36  | 100.44           | 100.27        | -0.16 | 109.03        | 108.96           | -0.07  | 83.01    | 83.08       | 0.08 | 93.15            | 93.18       | 0.03 | 98.72         | 98.73         | 0.02         |
|                    | 001            | 57.49            | 57.77            | 0.49   | 66.62            | 67.27         | 0.97  | 72.01         | 73.32            | 1.78   | 53.90    | 54.55       | 1.19 | 60.68            | 60.99       | 0.51 | 64.53         | 64.50         | 0.04         |
|                    | 010            | 66.67            | 66.99            | 0.47   | 77.32            | 78.18         | 1.10  | 83.75         | 85.09            | 1.57   | 64.15    | 63,38       | 1.20 | 71.67            | 71.31       | 0.51 | 75.82         | 75.80         | 0.02         |
|                    | 011            | 45.09            | 45.72            | 1.38   | 50.59            | 49.99         | -1.20 | 54.07         | 54.95            | 1.60   | 36.14    | 36.66       | 1.42 | 39.58            | 40.47       | 2.19 | 42.80         | 42.74         | 0.15         |
|                    | 100            | 84.05            | 101.18           | -0.03  | 119.37           | 119.38        | 0.00  | 132,27        | 132,29           | 0.02   | 98.38    | 98.58       | 0.20 | 113.27           | 114,20      | 0.82 | 123.79        | 125.32        | 1.22         |
|                    | 110            | 137 53           | 137 70           | 0.44   | 99.55            | 166.42        | 0.95  | 102.90        | 103 70           | 0.37   | 124.20   | 124.90      | 0.56 | 147.58           | 140 51      | 1.30 | 168.83        | 171.61        | 1.59         |
|                    | 111            | 201.83           | 202.10           | 0.12   | 238.05           | 238 52        | 0.19  | 279.26        | 280.27           | 0.37   | 171.63   | 172 52      | 0.50 | 203 17           | 205.89      | 1.30 | 237 59        | 241 55        | 1.62         |
|                    | Aver.          | 97.60            | 97.82            | 0.22   | 114.75           | 115.06        | 0.27  | 129.30        | 130.11           | 0.63   | 88.22    | 88.72       | 0.57 | 102.02           | 103.06      | 1.01 | 113.69        | 114.90        | 1.06         |
| 3-Input NOR        | 000            | 265.78           | 266.27           | 0.18   | 322.11           | 323.08        | 0.30  | 377.94        | 379.94           | 0.53   | 248.39   | 247.97      | 0.17 | 288.56           | 287.86      | 0.24 | 328.14        | 326.83        | 0.40         |
|                    | 001            | 260.14           | 261.69           | 0.59   | 311.44           | 314.32        | 0.92  | 369.73        | 376.46           | 1.79   | 224.15   | 223.82      | 0.15 | 261.70           | 260.79      | 0.35 | 306.12        | 302.99        | 1.04         |
|                    | 010            | 157.38           | 155.77           | -1.04  | 180,81           | 180.34        | -0.26 | 203.18        | 199.65           | -1.77  | 127.99   | 130.87      | 2.20 | 146.33           | 148.32      | 1.34 | 165.31        | 165.03        | 0.17         |
|                    | 011            | 125.02           | 124.73           | -0.23  | 145.35           | 145.05        | -0.21 | 159.84        | 159.50           | -0.22  | 119.02   | 118.55      | 0.39 | 134.67           | 134.88      | 0.16 | 145.40        | 146.07        | 0.46         |
|                    | 100            | 75.54            | 75.97            | 0.57   | 79.88            | 80.45         | 0.71  | 84.23         | 85.50            | 1.48   | 51.38    | 52.62       | 2.36 | 55.08            | 56.47       | 2.45 | 59.86         | 60.02         | 0.26         |
|                    | 101            | 57.21            | 56.70            | -0.90  | 61.77            | 62,44         | 1.07  | 62.06         | 61.96            | -0.17  | 51.48    | 51.87       | 0.75 | 57.62            | 57.24       | 0.67 | 57.62         | 58.27         | 1.11         |
|                    | 110            | 41.70            | 41.30            | -0.82  | 43.41            | 42.92         | -1.15 | 41.38         | 40.80            | - 1.40 | 51.28    | 51.72       | 1.1/ | 39.79            | 40.48       | 1.69 | 38.75         | 39.38         | 1.58         |
|                    | Aver.          | 129.50           | 129.40           | - 0.08 | 150.33           | 150.73        | 0.27  | 169.40        | 169.96           | 0.33   | 113.87   | 114.33      | 0.41 | 130.11           | 130.33      | 0.16 | 144.73        | 144.33        | 0.27         |
| 3-Input AND        | 000            | 125.91           | 125.52           | -0.30  | 145.19           | 144.90        | -0.20 | 160.18        | 159.86           | -0.20  | 112.86   | 113.07      | 0.19 | 126.63           | 126.99      | 0.29 | 136.39        | 136.90        | 0.37         |
|                    | 001            | 97.36            | 97.56            | 0.20   | 111.40           | 111.91        | 0.45  | 123.20        | 124.22           | 0.83   | 83.74    | 84.54       | 0.94 | 94.16            | 94.82       | 0.70 | 102.21        | 102.69        | 0.47         |
|                    | 010            | 106.54           | 106.77           | 0.21   | 122.11           | 122.82        | 0.57  | 134.96        | 135.99           | 0.76   | 90.99    | 89.16       | 2.05 | 105.14           | 105.14      | 0.01 | 113.49        | 114.01        | 0.45         |
|                    | 011            | 85.06            | 84.65            | -0.47  | 95.53            | 94.62         | -0.96 | 105.58        | 104.25           | -1.27  | 64.98    | 66.68       | 2.55 | 73.06            | 74.37       | 1.76 | 80.48         | 81.08         | 0.74         |
|                    | 100            | 141.09           | 140.96           | -0.09  | 164.17           | 164.01        | -0.10 | 183.49        | 183.20           | -0.16  | 128.22   | 128.57      | 0.28 | 146.75           | 148.04      | 0.87 | 161.47        | 163.53        | 1.26         |
|                    | 101            | 124.92           | 125.11           | 0.15   | 144.48           | 145.12        | 0.44  | 162.52        | 163.24           | 0.44   | 104.21   | 106.16      | 1.84 | 121.55           | 122.81      | 1.03 | 135.11        | 137.31        | 1.60         |
|                    | 110            | 177.55           | 177.48           | -0.04  | 211.16           | 211.05        | -0.05 | 244.83        | 244.60           | -0.09  | 154.05   | 154.95      | 0.58 | 182.05           | 183.45      | 0.76 | 206.51        | 210.08        | 1.70         |
|                    | Aver.          | 136.84           | 136.83           | - 0.01 | 159.00           | 159.10        | 0.18  | 179.94        | 180.14           | 0.30   | 117.62   | 118.24      | 0.41 | 135.79           | 136.90      | 0.81 | 151.27        | 153.00        | 1.13         |
| A012               | 000            | 213.47           | 213.29           | -0.08  | 253.31           | 253.05        | -0.10 | 290.74        | 290.21           | -0.18  | 194.31   | 194,38      | 0.03 | 222.67           | 223.00      | 0.15 | 248.38        | 249.00        | 0.25         |
|                    | 001            | 209.17           | 209.43           | 0.13   | 247.64           | 248.14        | 0.20  | 289.76        | 290.91           | 0.40   | 180.81   | 180.82      | 0.00 | 207.92           | 207.95      | 0.01 | 237.04        | 236.74        | 0.13         |
|                    | 010            | 201.04           | 200.85           | -0.09  | 196.43           | 196.64        | 0.11  | 225.18        | 225,22           | 0.02   | 144.30   | 145.40      | 0.75 | 165.24           | 166.19      | 0.57 | 185.13        | 185.87        | 0.40         |
|                    | 011            | 182.28           | 182.57           | 0.16   | 214.19           | 214,74        | 0.26  | 249.87        | 251.30           | 0.57   | 155.57   | 155.69      | 0.07 | 179.31           | 179.77      | 0.25 | 204.86        | 205.07        | 0.10         |
|                    | 100            | 167.32           | 167.31           | 0.00   | 238,36           | 238.07        | -0.12 | 275.27        | 274.67           | -0.22  | 176.24   | 176.64      | 0.23 | 203.27           | 204.30      | 0.50 | 228.53        | 230.11        | 0.69         |
|                    | 101            | 182.22           | 182.68           | 0.25   | 214.32           | 215.05        | 0.34  | 250.10        | 251.80           | 0.68   | 155.57   | 155.75      | 0.12 | 179.31           | 179.89      | 0.32 | 204.86        | 205.27        | 0.20         |
|                    | 110            | 169.03           | 164.57           | - 2.71 | 188.17           | 186.42        | -0.94 | 206.89        | 207.69           | 0.38   | 130.74   | 134.70      | 2.94 | 148.88           | 151.44      | 1.69 | 165.07        | 166.65        | 0.95         |
|                    | 111<br>Aver.   | 115.11           | 114.93<br>179.45 | -0.16  | 130.26<br>210.34 | 130.76 210.36 | 0.38  | 140.57 241.05 | 140.25<br>241.51 | -0.23  | 106.96   | 106.47      | 0.46 | 119,97<br>178,32 | 121.07      | 0.91 | 127.88 200.22 | 130.08 201.10 | 1.69<br>0.44 |
| MUY                | 000            | 142.42           | 142 17           | 0.10   | 164.04           | 164 20        | 0.20  | 195.06        | 194.02           | 0.56   | 124.90   | 125.22      | 0.27 | 140.09           | 141.90      | 0.64 | 154.46        | 155 70        | 0.95         |
| MUA                | 001            | 148.80           | 148.47           | -0.22  | 169.78           | 169.04        | -0.44 | 191 53        | 190.32           | -0.50  | 124.05   | 123.22      | 0.39 | 140.55           | 141.09      | 0.90 | 155.25        | 157.10        | 1 18         |
|                    | 010            | 186.19           | 186.35           | 0.08   | 214.56           | 215.17        | 0.28  | 247.80        | 248.22           | 0.17   | 149.94   | 150.37      | 0.29 | 170.10           | 171.19      | 0.64 | 191.27        | 192.99        | 0.89         |
|                    | 011            | 190.83           | 191.27           | 0.23   | 218.00           | 219.20        | 0.55  | 250.58        | 252.47           | 0.75   | 148.48   | 148.60      | 0.08 | 167.19           | 167.58      | 0.23 | 187.98        | 188.39        | 0.22         |
|                    | 100            | 185.57           | 185.78           | 0.11   | 213.32           | 213.93        | 0.28  | 245.36        | 246.30           | 0.38   | 148.94   | 149.01      | 0.04 | 167.52           | 167.72      | 0.12 | 187.20        | 187.41        | 0.11         |
|                    | 101            | 191.39           | 191.37           | -0.01  | 219.11           | 219.17        | 0.03  | 252.71        | 252.69           | -0.01  | 149.47   | 149.95      | 0.32 | 169.77           | 171.00      | 0.72 | 192.06        | 193.83        | 0.91         |
|                    | 110            | 149.01           | 148.12           | -0.60  | 170.50           | 168.17        | -1.38 | 191.00        | 187.46           | -1.89  | 129.81   | 129.97      | 0.12 | 144.69           | 145.05      | 0.25 | 156.77        | 157.34        | 0.36         |
|                    | 111            | 154.24           | 154.36           | 0.08   | 175.08           | 175.48        | 0.23  | 196.15        | 196.53           | 0.20   | 129.35   | 129.54      | 0.15 | 144.36           | 144.88      | 0.36 | 157.56        | 158.30        | 0.47         |
|                    | Aver.          | 168.68           | 168.61           | -0.04  | 193.16           | 193.06        | -0.05 | 220.13        | 219.86           | -0.12  | 138.16   | 138.45      | 0.20 | 155.66           | 156.40      | 0.48 | 172.82        | 173.90        | 0.62         |
| Full Adder         | 000            | 892.19           | 896.24           | 0.45   | 1068.57          | 1077.56       | 0.83  | 1239.59       | 1250.16          | 0.85   | 808.23   | 811.29      | 0.38 | 936.81           | 940.29      | 0.37 | 1060.75       | 1065.29       | 0.43         |
|                    | 010            | 905.55<br>782.44 | 786.63           | 0.61   | 929.75           | 935.57        | 1.48  | 1084.66       | 1073.07          | -1.00  | 665 38   | 676.63      | 1.66 | 775.17           | 787 30      | 1.10 | 878 44        | 901.06        | 2.51         |
|                    | 011            | 667.82           | 667.75           | -0.01  | 791 31           | 799.66        | 1.04  | 919.21        | 928.08           | 0.96   | 572 58   | 577 42      | 0.84 | 666.79           | 672.96      | 0.92 | 762.75        | 768.86        | 0.79         |
|                    | 100            | 690.02           | 696.76           | 0.97   | 824.21           | 821.49        | -0.33 | 958.76        | 961.53           | 0.29   | 593.32   | 599.57      | 1.04 | 689.83           | 697.84      | 1.15 | 788.95        | 798.26        | 1.17         |
|                    |                |                  |                  |        |                  |               |       |               |                  |        |          |             |      |                  |             |      |               |               |              |

ادامه جدول 3

| Standard cell name | Signal pattern             | 45 nm T                          | echnology                           |                          | 32 nm Te                             | di no lo gy                          |                              | 22 m Te                               | dinology                               |                              | Body bia                             | ns. 45 mm t                          | ec.                          | Body bi                              | as 32 nm t                           | ec                           | Body bias                            | s 22 nm tec                            |                              |
|--------------------|----------------------------|----------------------------------|-------------------------------------|--------------------------|--------------------------------------|--------------------------------------|------------------------------|---------------------------------------|----------------------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------------------------------------|------------------------------|
|                    |                            | SPICE                            | VHDL                                | Er X                     | SPICE                                | VHDL                                 | Er X                         | SPICE                                 | WHDL.                                  | Er X                         | SPICE                                | WHDL                                 | Er X                         | SPICE                                | VHDL                                 | Er X                         | SPICE                                | VHDL                                   | Er X                         |
|                    | 101<br>110<br>111<br>Aver. | 72598<br>72949<br>64377<br>75466 | 72879<br>731.12<br>645.25<br>757.96 | 039<br>022<br>023<br>044 | 856.72<br>861.75<br>743.47<br>894.89 | 857.61<br>865.27<br>755.41<br>901.52 | 0.10<br>0.41<br>1.58<br>0.74 | 997,83<br>991,58<br>827,40<br>1036,30 | 1005.55<br>995.64<br>830.85<br>1042.17 | 0.77<br>0.41<br>0.42<br>0.56 | 613.67<br>635.13<br>567.82<br>655.65 | 622.36<br>640.12<br>572.01<br>661.97 | 1.40<br>0.78<br>0.73<br>0.95 | 718.42<br>741.66<br>662.72<br>763.69 | 725.99<br>748.88<br>664.64<br>770.86 | 1.04<br>0.95<br>0.29<br>0.93 | 828.31<br>843.04<br>752.99<br>871.35 | 8 33.49<br>851.32<br>740.60<br>8 78.31 | 0.62<br>0.97<br>1.67<br>0.79 |

هر ساختار اساسی از یک رفت و برگشت DC بین 30 درجه و 100 درجه برای تمام ترکیبات سیگنال ورودی به عنوان مثال همه الگوهای ورودی استفاده شده است. همه نتایج ولتاژ گره داخلی در یک ماتریس در بسته Single\_Cell\_voltage\_leakage.vhd VHDL ذخیره شده است. خصوصیات ولتاژ گره داخلی تمام ساختار پایه نشان داده شده در شکل4 و 5 را تحت پوشش قرار می دهد.

با توجه به مدار سلولی استاندارد، شناسایی ساختار پایه مدار در آن، برای بازیابی ولتاژ گره داخلی برای هر الگوی ورودی از سیگنال منطقی ممکن است. هنگامی که ولتاژ گره تعیین میشود، میتوان مقادیر جریان نشتی را تقریبا برای همه ترانزیستورهای سلول، که به درستی در تمام اجزاء نشت انباشته شدهاند بازیابی کرد. درواقع، بهمنظور محاسبه کل جریان نشتی در سلول از تامینکنندههای توان خارجی، ما مجبور به تجمیع جریانهای مستقیم به گره زمین هستیم [3.1].

مدل به تصویب رسیده شامل بارگذاری محاسبه اثر، با نشست Gate یک سلول که توسط سلولهای دیگر اتفاق میافتد معرفی اختلاف ولتاژ Δ۷ در ترمینال خروجی سلول است، در نتیجه بر نشت هر دو آنها مؤثر است. اثر بارگذاری ممکن است نشت کل Gate را افزایش یا کاهش دهد. در تحلیل ما، اجرای مدل بارگذاری اثر براساس خصوصیات Δ۷ توسط SPICE براساس شبیه سازی 4BSIM از تمام ترکیبات ممکن و عرض دستگاه از Pull-down ،Pull-Up و بار است. باید اشاره کرد که با توجه به ارزش Δ۷ کوچک و برای جبران خسارت بین اثرات مثبت و منفی، عملی را که بی تاثیر

است انجام میدهیم.

در زیر، یک نمونه از کد VHDL از NAND نشان داده شده است که بیان می کند، چگونه مدل بر آورد نشت به دادههای جداول در بسته دسترسی پیدا می کند.

> constant Wmin: integer:=22; -to set gate length [nm] constant NWmin: integer:=1; -to set gate width as a multiple of Wmin constant temperature: -to set temperature [°C], integer:=30; 25, 30 or 100 constant Vdd: real:=1.0: -to set power supply voltage variable comb: std\_logic\_vector (1 downto 0); assigned with the input signals; variable matrix: matrix\_23NP:=choosematrix(temperature, Vdd): - chooses the matrix in INV packages based on temperature and supply voltage values. variable a00Vdd: real:=-matrix(48).Vn1; variable a01Vdd: real:=matrix(49).Vn1; variable a10Vdd: real:=matrix(50).Vn1: variable a11Vdd; real: = matrix(51).Vn1; - these are variables assigned with node voltages for the four input combinations - of NAND cell. Matrix 48, 49, 50 and 51 corresponds to line number - in the chosen matrix, while.Vn1 corresponds to the node. - < other omitted code here > case comb is when "00" = > - < omitted code > when "01" = > PrintLeakages ( Isub(Wmin,2\*NWmin,a01Vdd, temperature), 2.0\*lbody(Wmin,2\*NWmin,+a01Vdd,0.0,temperature)+ Ibody(Wmin,2\*NWmin, Vdd, 0.0,temperature) 2.0+lgate(1,Wmin,2+NWmin,Vdd,temperature)+lgate(0, Wmin,2\*NWmin,a01Vdd,temperature)); - equation for "01" input combination; current functions are invoked with node voltage values. - similar equations written for other input combinations. - equations are derived from the topology of the involved stacks:

4. مقایسه جریان نشتی برآورد شده در فنآوری مقیاسپذیر

در دادههای ارائه شده، ما به سلولهای استاندارد با حداقل اندازه تمرکز میکنیم، بااینحال روش یکسانی برای تغییر اندازه سلولها به کار برده می شود. رشد خطی جریان نشتی با عامل تغییر اندازه از سلول را می یابیم. در سه گره تکنولوژی اندازه دستگاه با توجه به اندازه حداقل ویژگی در هر فن آوری کوچک شده است، درحالی که VDD سازگار با سرعت بالا در گرههای فن آوری است [5]. همچنین نتایج گزارش شامل بایاس معکوس بدنه به کار برده شده در هر یک از سه فن آوری است. بایاس بدنه همانند V 0.2 – در دستگاههای نوع N و N و VD + 0.2 کر در دستگاههای نوع P به کار برده شده است.

سلولهای استاندارد دو ورودی از کتابخانه ما در شکل 6 با جزئیات و نوع پشته مورد نیاز برای دسترسی به جداول ولتاژ گره داخلی (INV) برای ورودی خاص ترکیبی در بسته Single\_cell\_voltage\_leakage.vhd بیان شده است. همهی پشتهها در سلول دو ورودی، یک ولتاژ گره داخلی دارند. جدول 2 جریان نشست برای سلولهای دو ورودی محاسبه شده توسط برآورد مدل در VHDL و NGSPICE، همراه با درصدی خطا را نشان میدهد. دادهها برای همه الگوهای ورودی در 45 نانومتر، 32 نانومتر و 22 نانومتر گره فنآوری گزارش شده است و اکثریت قریب به اتفاق نتایج درصد خطای زیر 1٪ را نشان میدهد. دقتهای مختلف برای ورودیهای مختلف الگوها ممکن است به تدریج خطاهایی در مقادیر ولتاژ داخلی اشاره کند. نتایج مربوط به بایاس معکوس نشان میدهد که در فنآوریهای هدف، روش موثر برای کاهش نشت وجود ندارد چرا که نشت زیرآستانه اغلب بیان کننده نشت گیت است و به دلیل تغییر ولتاژ داخلی گره در سلولها، کاهش نشت زیرآستانه را محدود میکند.

براین اساس، سلولهای استاندارد سه ورودی در شکل 7 با جزئیات بیشتر برای دسترسی به جداول ولتاژ گره داخلی نشان داده شده است. پشتهها شامل دو گره داخلی به جز سلول استاندارد 21MUX هستند که گرههای داخلی شناور ندارد.



شكل 8: سلول هاى استاندارد متوالى (D-لچ، D-فليپ فلاپ).

جدول 3 گزارش نتایج نشتی برای سلولهای استاندارد سه ورودی محاسبه شده توسط مدل VHDL و NGSPICE، همراه با درصد خطا است.

سلولهای استاندارد متوالی D-لچ و فلیپ فلاپ در شکل 8 نشان داده شده است. برای این سلولها، الگوی مرجع باید شامل مقدار خروجی سیگنال باشد، همان گونه که جریانهای نشتی به طور کامل از استخراج الگوی ورودی جلوگیری نمی کنند. این سلولها برای گرههای داخلی شناور لازم نیست، زیرا گره داخلی از پشته توسط گیت عبور تشکیل شده است و بازخورد همیشه از ورودی مسیر بازخورد فعال است. افت ولتاژ در گره داخلی ناشی از جریانهای انگلی در نظر گرفته می شود که با استفاده از ولتاژ گره برای دسترسی به جداول نشت است. باید گفت که تاثیر افت ولتاژ عملا قابل اغماض است. این امر می تواند در مورد گرههای شناور، که هر گز اتفاق نمی افتند متفاوت باشد. در کتابخانه ارائه شده، شبکه ترانزیستور هر گز گره شناور داخلی ندارد. به طور کلی، این اتفاق با معرفی مدل پشته اختصاص داده شده از گیت انتقال در مدار اولیه سازه مدل سازی می شود. نتایج جریان نشتی برای سلولهای ترتیبی در جدول 4 با توجه به الگوی سیگنال از جمله ورودی، ساعت، و خروجی، همراه مقایسه با نتایج NGSPICE گزارش شده است.

در نهایت، شکل 9 سلولهای استاندارد چهار ورودی، با برجستگی در نوع پشته برای دسترسی به جداول ولتاژ گره داخلی را نشان میدهد و جدول 5 نتایج نشت را، همراه با درصد خطا با توجه به NGSPICE گزارش میدهد. کاربرد دادههای به دست آمده از نشت، با معیار مدارهای متشکل از چندین سلول شامل یک جستجوگر برابری 8 بیتی، 8 بیتی جمع کننده با انتقال رقم نقلی، 18 واحد ورودی ترکیبی عمومی (براساس 31AO) و مقایسه گر 4 بیتی (براساس 20 20) است. نتیجه دقت بهترتیب 0.19٪، 0.20٪، 0.00٪، 20.8٪ در تکنولوژی 45 نانومتر [1]، و بهترتیب 0.24٪، 0.71٪، 0.05٪، 0.32٪ در 22 تکنولوژی نانومتر است. افزایش سرعت در زمان اجرا با توجه به SPICE بین 103 و 104 است.

به عنوان یک تحلیل اضافی، اثربخشی سطح منطق جریان بر آورد برای مدل سازی تغییرات پارامتر فن آوری مورد آزمایش قرار گرفته است. برای این منظور، تغییرات تصادفی در ضخامت اکسید و عرض دستگاه W، تولید مجموعهای از خصوصیات ماتریس (دستگاه ماتریس فعلی و ماتریس ولتاژ گره) از 103 عنصر تجزیه شده است. ما از مجموعهای از خصوصیات ماتریس برای تکرار در ارزیابی سطح منطق مونت کارلو از سلول نشت استفاده می کنیم. تغییرات گوسی با 10 انحراف بود. توزیع فراوانی به دست آمده با ردیابی نشت به دست آمده ارزش موضوع را به تغییرات پارامتر تکنولوژی در شکل 10 برای یک زیرمجموعه از کتابخانه سلول نشان داده شده است.

| Standard cell name | Signal pattern | 45 nm T | echnology |       | 32 nm T | echnology |       | 22 nm T | echnology |       | Body bia | is. 45 nm t | ec.   | Body bia | is. 32 nm t | ec    | Body bia | s. 22 nm t | ec    |
|--------------------|----------------|---------|-----------|-------|---------|-----------|-------|---------|-----------|-------|----------|-------------|-------|----------|-------------|-------|----------|------------|-------|
|                    |                | SPICE   | VHDL      | Er %  | SPICE   | VHDL      | Er %  | SPICE   | VHDL      | Er %  | SPICE    | VHDL        | Er %  | SPICE    | VHDL        | Er %  | SPICE    | VHDL       | Er %  |
| DLatch             | 000            | 142.54  | 142.28    | -0.18 | 161.14  | 160.69    | -0.27 | 182.84  | 181.88    | -0.53 | 119.61   | 119.93      | 0.27  | 132.70   | 133.44      | 0.55  | 145.20   | 146.39     | 0.81  |
|                    | 001            | 182.15  | 182.36    | 0.12  | 207.30  | 207.73    | 0.21  | 238.54  | 239.39    | 0.35  | 98.56    | 97.38       | -1.21 | 109.08   | 108.57      | -0.47 | 119.01   | 117.63     | -1.17 |
|                    | 010            | 162.27  | 162.84    | 0.36  | 184.31  | 186.21    | 1.02  | 210.14  | 212.60    | 1.16  | 133.36   | 134.03      | 0.50  | 150.27   | 151.93      | 1.09  | 167.15   | 169.62     | 1.46  |
|                    | 100            | 185.04  | 184.90    | -0.08 | 210.28  | 210.08    | -0.10 | 243.72  | 243.19    | -0.22 | 144.65   | 144.94      | 0.20  | 161.82   | 162.48      | 0.41  | 182.01   | 183.05     | 0.57  |
|                    | 101            | 145.98  | 145.66    | -0.22 | 165.22  | 164.63    | -0.35 | 185.55  | 184.46    | -0.59 | 123.37   | 122.40      | -0.80 | 137.36   | 137.61      | 0.18  | 152.86   | 154.30     | 0.93  |
|                    | 111            | 159.18  | 158.41    | -0.48 | 180.80  | 178.89    | -1.06 | 204.08  | 201.27    | -1.39 | 93.59    | 92.88       | -0.76 | 113.57   | 112.46      | -0.98 | 124,79   | 123,86     | -0.75 |
|                    | Aver.          | 162.86  | 162.74    | -0.07 | 184.84  | 184.71    | -0.07 | 210.81  | 210.46    | -0.16 | 118.86   | 118.59      | -0.22 | 134.13   | 134.42      | 0.21  | 148.50   | 149.14     | 0.43  |
| D FF               | 001            | 308.20  | 309.32    | 0.36  | 360.17  | 363.07    | 0.80  | 417.32  | 421.79    | 1.06  | 258.94   | 259.16      | 0.09  | 295.87   | 296.66      | 0.27  | 333.65   | 334.64     | 0.30  |
|                    | 010            | 325.95  | 325.85    | -0.03 | 376.78  | 376.80    | 0.01  | 446.68  | 446.39    | -0.06 | 253.41   | 254.03      | 0.25  | 289.31   | 290.91      | 0.55  | 335.24   | 337.82     | 0.77  |
|                    | 011            | 274.66  | 274.44    | -0.08 | 319.46  | 319,24    | -0.07 | 371.57  | 370.71    | -0.23 | 230.63   | 231.13      | 0.22  | 262.18   | 263.43      | 0.47  | 295.60   | 297.73     | 0.72  |
|                    | 100            | 280.21  | 279.75    | -0.16 | 324.63  | 323.99    | -0.20 | 377.88  | 376.11    | -0.47 | 230.16   | 230.87      | 0.31  | 261.85   | 262.94      | 0.42  | 296.39   | 297.92     | 0.52  |
|                    | 101            | 323.31  | 323.42    | 0.03  | 375.17  | 376.00    | 0.22  | 441.77  | 441.54    | -0.05 | 256.24   | 257.13      | 0.35  | 296.69   | 295.93      | -0.26 | 340.65   | 341.40     | 0.22  |
|                    | 110            | 322.64  | 322.37    | -0.08 | 373.64  | 373.37    | -0.07 | 438.41  | 437.42    | -0.23 | 255.21   | 255.82      | 0.24  | 290.97   | 292.49      | 0.52  | 333.19   | 335.77     | 0.77  |
|                    | 111            | 286.99  | 286.72    | -0.09 | 332.75  | 332.90    | 0.05  | 387.78  | 386.61    | -0.30 | 237.08   | 238.32      | 0.52  | 270.72   | 273.70      | 1.09  | 306.85   | 312.01     | 1.66  |
|                    | Aver.          | 303.14  | 303.12    | 0.00  | 351.80  | 352.20    | 0.11  | 411.63  | 411.51    | -0.03 | 245.95   | 246.64      | 0.28  | 281.08   | 282.30      | 0.43  | 320.22   | 322.47     | 0.70  |

جدول 4: الگوی نشت وابسته در سلولهای سریال. مقادیر در NA.



شکل 9: سلول های استاندارد چهار ورودی ( 112AO، 22AO و 31AO).

دادهها با توزیع بهدست آمده با اجرای یک تحلیل SPICE مونت کارلو با تغییرات فن آوری همپوشانی دارد. جالب توجه است که نتیجه توزیع نشت نزدیک است اما در تمام سلولها کاملا گاوسی نیست.

## 5. تجزیهوتحلیل موضوع اجزای نشت به اثرات مقیاس پذیری

پس از تایید دقت محاسبه نشت کل با توجه به نتایج 4SPICE BSIM، ما قادر به ادامه استفاده از مدل سطح منطق بهمنظور تجزیهوتحلیل تاثیر فناوری مقیاسپذیری و از الگوهای ورودی در سه قطعه فعلی نشت بهصورت جداگانه، بهعنوان مثال گیت، زیرآستانه و نشت بدنه هستیم.

جدول 6 نتایج سه جزء عمده نشت برای همه الگوهای ورودی در استاندارد 2 ورودی و تک ورودی و سلولها گزارش شده است. تمام قطعات نشت در 45 نانومتر، 32 نانومتر و 22 نانومتر تکنولوژی تخمین زده شده است. بدیهی است که تمام مولفه نشت، با هم و بنا به جریان نشتی برای یک ترکیبی ورودی خاص در گره تکنولوژی مربوطه خلاصه شده است. جدول 7 نشت زیرآستانه، نشت بدنه و گیت نشت تخمین مقادیر برای همه الگوهای ورودی در استاندارد سه ورودی سلول را گزارش می کند، در حالی که جدول 8 و 9 گزارش نتایج برآورد نشت زیرآستانه، نشت بدنه و Gate در سلول های سریال و سلول و 9 گزارش نتایج برآورد نشت زیرآستانه، نشت بدنه و 9 گزارش سایل می ای سایل و سلول جهار ورودی است.

جدول 5: الگوی نشت وابسته در سلول چهار ورودی. مقادیر در NA.

| Standard | Signal  | 45 nm 1 | Technolo | gy     | 32 nm 1 | Technolo | gy     | 22 nm  | Technolo | ogy   | Body bi | as. 45 nr | n tec. | Body bi | ias. 32 ni | m tec | Body bi | ias. 22 ni | n tec |
|----------|---------|---------|----------|--------|---------|----------|--------|--------|----------|-------|---------|-----------|--------|---------|------------|-------|---------|------------|-------|
| cen name | pattern | SPICE   | VHDL     | Er %   | SPICE   | VHDL     | Er %   | SPICE  | VHDL     | Er %  | SPICE   | VHDL      | Er %   | SPICE   | VHDL       | Er %  | SPICE   | VHDL       | Er %  |
| A0112    | 0000    | 383.57  | 383.46   | -0.03  | 462.52  | 462.45   | -0.02  | 538.77 | 538.57   | -0.04 | 355.84  | 355.77    | 0.02   | 412.42  | 412.54     | 0.03  | 466.50  | 466.83     | 0.07  |
|          | 0001    | 373.40  | 374.90   | 0.58   | 448.34  | 401.40   | 1.10   | 261 55 | 263.22   | 0.22  | 330.32  | 330.15    | 1.24   | 369.23  | 383.07     | 0.15  | 443.33  | 441.50     | -0.51 |
|          | 0010    | 270.39  | 270.03   | -0.14  | 281.65  | 281.32   | - 1.10 | 301.33 | 302.33   | -0.13 | 234.08  | 237.02    | 0.11   | 256.85  | 2/0.88     | 0.77  | 282.38  | 283.44     | -0.04 |
|          | 0100    | 237.30  | 243.80   | 0.00   | 413.43  | 413 58   | 0.03   | 482.22 | 482.47   | 0.05  | 313.41  | 311 70    | 0.55   | 358.00  | 362.40     | 0.20  | 402.10  | 411.41     | 2.25  |
|          | 0101    | 31914   | 320.67   | 0.48   | 380.75  | 383.60   | 0.74   | 448 13 | 454.66   | 1.44  | 278 73  | 278.66    | 0.03   | 324 33  | 324.09     | 0.07  | 374.96  | 372.85     | -0.57 |
|          | 0110    | 216.40  | 217 12   | 0.33   | 25015   | 248.05   | -0.85  | 281 64 | 279 32   | -0.83 | 182.62  | 185 73    | 1.67   | 209.03  | 211.66     | 124   | 234.28  | 234.96     | 0.29  |
|          | 0111    | 184.01  | 183.70   | -0.17  | 214.66  | 214.35   | -0.15  | 238.21 | 237.83   | -0.16 | 173.44  | 173.41    | 0.02   | 197.08  | 198.21     | 0.57  | 214.00  | 215.97     | 0.92  |
|          | 1000    | 310.22  | 310.35   | 0.04   | 371.60  | 372.14   | 0.15   | 432.35 | 433.00   | 0.15  | 287.21  | 280.48    | 2.40   | 326.32  | 324.44     | 0.58  | 372.98  | 367.29     | -1.55 |
|          | 1001    | 319.04  | 320.67   | 0.51   | 380.57  | 383.60   | 0.79   | 447.82 | 454.66   | 1.50  | 278.73  | 278.57    | 0.06   | 324.33  | 323.94     | 0.12  | 374.96  | 372.58     | -0.64 |
|          | 1010    | 216.34  | 216.17   | -0.08  | 250.05  | 246.92   | -1.27  | 281.50 | 282.80   | 0.46  | 182.62  | 185.67    | 1.64   | 209.03  | 211.56     | 1.20  | 234,28  | 234.83     | 0.23  |
|          | 1011    | 183.99  | 183.70   | -0.15  | 214.63  | 214.35   | -0.13  | 238.17 | 237.83   | -0.14 | 173.44  | 173.38    | 0.04   | 197.08  | 198.17     | 0.55  | 214.00  | 215.91     | 0.89  |
|          | 1100    | 206.62  | 207.02   | 0.19   | 226.48  | 225.13   | -0.60  | 246.04 | 241.02   | -2.08 | 157.42  | 158.76    | 0.84   | 171.17  | 176.35     | 2.94  | 191.23  | 192.66     | 0.74  |
|          | 1101    | 140.37  | 141.73   | 0.96   | 157.64  | 156.08   | -1.00  | 169.75 | 172.37   | 1.52  | 127.39  | 127.67    | 0.21   | 140.73  | 144.63     | 2.69  | 156.05  | 155.69     | -0.23 |
|          | 1110    | 120.36  | 118.49   | -1.58  | 134.65  | 132.85   | - 1.36 | 144.10 | 144,42   | 0.22  | 109.80  | 109.57    | 0.21   | 122.40  | 123.73     | 1.07  | 130.14  | 132.33     | 1.65  |
|          | 1111    | 127.34  | 128.59   | 0.97   | 145.55  | 148.48   | 1.97   | 157.05 | 160.59   | 2.21  | 119.47  | 120.61    | 0.94   | 135.82  | 137.89     | 1.50  | 144.98  | 147.66     | 1.82  |
|          | Aver.   | 247.06  | 247.38   | 0.13   | 290.64  | 290.51   | -0.04  | 332.17 | 333.42   | 0.38  | 220.59  | 220.74    | 0.07   | 252.41  | 253.85     | 0.57  | 283.69  | 284.27     | 0.20  |
| A022     | 0000    | 263.69  | 263.55   | -0.05  | 314.01  | 313.88   | -0.04  | 357.66 | 357.37   | -0.08 | 245.68  | 245.58    | 0.04   | 281.86  | 282.03     | 0.06  | 312.83  | 313.28     | 0.15  |
|          | 0001    | 217.52  | 217.64   | 0.05   | 257.19  | 257.59   | 0.16   | 292.16 | 292.58   | 0.14  | 195.76  | 196.64    | 0.45   | 224.57  | 225.30     | 0.32  | 249.77  | 250.22     | 0.18  |
|          | 0010    | 251.22  | 251.12   | -0.04  | 299.13  | 298.90   | -0.08  | 342.28 | 341,83   | -0.13 | 227.61  | 227.90    | 0.13   | 262,46  | 263.41     | 0.36  | 292.97  | 294.48     | 0.51  |
|          | 0011    | 308.50  | 309.43   | 0.30   | 364.51  | 366.24   | 0.47   | 430,83 | 434.91   | 0.94  | 259.70  | 259.62    | 0.03   | 301.47  | 301.75     | 0.09  | 350.47  | 349.94     | 0.15  |
|          | 0100    | 217.50  | 171.61   | 0.01   | 257.08  | 201.06   | 0.15   | 292.01 | 292.39   | 0.13  | 145.66  | 147.66    | 1.35   | 229,99  | 225.18     | 0.33  | 249.59  | 250.10     | 0.20  |
|          | 0110    | 210.10  | 211.26   | 0.55   | 242.25  | 245 50   | 1.36   | 220.03 | 276 71   | 0.00  | 175.62  | 178.01    | 1.33   | 203.60  | 206.60     | 1.41  | 236 71  | 231 35     | 2.32  |
|          | 0111    | 281 23  | 281 75   | 0.35   | 330.27  | 330.42   | 0.04   | 389.07 | 391 52   | 0.62  | 234.46  | 234 30    | 0.07   | 203.09  | 200.00     | 013   | 318 30  | 317.41     | 0.28  |
|          | 1000    | 251 28  | 251 12   | -0.06  | 298.97  | 298.91   | -0.02  | 342.01 | 341.84   | -0.05 | 227.62  | 227.80    | 0.08   | 262.47  | 263.26     | 0.30  | 292.97  | 294 29     | 0.45  |
|          | 1001    | 205.14  | 205.14   | 0.00   | 242.25  | 242.50   | 0.10   | 276.73 | 276.83   | 0.04  | 177.60  | 178.91    | 0.73   | 205.04  | 206.60     | 0.76  | 229.72  | 231.35     | 0.71  |
|          | 1010    | 238.84  | 238.68   | -0.07  | 284.17  | 283.93   | -0.08  | 326.77 | 326.28   | -0.15 | 209.54  | 210.16    | 0.29   | 243.07  | 244.70     | 0.67  | 273.11  | 275.57     | 0.89  |
|          | 1011    | 281.10  | 282.70   | 0.57   | 330.49  | 333.19   | 0.81   | 389.49 | 395.91   | 1.62  | 234.46  | 234.41    | 0.02   | 272.86  | 273.42     | 0.20  | 318.30  | 317.76     | 0.17  |
|          | 1100    | 171.42  | 170.15   | -0.75  | 193.33  | 196.06   | 1.40   | 213.64 | 210.59   | -1.45 | 138.53  | 137.54    | 0.72   | 159.10  | 154.89     | 2,72  | 170.59  | 171.13     | 0.31  |
|          | 1101    | 205.14  | 204.24   | -0.44  | 235.89  | 234.27   | -0.69  | 258.56 | 251.58   | -2.78 | 178.82  | 175.75    | 1.75   | 194.26  | 199.30     | 2.53  | 221.58  | 218.52     | 1.40  |
|          | 1110    | 210.01  | 207.53   | - 1.20 | 236.04  | 236.81   | 0.33   | 258.79 | 251.58   | -2.87 | 177.17  | 175.84    | 0.76   | 199.17  | 199.44     | 0.13  | 211.58  | 218.74     | 3.28  |
|          | 1111    | 165.45  | 165.06   | -0.23  | 189.94  | 189.58   | - 0.19 | 207.80 | 207.39   | -0.20 | 152.23  | 156,29    | 2.60   | 185.07  | 180.58     | 2.49  | 198.39  | 197.37     | 0.52  |
|          | Aver.   | 228.21  | 228.04   | - 0.08 | 267.24  | 267.90   | 0.25   | 305.07 | 304.79   | -0.09 | 198.51  | 198.99    | 0.24   | 228.71  | 229.26     | 0.24  | 257.08  | 257.41     | 0.13  |
| A031     | 0000    | 269.01  | 268.56   | -0.17  | 320.81  | 320.40   | -0.13  | 368.23 | 367.65   | -0.16 | 248.14  | 248.37    | 0.09   | 285.20  | 285.60     | 0.14  | 318.27  | 318.89     | 0.20  |
|          | 0001    | 260.47  | 260.72   | 0.10   | 310.23  | 310.70   | 0.15   | 361.87 | 362.94   | 0.29  | 230.45  | 230.40    | 0.02   | 265.50  | 265.48     | 0.01  | 301.38  | 301.07     | 0.10  |
|          | 0010    | 257.05  | 256.85   | -0.08  | 305.87  | 305.60   | - 0.09 | 350.95 | 350.41   | -0.16 | 237.25  | 237.63    | 0.16   | 274.12  | 275.44     | 0.48  | 307.09  | 309.27     | 0.70  |
|          | 0011    | 257.05  | 257.43   | 0.15   | 294.50  | 292.71   | -0.61  | 343.87 | 341.71   | -0.63 | 218.88  | 219.19    | 0.14   | 254.00  | 254.99     | 0.39  | 289.96  | 291.14     | 0.40  |
|          | 0100    | 222.50  | 222.36   | -0.06  | 263.82  | 263.56   | -0.10  | 302.42 | 301.92   | -0.17 | 203.03  | 202.43    | 0.30   | 232.52  | 232.55     | 1.00  | 259.12  | 259.74     | 0.24  |
|          | 0101    | 217.80  | 216.77   | -0.50  | 250.32  | 249.04   | - 2.92 | 298.56 | 292.28   | -2.15 | 180.87  | 186.58    | 3.06   | 209.99  | 214.18     | 1.96  | 237.11  | 243,44     | 2.60  |
|          | 0110    | 200.32  | 200.23   | -0.05  | 318.89  | 310.79   | -0.05  | 225 42 | 227.25   | -0.05 | 200.80  | 237.73    | 0.37   | 2/7.29  | 279.00     | 0.79  | 313.66  | 319,43     | 0.00  |
|          | 1000    | 234.37  | 234.60   | 0.18   | 253.12  | 279.58   | 0.28   | 200.60 | 201 44   | 0.50  | 207.51  | 103.61    | 0.29   | 242.50  | 244.40     | 0.78  | 2/8.52  | 260.99     | 0.88  |
|          | 1000    | 247.35  | 247.76   | 0.05   | 294 27  | 295.05   | 0.22   | 343.46 | 345.11   | 0.20  | 218.88  | 219.07    | 0.09   | 254.00  | 254 77     | 0.32  | 289.96  | 290.77     | 0.25  |
|          | 1010    | 213.74  | 213.86   | 0.06   | 252.26  | 252.81   | 0.22   | 289.37 | 289.89   | 0.18  | 187.00  | 188.96    | 1.04   | 216.74  | 219.02     | 1.04  | 244.49  | 246.79     | 0.93  |
|          | 1011    | 234.27  | 234.80   | 0.23   | 278.38  | 279.38   | 0.36   | 325.07 | 327.25   | 0.67  | 207.31  | 207.82    | 0.25   | 242.50  | 244.22     | 0.70  | 278.52  | 280.67     | 0.76  |
|          | 1100    | 173.88  | 173.95   | 0.05   | 203.32  | 203.81   | 0.24   | 232.44 | 233.01   | 0.24  | 147.78  | 149.50    | 1.15   | 169.25  | 170.58     | 0.78  | 189.86  | 190.56     | 0.37  |
|          | 1101    | 234.06  | 234.80   | 0.31   | 278.01  | 279.38   | 0.49   | 324.42 | 327.25   | 0.86  | 207.31  | 207.62    | 0.15   | 242.50  | 243.85     | 0.55  | 278.52  | 280.05     | 0.54  |
|          | 1110    | 273.85  | 276.01   | 0.78   | 309.92  | 315.60   | 1.80   | 345.21 | 353.53   | 2.35  | 219.67  | 225.76    | 2.69   | 253.34  | 259.60     | 2.41  | 287.42  | 291.48     | 1.39  |
|          | 1111    | 184.55  | 183.05   | -0.82  | 214.84  | 214.73   | -0.05  | 239.17 | 238.89   | -0.12 | 175.16  | 174,41    | 0.43   | 202.11  | 204.63     | 1.23  | 223.40  | 228,24     | 2.12  |
|          | Aver.   | 234.98  | 235.09   | 0.05   | 277.07  | 277.16   | 0.03   | 319.54 | 320.11   | 0.18  | 207.42  | 208.56    | 0.55   | 240.19  | 241.95     | 0.73  | 271.71  | 273.81     | 0.77  |

همان گونه که انتظار میرود، روند کلی جدول 6 از سه مولفه نشت با مقیاس پذیری تکنولوژی در حال افزایش است. جالب توجه است، هر وابستگی الگوی ورودی سلول در سه فن آوری هدف، نسبت ثابتی بین مقادیر نشت مربوط به هر دو الگوی متفاوت را نشان میدهد. این اثر مربوط به تکنیکهای تجزیه و تحلیل قدرت دیفرانسیل برای حمله مدار مجتمعهای رمزنگاری است، که در آن امکان حملات موفق بر اساس توان استاتیک مربوط به سطح منطق نشان داده شده است [8].



شكل 10: نمایش نتایج سطح منطق و تجزیهوتحلیل SPICE مونت كارلو از تغییرات نشت.

جدول 6: تاثیر مقیاس پذیری در قطعات نشت در سلول دو ورودی و تک ورودی. (زیر آستانه <sup>K</sup>/<sub>4</sub>Body،

| Standard cell name | Input pattern        | 45 nm Tech                           | nology                           |                                          | 32 nm Tech                           | hnology                              |                                          | 22 nm Tec                            | hnology                          |                                       |
|--------------------|----------------------|--------------------------------------|----------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|----------------------------------|---------------------------------------|
|                    |                      | S [nA]                               | B [nA]                           | G [nA]                                   | S [nA]                               | B [nA]                               | G [nA]                                   | S [nA]                               | B [nA]                           | G [nA]                                |
| NOT                | 0<br>1               | 6.844<br>24.000                      | 0.848                            | 26.783<br>15.697                         | 7.766<br>27.150                      | 2.343<br>0.217                       | 29.782<br>17.266                         | 11.103<br>33.840                     | 3.399<br>0.276                   | 31.006<br>16.785                      |
| NAND2              | 00<br>01<br>10       | 1.301<br>10.298<br>15.656            | 1.696<br>1.040<br>1.040          | 54.610<br>27.437<br>55.618               | 0.886<br>10.644<br>19.083            | 4.686<br>2.876<br>2.876              | 61.248<br>30.794<br>63.792               | 0.603<br>11.027<br>24.268            | 6.797<br>4.180<br>4.181          | 64.695<br>32.459<br>68.682            |
| NOR2               | 11<br>00             | 48.000<br>13.689                     | 0.384                            | 58.762<br>105.940                        | 54.300<br>15.532                     | 1.067                                | 68.772<br>121.810                        | 67.681<br>22.206                     | 1.564<br>15.594                  | 75.079<br>134.350                     |
|                    | 01<br>10<br>11       | 51.001<br>37.030<br>5.080            | 2.210<br>1.886<br>0.168          | 70.847<br>17.145<br>32.026               | 59.327<br>39.680<br>4.450            | 5.337<br>0.217<br>0.435              | 81.167<br>19.326<br>35.550               | 77.455<br>43.577<br>2.691            | 8.073<br>0.276<br>0.553          | 87.911<br>19.110<br>35.178            |
| AND2               | 00<br>01<br>10<br>11 | 25.302<br>39.656<br>54.845<br>34.298 | 1.780<br>1.124<br>1.232<br>1.124 | 70.307<br>71.314<br>85.545<br>43.134     | 28.107<br>37.239<br>46.229<br>62.065 | 4.903<br>3.094<br>3.094<br>3.410     | 78.536<br>47.786<br>81.057<br>98.554     | 34.443<br>58.108<br>78.784<br>44.867 | 7.074<br>4.457<br>4.963<br>4.457 | 81.481<br>85.468<br>106.080<br>49.244 |
| XOR2               | 00<br>01<br>10       | 102.770<br>56.799<br>56.799          | 5.684<br>4.072<br>4.704          | 162,430<br>177,910<br>177,910<br>140,250 | 114,550<br>64,642<br>64,642          | 15.991<br>11.523<br>13.233<br>11.740 | 186.740<br>203.870<br>203.870<br>161.710 | 143.240<br>80.238<br>80.238          | 23.956<br>17.433<br>19.820       | 202.830<br>221.270<br>221.270         |

#### (.G¼Gate

نتایج ما نشان میدهد که موفقیت این حمله میتواند مستقل از تکنولوژی انتظار رود. همچنین تاثیر مربوط به تکنیک محدودیت نشت براساس انتخاب الگوی ورودی، همانند نتایج ما است که انتظار داریم کاهش نشت نسبی فن آوریهای مستقل دست یافتنی باشد. همچنین، گیتهای 2NAND و 3NAND تفاوت چشمگیری را در جریان نشتی زیر آستانه مربوط به الگوهای ورودی "0.0" و "1.1"، متفاوت از سلولهای دیگر نشان میدهد. این مساله میتواند به هنگام مربوط به الگوهای ورودی "0.0" و "1.1"، متفاوت از سلولهای دیگر نشان میدهد. این مساله میتواند به هنگام طراحی واحد منطق با الگوی ورودی بر اساس مدیریت نشت انجام گیرد. متوسط روند افزایشی هر یک از مؤلفههای نشت بهصورت جداگانه در شکل 11 برای سلولهای تک ورودی و دو ورودی، در شکل 12 برای سلولهای سه ورودی، نشت بهصورت جداگانه در شکل 11 برای سلولهای تک ورودی و دو ورودی، در شکل 12 برای سلولهای سه ورودی، افزایشی هر یک از مؤلفههای و در شکل 13 برای سلولهای پی درپی چهار ورودی نشان داده شده است. تعداد درصد نسبت به میلهها نشاندهندهی افزایش میانگین درصد بنا به فن آوری نشت مربوطه در سلول خاص است. مشاهده می کنیم که، بهطور میانگین، افزایش مین از ایش میانگین درصد بنا به فن آوری نشت مربوطه در سلول خاص است. مشاهده می کنیم که، بهطور میانگین، افزایش مقیاس پذیری اوزایش میانگین درصد بنا به فن آوری نشت مربوطه در سلول خاص است. مشاهده می کنیم که، بهطور میانگین، افزایش مینی زیر آستانه برای مقیاس پذیری سلولهای 2 ورودی از 45 نانومتر به 32 نانومتر حدود 12٪ است، درحالی که مقیاس پذیری از 32 نانومتر به 23 نانومتر مدود 25 درصد است. حالب توجه است، درحالی که هر گام از مقیاس پذیری، مقیاس پذیری از 23 نانومتر به 20 نانومتر مدود 25 درصد است. حالب توجه است، درحالی که هر گام از مقیاس پذیری، مقیاس پذیری نی می کاه از مقیاس پذیری نشان می دهد که افزایش

# جدول 7: تاثیر مقیاس پذیری در اجزای اصلی نشت در سلول سه ورودی. (S¼Gate ،B¼Body آستانه، B¼Body.)

| Standard cell name | Input pattern | 45 nm Tech | nology |         | 32 nm Tech | nnology |         | 22 nm Tec | hnology |         |
|--------------------|---------------|------------|--------|---------|------------|---------|---------|-----------|---------|---------|
|                    |               | S [nA]     | B [nA] | G [nA]  | S [nA]     | B [nA]  | G [nA]  | S [nA]    | B [nA]  | G [nA]  |
| NAND3              | 000           | 0.742      | 2.544  | 82.455  | 0.497      | 7.028   | 92.744  | 0.331     | 10.197  | 98.429  |
|                    | 001           | 1.941      | 1.996  | 53.837  | 1.125      | 5.535   | 60.613  | 0.902     | 8.084   | 64.334  |
|                    | 010           | 4,737      | 1.996  | 60.254  | 4.245      | 5,535   | 68.404  | 3.872     | 8.086   | 73.128  |
|                    | 011           | 15.127     | 1.449  | 29.145  | 15.520     | 1,700   | 32,770  | 16.143    | 4.180   | 34,630  |
|                    | 100           | 2.034      | 1 996  | 97152   | 1.411      | 5 5 3 5 | 112 430 | 0.993     | 8 086   | 123 220 |
|                    | 101           | 16.095     | 1.449  | 67 785  | 16.957     | 4 0 4 2 | 79.485  | 18 170    | 5 974   | 88 197  |
|                    | 110           | 24 463     | 1.449  | 111 790 | 30 387     | 4.042   | 131 990 | 30.051    | 5 977   | 147 770 |
|                    | 111           | 72 001     | 0.901  | 129 190 | 81 449     | 2 5 4 9 | 154 520 | 101 520   | 3.863   | 174 880 |
|                    |               | 12.001     | 0.00   |         | 01.110     | 2.010   | 10100   | 101.020   | 3.003   | 174.000 |
| NOR3               | 000           | 20.533     | 8.267  | 237.470 | 23.298     | 23.688  | 276.090 | 33.310    | 36.585  | 310.050 |
|                    | 001           | 77.938     | 5.596  | 178.150 | 91.361     | 16.009  | 206.950 | 120.990   | 24.666  | 230.810 |
|                    | 010           | 58.272     | 0.084  | 97.410  | 61.301     | 0.217   | 118.820 | 68.134    | 0.277   | 131.240 |
|                    | 011           | 8.439      | 2.924  | 113.360 | 6.146      | 8.331   | 130.580 | 4.208     | 12,748  | 142.540 |
|                    | 100           | 55.313     | 2.840  | 17.821  | 57.301     | 8.113   | 15.040  | 61.653    | 12.470  | 11.374  |
|                    | 101           | 17.542     | 2.924  | 36.238  | 16.084     | 8.331   | 38.026  | 14.631    | 12.746  | 34.580  |
|                    | 110           | 8.195      | 0.084  | 33.081  | 5.886      | 0.217   | 36.816  | 3.948     | 0.277   | 36.578  |
|                    | 111           | 3.142      | 1,225  | 48.354  | 2.752      | 0.652   | 53.834  | 1.450     | 0.827   | 53.570  |
|                    |               |            |        |         |            |         |         |           |         |         |
| AND3               | 000           | 24,742     | 2.628  | 98.152  | 27.647     | 7.246   | 110.010 | 34,172    | 10.473  | 115.210 |
|                    | 001           | 25.941     | 2.080  | 69.534  | 28.275     | 5.753   | 77.879  | 34.742    | 8.362   | 81.119  |
|                    | 010           | 28.737     | 2.080  | 75.951  | 31.395     | 5.753   | 85.670  | 37.712    | 8.362   | 89.913  |
|                    | 011           | 39.127     | 0.685  | 44.842  | 42.670     | 1.917   | 50.036  | 49.983    | 2.853   | 51.415  |
|                    | 100           | 26.034     | 2.080  | 112.850 | 28,561     | 5.753   | 129.690 | 34.834    | 8.362   | 140.000 |
|                    | 101           | 40.095     | 1.533  | 83.481  | 44.107     | 4.260   | 96.751  | 52.010    | 6.251   | 104.980 |
|                    | 110           | 48.463     | 1.533  | 127.480 | 57.537     | 4.260   | 149.250 | 73.791    | 6.253   | 164.550 |
|                    | 111           | 78.845     | 1.749  | 155.980 | 89.215     | 4.892   | 184,300 | 112.620   | 7.262   | 205.890 |
| 1012               | 000           | 22.146     | E 400  | 175 650 | 25 902     | 15 576  | 201 670 | AE EAC    | 22.666  | 221.000 |
| AUIZ               | 000           | 52,140     | 3,490  | 1/5.050 | 55.802     | 13.370  | 201.070 | 45,540    | 23,000  | 221.000 |
|                    | 001           | 57.828     | 4.536  | 147.070 | 67.056     | 12.799  | 168.290 | 88.621    | 19.269  | 183.020 |
|                    | 010           | 46.501     | 3.880  | 150.470 | 45.560     | 10.990  | 140.090 | 55.970    | 16.652  | 152.590 |
|                    | 011           | 57.820     | 2.818  | 121.940 | 67.037     | 7.897   | 139.800 | 88.558    | 11.747  | 150.990 |
|                    | 100           | 41.143     | 3.880  | 122.290 | 53.998     | 10.990  | 173.080 | 69.211    | 16.652  | 188.810 |
|                    | 101           | 57.820     | 2.926  | 121,940 | 67.037     | 8.213   | 139.800 | 88.558    | 12.254  | 150.990 |
|                    | 110           | 79.759     | 3.034  | 81.779  | 83.221     | 8.529   | 94.672  | 92.450    | 12.760  | 102.480 |
|                    | 111           | 16.789     | 1.316  | 96.820  | 15.789     | 3.627   | 111.340 | 15.994    | 5.239   | 119.010 |
| MUX12              | 000           | 37.689     | 1.780  | 103.700 | 42.682     | 4.903   | 116.710 | 56.047    | 7.076   | 121.800 |
|                    | 001           | 54.845     | 1.016  | 92.612  | 62.066     | 2.778   | 104.200 | 78,784    | 3.953   | 107.580 |
|                    | 010           | 77.348     | 2.343  | 106.660 | 88.920     | 6.391   | 119.860 | 114.170   | 9.058   | 124.990 |
|                    | 011           | 94.504     | 2,248  | 94.521  | 108,300    | 6.188   | 104.710 | 136.910   | 8.914   | 106.650 |
|                    | 100           | 77.348     | 2.820  | 105.610 | 88.920     | 7.780   | 117.230 | 114.170   | 11.258  | 120.870 |
|                    | 101           | 94.504     | 1.292  | 95.571  | 108.300    | 3.529   | 107.340 | 136,910   | 5.011   | 110.770 |
|                    | 110           | 37.689     | 1.864  | 108.570 | 42.682     | 5.121   | 120.370 | 56.047    | 7.355   | 124,060 |
|                    | 111           | 54.845     | 2.032  | 97.481  | 62.066     | 5.555   | 107.860 | 78,784    | 7.906   | 109.840 |
| fA                 | 000           | 108.920    | 21.457 | 765.860 | 124,970    | 61.125  | 891.470 | 158.860   | 93.509  | 997,780 |
|                    | 001           | 217.520    | 21.949 | 671.670 | 270.440    | 62.508  | 766.660 | 342.090   | 95.580  | 853.940 |
|                    | 010           | 187.050    | 17.584 | 582.000 | 198.340    | 50.026  | 687.200 | 271.840   | 76.368  | 725.770 |
|                    | 011           | 185.120    | 13.519 | 469.110 | 213,700    | 38.394  | 547.570 | 263.550   | 58.446  | 606.090 |
|                    | 100           | 200.680    | 12.072 | 484.010 | 224,740    | 34,234  | 562,510 | 285.620   | 51.977  | 623.940 |
|                    | 101           | 211.820    | 13.519 | 503.450 | 233.120    | 38.394  | 586,100 | 299.650   | 58.449  | 647.460 |
|                    | 110           | 185.930    | 11.909 | 533.370 | 207.330    | 33.808  | 624.130 | 250.190   | 51.435  | 694.020 |
|                    |               | 271 200    | 7044   | 200.050 | 100 100    | 22.175  | 525 120 | 224.000   | 22 502  | F70.000 |

## جدول 8: تاثیر مقیاس پذیری در قطعات نشت در سلول های پی در پی. (S¼Gate ،B¼Body آستانه، S¼Sub).)

| Standard cell name | Signal pattern | 45 nm Tech | nology |         | 32 nm Tech | nology |         | 22 nm Tech | nology |         |
|--------------------|----------------|------------|--------|---------|------------|--------|---------|------------|--------|---------|
|                    |                | S [nA]     | B [nA] | G [nA]  | S [nA]     | B [mA] | G [nA]  | S [nA]     | B [nA] | G [nA]  |
| DLatch             | 000            | 48.189     | 1.864  | 92.225  | 53.743     | 5.121  | 101.830 | 71.551     | 7.352  | 102.980 |
|                    | 001            | 84,192     | 2.151  | 96.020  | 96.686     | 5.858  | 105.180 | 125.270    | 8.276  | 105.840 |
|                    | 010            | 65.345     | 2,140  | 95.358  | 73.127     | 5.871  | 107.210 | 94.289     | 8.408  | 109.900 |
|                    | 100            | 87,848     | 1.864  | 95.184  | 99.981     | 5,121  | 104,970 | 129,670    | 7.352  | 106,170 |
|                    | 101            | 44.533     | 2.151  | 98.979  | 50.448     | 5.858  | 108.330 | 67.150     | 8.277  | 109.030 |
|                    | 111            | 61.689     | 1.579  | 95.144  | 69.832     | 4,266  | 104.790 | 89.887     | 5.936  | 105.450 |
| DFF                | 001            | 98.821     | 5.660  | 204.840 | 114.300    | 15.893 | 232.880 | 148.800    | 23.728 | 249.260 |
|                    | 010            | 162,190    | 3.014  | 160.640 | 188,190    | 8,196  | 180.420 | 246,700    | 11.548 | 188,140 |
|                    | 011            | 90,848     | 4.337  | 179.260 | 105.010    | 12.044 | 202.190 | 139.630    | 17.638 | 213.450 |
|                    | 100            | 108.000    | 3.573  | 168.170 | 124,390    | 9.919  | 189.680 | 162,360    | 14.515 | 199.230 |
|                    | 101            | 147.660    | 3.573  | 172,180 | 170.630    | 9.919  | 195.450 | 220.490    | 14.515 | 206.540 |
|                    | 110            | 147.660    | 3.573  | 171.130 | 170.630    | 9.919  | 192.820 | 220.490    | 14.516 | 202.420 |
|                    | 111            | 108.000    | 3.573  | 175.140 | 124,390    | 9.919  | 198,590 | 162,360    | 14.515 | 209.730 |

جدول 9: تاثیر مقیاس پذیری در اجزاء اصلی نشت در سلول چهار ورودی. (S¼Sub آستانه، B¼Body،

(.G¼Gate

| Standard cell name | Signal pattern | 45 nm Tecl | nology |         | 32 nm Tec | hnology |         | 22 nm Tec | hnology |         |
|--------------------|----------------|------------|--------|---------|-----------|---------|---------|-----------|---------|---------|
|                    |                | S [nA]     | B [nA] | G [nA]  | S [nA]    | B [nA]  | G [nA]  | S [nA]    | B [nA]  | G [nA]  |
| A0112              | 0000           | 38,990     | 11,107 | 333.370 | 43.568    | 31.802  | 387.080 | 56.650    | 49.056  | 432.864 |
|                    | 0001           | 84,769     | 9.486  | 280.650 | 99.097    | 26.985  | 325.340 | 131.993   | 41.183  | 362,310 |
|                    | 0010           | 65.118     | 9.199  | 195.720 | 69.071    | 26,248  | 218,530 | 79,244    | 40.259  | 242.824 |
|                    | 0011           | 15.283     | 6.528  | 215.770 | 13.912    | 18.570  | 248.830 | 15.311    | 28.341  | 273.777 |
|                    | 0100           | 53.348     | 8.543  | 282.000 | 61.770    | 24.439  | 327,370 | 80.329    | 37.643  | 364.499 |
|                    | 0101           | 84,744     | 6.636  | 229.300 | 99.041    | 18.886  | 265.670 | 131.819   | 28.847  | 293.991 |
|                    | 0110           | 65.116     | 5.788  | 146.220 | 69.067    | 16.543  | 162.440 | 79.237    | 25.448  | 174.638 |
|                    | 0111           | 15.283     | 3.964  | 164.460 | 13.912    | 11.207  | 189.230 | 15.311    | 16.928  | 205.590 |
|                    | 1000           | 47.987     | 8.543  | 253.820 | 53.326    | 24.439  | 294,370 | 67.074    | 37.643  | 328,285 |
|                    | 1001           | 84.744     | 6.636  | 229.300 | 99.041    | 18.886  | 265.670 | 131.819   | 28.847  | 293.991 |
|                    | 1010           | 65.116     | 6.636  | 144.430 | 69.067    | 18.886  | 158,970 | 79.237    | 28.847  | 174,712 |
|                    | 1011           | 15.283     | 3.964  | 164.460 | 13.912    | 11.207  | 189.230 | 15.311    | 16.928  | 205.590 |
|                    | 1100           | 112.420    | 3.988  | 90.612  | 115.650   | 11.306  | 98.167  | 125.492   | 17.156  | 98.371  |
|                    | 1101           | 35.128     | 4.072  | 102.540 | 33.174    | 11.523  | 111.380 | 33.663    | 17.432  | 121.276 |
|                    | 1110           | 20.347     | 3.224  | 94.926  | 18.429    | 9.181   | 105.240 | 18.222    | 14.035  | 112.163 |
|                    | 1111           | 8.728      | 1.401  | 118.470 | 9.125     | 3.845   | 135.510 | 12.008    | 5.515   | 143.065 |
| A022               | 0000           | 26.603     | 7.291  | 229.660 | 28.921    | 20.695  | 264.260 | 35.046    | 31.464  | 290.860 |
|                    | 0001           | 35.600     | 5.682  | 176.360 | 38.679    | 16.109  | 202.800 | 45.470    | 24.449  | 222.660 |
|                    | 0010           | 40.958     | 5.682  | 204.480 | 47.118    | 16.109  | 235.680 | 58,711    | 24.449  | 258.670 |
|                    | 0011           | 108,800    | 4.836  | 195.800 | 126.310   | 13.649  | 226,290 | 166.010   | 20,556  | 248.340 |
|                    | 0100           | 35.600     | 5.682  | 176.310 | 38.679    | 16.109  | 202.690 | 45.470    | 24.449  | 222.470 |
|                    | 0101           | 44.597     | 4.072  | 122.940 | 48.437    | 11.523  | 141.100 | 55.894    | 17.434  | 154.050 |
|                    | 0110           | 49.957     | 2,164  | 159.140 | 56.881    | 5.970   | 182.740 | 69.149    | 8.638   | 198.930 |
|                    | 0111           | 108.800    | 2,272  | 170.690 | 126.310   | 6.286   | 197.820 | 166.010   | 9,144   | 216.360 |
|                    | 1000           | 40.958     | 5.682  | 204.490 | 47.118    | 16.109  | 235.680 | 58,711    | 24,449  | 258.680 |
|                    | 1001           | 49.955     | 4.072  | 151.120 | 56.876    | 11.523  | 174.100 | 69.135    | 17.434  | 190.260 |
|                    | 1010           | 55.313     | 4.072  | 179.300 | 65.315    | 11.523  | 207.090 | 82.376    | 17.434  | 226.470 |
|                    | 1011           | 108.800    | 3.226  | 170.690 | 126.310   | 9.063   | 197.820 | 166.010   | 13.542  | 216.360 |
|                    | 1100           | 83.053     | 4,830  | 82.262  | 87.271    | 13.649  | 95,143  | 98.258    | 17.150  | 95.177  |
|                    | 1101           | 83.053     | 3.875  | 117.320 | 87.271    | 10.960  | 136,030 | 98.258    | 13,540  | 139.780 |
|                    | 1110           | 83.053     | 3.220  | 145 570 | 87.271    | 9.063   | 140,480 | 98.258    | 6 5 2 7 | 139.780 |
|                    |                | 17.001     | 1.017  | 145.570 | 15.750    | 9,977   | 109,500 | 10,465    | 0.527   | 104.300 |
| AO31               | 0000           | 31.587     | 7.291  | 229.680 | 35.413    | 20.695  | 264.290 | 45.275    | 31.464  | 290.906 |
|                    | 0001           | 57.831     | 6.338  | 196,560 | 67.062    | 17.918  | 225.720 | 88.642    | 27.065  | 247,229 |
|                    | 0010           | 32.879     | 5.790  | 218.190 | 36.327    | 16.425  | 252.850 | 45.937    | 24.955  | 279.514 |
|                    | 0011           | 57.828     | 3.988  | 195.620 | 67.056    | 11.306  | 214.340 | 88.621    | 17.157  | 235.936 |
|                    | 0100           | 35.582     | 5.490  | 181.290 | 39.161    | 15.576  | 208.830 | 48.816    | 23.668  | 229.433 |
|                    | 0101           | 57.828     | 4.836  | 154.110 | 67.056    | 13.649  | 168,330 | 88.621    | 20.556  | 183.107 |
|                    | 0110           | 55.308     | 4.288  | 206.640 | 65.303    | 12.156  | 241,290 | 84.894    | 18.446  | 267.904 |
|                    | 0111           | 57.820     | 3.334  | 173.650 | 67.037    | 9.379   | 202.970 | 88.558    | 14.046  | 224,643 |
|                    | 1000           | 32.785     | 5.790  | 174.880 | 36.231    | 16.425  | 201.040 | 45.846    | 24.955  | 220.640 |
|                    | 1001           | 57.828     | 4.836  | 185.100 | 67.056    | 13.649  | 214,340 | 88.621    | 20.556  | 235,936 |
|                    | 1010           | 46,940     | 4,288  | 162.640 | 51.873    | 12.156  | 188.780 | 63.114    | 18.446  | 208.331 |
|                    | 1011           | 57,820     | 3.334  | 173.650 | 67.037    | 9.379   | 202,970 | 88.558    | 14.046  | 224,643 |
|                    | 1100           | 45.971     | 3,988  | 124.000 | 50.436    | 11,306  | 142.070 | 61.086    | 17.158  | 154,764 |
|                    | 1101           | 57.820     | 3.334  | 173.650 | 67.037    | 9.379   | 202.970 | 88.558    | 14.046  | 224.643 |
|                    | 1110           | 113,420    | 3.551  | 159.040 | 117.300   | 10.011  | 188.290 | 127.864   | 15.058  | 210.613 |
|                    | 1111           | 19.025     | 1.833  | 162.200 | 18.029    | 5.109   | 191,590 | 18.007    | 7.537   | 213.350 |



Fig. 11. Scaling effect on sub-threshold, body, and gate leakage in single-input and two-input cells; average values with respect to input pattern.



Fig. 12. Scaling effect on sub-threshold, body, and gate leakage in three-input cells; average values with respect to input pattern.

این مورد برای نشت بدنه و گیت نیست که در آن یک رفتار مخالف با یک مقدار افزایش در مرحله 32 به 22 نانومتر مقیاس پذیری با توجه به 45 به 32 نانومتر گام مشاهده می کنیم. رفتار فوق العاده خطی از جریان زیرآستانه ممکن است به وابستگی نمایی آن در ولتاژ آستانه منتسب گردد، که به نوبه خود بستگی به ضخامت اکسید مقیاس پذیری دارد.

نمونههایی از روش کاهش نشت که میتوانند از خصوصیات عمیق جریان نشت داده بهرهمند گردند مختلف هستند. بهعنوان مثال، روشهای مبتنی بر الگوی ورودی را میتوان برای محاسبه به کار گرفت. با توجه به جمع کننده با رقم نقلی 32+32 بیتی در تکنولوژی 22 نانومتر، کاربرد روش حداقل مصرف الگوی ورودی FFFFFFHEX به هر دو عملوند ورودی منجر به مصرف برق از ×32 831/4831 88%، صرفهجویی 21٪ در انرژِی با توجه به متوسط 33،349 نانووات از یک الگوی ورودی تصادفی میشود. بهعنوان مثال، اگر یک مقایسه کننده باینری 32 بیتی در نظر بگیریم، که منطق هسته ای آن از 32 علوند XOR و یکی شده است، هر XOR را با یک XOR 2 . یا 2 NAND و NAND (فرض NAND-NAND)، و یا 2 NOT 2 و یکی 22AO (ترکیب and-or) پیاده سازی می کنیم. از نگاشت راه حل سه تکنولوژی ،XOR حداقل متوسط نشت منجر به 11129/4831 ×32 نانووات مصرف بیهوده خواهد داشت. اگر ما بدانیم که الگوی ورودی آماری مقایسه کننده از رشته های '1' ، تشکیل شده است حداقل نشت راه حل مواهد داشت. اگر ما بدانیم که الگوی ورودی آماری مقایسه کننده از رشته های '1' ، تشکیل شده است حداقل نشت راه حل مواهد داشت. اگر ما بدانیم که الگوی ورودی آماری مقایسه کننده از رشته های '1' ، تشکیل شده است حداقل نشت راه حل دوم توجه به نشت Gate منجر به + AD + 60 (ما بازی می که الگوی ورودی آماری مقایسه کننده از رشته های '1' می تشکیل شده است حداقل نشت راه حل دوم توجه به نشت Gate منجر به خواهد بود.

بهطور کلی، براساس تجزیهوتحلیل جریانهای نشتی محاسبه شده از طریق مدل برآورد کتابخانه سلول، روند سه جزء اصلی نشت با تکنولوژی مقیاس پذیری را همانطور که در 14شکل نشان داده شده است پیش بینی می کنیم. بهعنوان یک روند کلی، افزایش در نشت بدنه با وجود مقدار مطلق آن بسیار زیاد است، اما در تکنولوژی گره 22 نانومتر ما می توانیم یک رفتار اشباع از نشت بدنه انتظار داشته باشیم. نشت گیت افزایش تقریبا خطی را نشان می دهد. برعکس، نشت زیرآستانه به نظر می رسد به حفظ رشد در تکنولوژی CMOS در آینده منجر شود بنابراین انتظار داریم اقدامات







Fig. 14. Estimated average trend of different leakage currents in cell library, normalized to 45 nm values.

#### 6. نتيجەگىرى

خصوصیات اثر فنآوری مقیاس پذیری بر روی اجزای جریان نشتیهای مختلف در مجموعه سلولی استاندارد با اشاره به حصوصیات اثر فنآوری مقیاس پذیری بر روی اجزای جریان نشتیهای مختلف در مجموعه سلولی استاندارد با اشاره به 45 نانومتر، 32 نانومتر و 22 نانومتر فرآیند CMOS ارائه شده است. تجزیه وتحلیل با توجه به روش برآورد سطح منطق و با پشتیبانی مقایسه با 4SPICE BSIM با کمتر از 1% متوسط خطا انجام شد. نتیجه تجزیه وتحلیل وابستگی الگوی ورودی است که تفاوتهای قابل توجهی از یک سلول به سلول دیگر نشان میدهد، اما همان نسبت بین هر دو الگوی ورودی مختلف مستقل از فنآوری مقیاس پذیری، است که در روش محدودیت نشت مبتنی بر الگو قابل توجه الگوی ورودی مختلف مستقل از فنآوری مقیاس پذیری، است که در روش محدودیت نشت مبتنی بر الگو قابل توجه الست. همچنین، مشاهده کردیم که تاثیر فعلی زیرآستانه در نشت کتابخانه افزایش خطی بیشتری با مقیاس پذیری

(12/ از 45 نانومتر به 32 نانومتر، 25 درصد از 32 نانومتر به 22 نانومتر) نشان میدهد، درحال حاضر تاثیر جریان

گیت و بدنه، کاهشی در افزایش خود بهعنوان کاهش هندسی نشان میدهد. بهطورکلی، دادههای گزارش شده را

مى توان براى تحليل و بررسى تكنيكهاى طراحى كاهش نشت استفاده كرد.

### References

[1] Z. Abbas, V. Genua, M. Olivieri, A novel logic level calculation model for leakage currents in digital nano CMOS circuits, in: Proceedings of the 7th Conference on PhD Research in Microelectronics & Electronics, 3–7 July, Madonna di Campiglio, Trento, Italy.

[2] A. Abdollahi, F. Fallah, M. Pedram, Leakage current reduction in CMOS VLSI circuits by input vector control, IEEE Trans. Very Large Scale Integration (VLSI) Systems 12 (2) (2004). (pp. 140, 154).

[3] A. Agarwal, S. Mukhopadhyay, A. Raychowdhury, K. Roy, C.H. Kim, Leakage power analysis and reduction for nanoscale circuits, IEEE Micro 26 (2) (2006) 68–80.

[4] M.W. Dunga, W. Yang, X. Xi, J. He, W. Liu, M. Cao, X. Jin, J. Ou, M. Chan, A.M. Niknejad, C. Hu, Bsim 4.6.1 Mosfet Model – User's Manual (Technical Report), EECS Department, University of California, Berkeley, 2007.
[5] International Technology Roadmap for Semiconductors. International SEMATECH, Austin, TX. (http://public.itrs.net).

[6] F. Lannutti, P. Nenzi, M. Olivieri, KLU sparse direct linear solver implementation into NGSPICE, in: Proceedings of the 19th International Conference on Mixed Design of Integrated Circuits and Systems, MIXDES 2012, IEEE, pp. 69, 2012.

[7] M. Olivieri, G. Scotti, A. Trifiletti, A novel yield optimization technique for digital CMOS circuits design bt means of process parameters run-time estimation and body bias active control, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 13 (5) (2005).

[8] F. Menichelli, R. Menicocci, M. Olivieri, A. Trifiletti, High level side channel attack modeling and simulation for security-critical systems-on-chips, IEEE Trans. Secure Dependable Comput. 5 (3) (2008).

[9] F. Menichelli, M. Olivieri, Static minimization of total energy consumption in memory subsystem for scratchpad-based systems-on-chips, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 17 (2) (2009) 161–171.

[10] S. Mukhopadhyay, A. Raychowdhury, K. Roy, Accurate estimation of total leakage current in scaled CMOS logic circuits based on compact current modeling, in: Proceedings of the IEEE/ACM Design Automation Conference. (DAC '03), pp. 169–174, 2003.

[11] S. Mukhopadhyay, S. Bhunia, K. Roy, Modeling and analysis of loading effect in leakage of nano-scaled bulk-CMOS logic circuits, IEEE Trans. Comput. Aided Des. Electron. Circuits Syst. 25 (8) (2006).

[12] Predictive Technology Model. (http://ptm.asu.edu/).

[13] R. Rao, J. Burns, A. Devgan, R. Brown, Efficient techniques for gate leakage estimation, in: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED'03), 2003, pp. 100–103.

[14] F. Ramundo, P. Nenzi, M. Olivieri, First integration of MOSFET band-to-bandtunneling current in BSIM4, Microelectron. J. 44 (1) (2013) 26–32. (Elsevier).

[15] K. Roy, S. Mukhopadhyay, H.M. Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, Proceedings of IEEE (2003) 305–327.

[16] K. Roy, S.C. Prasad, Low Power CMOS VLSI Circuits, Wiley, USA, 2000.

[17] A. Sanyal, A. Rastogi, W. Chen, K. Roy, S. Kundu, An efficient technique for leakage current estimation in nanoscaled CMOS circuits incorporating selfloading effects, IEEE Trans. Comput. 59 (7) (2010) 922–932.

[18] K. Schuegraf, C. Hu, Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation, IEEE Trans. Electron Devices 41 (1994) 761–767.

[19] A.K. Sultania, D. Sylvester, S.S. Sapatnekar, Gate oxide leakage and delay tradeoffs for dual-Tox circuits, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 13 (2005) 1362–1375.

[20] Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, USA, 1998.

[21] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edition, Oxford University Press, USA, 2003.

[22] S.H. Voldman, J.A. Brachitta, D.J. Fitzgerald, Band-to-band tunneling and thermal generation gate-induced drain leakage, IEEE Trans. Electron Devices 35 (12) (1988) 2433.

[23] J. Xue, T. Li, Y. Deng, Z. Yu, Full-chip leakage analysis for 65 nm CMOS technology and beyond, Integration VLSI J. 43 (4) (2010) 353–364.

[24] K.S. Yeo, K. Roy, Low-Voltage, Low-Power VLSI Subsystems, McGraw Hill, USA, 2005.