
Fault-tolerance in a Distributed Management System: a Case Study

Robert Smeikal
Vienna University of Technology

Gusshausstrasse 27-29/384
A-1040 Vienna, Austria
smeikal@ict.tuwien.ac.at

Karl M. Goeschka
Frequentis Nachrichtentechnik GmbH

Spittelbreitengasse 34
A-1120 Vienna, Austria
goeschka@acm.org

Abstract

Our case study provides the most important conceptual
lessons learned from the implementation of a Distributed
Telecommunication Management System (DTMS), which
controls a networked voice communication system. Ma-
jor requirements for the DTMS are fault-tolerance against
site or network failures, transactional safety, and reliable
persistence. In order to provide distribution and persis-
tence both transparently and fault-tolerant we introduce a
two-layer architecture facilitating an asynchronous replica-
tion algorithm. Among the lessons learned are: component
based software engineering poses a significant initial over-
head but is worth it in the long term; a fault-tolerant nam-
ing service is a key requirement for fail-safe distribution;
the reasonable granularity for persistence and concurrency
control is one whole object; asynchronous replication on
the database layer is superior to synchronous replication on
the instance level in terms of robustness and consistency;
semi-structured persistence with XML has drawbacks re-
garding consistency, performance and convenience; in con-
trast to an arbitrarily meshed object model, a accentuated
hierarchical structure is more robust and feasible; a query
engine has to provide a means for navigation through the
object model; finally the propagation of deletion operation
becomes more complex in an object-oriented model. By in-
corporating these lessons learned we are well underway to
provide a highly available, distributed platform for persis-
tent object systems.

1. System Context

High availability is not only demanded for safety-critical
networked voice communication systems (VCS) but also
for the management systems controlling them. In our
case, these VCS networks are managed by a Distributed
TelecommunicationManagement System (DTMS) as illus-
trated in figure 1. Multiple DTMS servers are connected

via a WAN and every DTMS server configures, controls and
monitors its associated VCS systems. Every DTMS stores
VCS parameter data using an object-oriented model.

Following the general design principles of Component-
based Software Engineering (CBSE) [6] like strong compo-
nent coherence and well-defined interaction standards, we
consider the following requirements, which are relevant for
availability considerations:

Fault-tolerance: The system has to be tolerant against net-
work and site failures. This is achieved through repli-
cating object-states to other sites.

• All objects need to be available for read access at
any available site at all times even in presence of
arbitrary system degradation scenarios.

• For write access it is sufficient

– if objects are available at all sites during pe-
riods of healthy system condition.

– if objects are available at a particular site
(which we call their home site) during pe-
riods of degraded system condition.

Moreover, the framework itself has to be fully dis-
tributed. A single unique framework component must
not exist in order to avoid any single point of failure
throughout the whole system.

Transaction: The objects shall be able to participate in
transactions. Typically, small write and large read
transactions need to be performed frequently.

Persistence: The persistent objects’ data shall be written to
a stable storage.

Transparency: Clients shall not be aware of distribution,
replication and persistence issues, which are therefore
transparent to clients.

In our case, both, distribution and persistence, have to be
transparent and fault-tolerant, where fault-tolerance is the

���������	
���	�������	�����������
������������� !�"���#�����������

VCS

network

Figure 1. DMTS overview.

ability of a system to continue functioning while a failure is
still unrepaired or even undetected [7]. Since fault-tolerance
needs to be incorporated into the system architecture itself,
we replicate the persisted object to other sites, in order to
provide enough redundant information to replace any failed
object dynamically. In the best case, the application is avail-
able if any site is available, because now objects can be re-
stored at every site.

Replication as a means to provide fault-tolerance is well
suited and a plethora of replication protocols exist. How-
ever, the deployment of replication requires the manage-
ment of the replicated object data and introduces the new
requirement of transparency of the replication. Moreover,
if deployed in an object-oriented, persistent and distributed
software system, managing multiple physical copies that
constitute the state of a single logical copy poses problems
on conventional concepts of such systems, which are usu-
ally designed to operate on a single copy:

• the preservation of consistency among different logical
objects

• the concurrent access to logical objects

• the transactional access to logical objects

• handling of object identities, which are unique among
logical objects

The contribution of this case study is to describe the
major rationale for the key decisions and to derive general
lessons, which we believe can be learned from our experi-
ence.

The major findings are:

• Distribution and replication need to be installed as two-
layer architecture. This way, conventional distribution
mechanisms can be deployed unaltered.

• Fail-safe naming services are a key requirement to fail-
safe distribution.

• Performance requirements are more difficult to ensure
due to the complexity of the systems.

Both authors have been heavily involved in the DTMS
development project:
Karl M. Goeschka is Chief Scientist at Frequentis

Nachrichtentechnik GmbH with headquarters in Austria
and several subsidiaries in other countries (USA, Canada,
Germany). Frequentis is world market leader for fast and
highly available voice communications in air traffic on-
trol. The products are also used for public safety and safe
communications. Due to the innovative character of the
DTMS development he is also the responsible manager of
this project.
Robert Smeikal is a research assistant at the Vienna

University of Technology in Austria. He is currently work-
ing on his Ph.D. and engaged in consulting the development
team at Frequentis concerning practical and conceptual soft-
ware engineering issues.

2. DTMS Architecture and Components

Figure 2 depicts the system architecture using a compo-
nent diagram (Unified Modeling Language UML syntax).

���������	
���	�������	�����������
������������� !�"���#�����������

Client

Model

Topology

Persistence

Transaction

Replication

Database

Client

Model

Topology

Persistence

Transaction

Replication

Databaseremote

local

remote

local

Distribution

Persistence

Replication

Site 1 Site 2

Figure 2. Proposed architecture.

The picture shows how components use each other either
locally or remotely. A single site consists of the following
components: Transaction, Model, Persistence,
Topology, Replication and Database. Client
components do not belong to a site. A client can be
connected to an arbitrary site. Please note, that remote
communication is established between components of the
same type only (eg. local Replication and remote
Replication). As denoted on the righthand side, the
Model and Transaction components belong to the dis-
tribution aspect, the Persistence component to the per-
sistence aspect and the Topology and Replication
component to the replication aspect of the architecture.

Model. The Model component contains the model of the
VCS. This model

• is complex, i.e. it consists of many classes, small
object-states and few object-states per class.

• requires complex validation, i.e. many algorithmic
constraints involving many object-states.

• requires complex read operations concerningmany ob-
jects, e.g. assemble information for configuration of
the VCS.

Each model object has a system wide unique ID. Each
class has an associated factory, which can be located us-
ing the class name (kind of naming service). The factory
creates and deletes objects. The factory validates object-
constraints.

Objects and factories register at component Trans-
action. Objects store their serialized object-state at

Persistence. Factories query Topology for the cur-
rently responsible site and initialize accordingly using ei-
ther remote Model or local Persistence. Factories
provide Interoperable Object References (IORs, refer to
CORBA [1]) pointing at their associated local or remote ob-
jects given an ID or another query. Factories obtain IORs
pointing at remote objects by communicating with remote
factories. Clients can obtain IORs for every object at every
associated factory.

Transactional behavior and persistence are mandatory
for all model objects. Therefore, all model objects imple-
ment the the validate(), commit(), rollback(),
and store() method.

Client. The Client component performs invocations on
objects in local or remote Model, where the physical lo-
cation of the model object is transparent to Client. An
arbitrary number of Client components can operate on
the model concurrently. The Client component starts and
finishes transactions at Transaction.

Topology. The Topology component maintains a list
of all sites and their availability and provides information
about the currently responsible site for a particular object. It
is queried by the Model and Transaction components.
Therefore, Topology tells other components at which site
they have to look for an object, also if the home site of that
object cannot be contacted.

Transaction. The Transaction component is respon-
sible for serializing concurrent transactions. It coordi-
nates the invocation of commit(), rollback(), and

���������	
���	�������	�����������
������������� !�"���#�����������

validate() on the objects in the Model, it controls
the transaction context at Persistence and it coordi-
nates distributed transactions in co-operation with remote
Transaction components (2-phase commit [3]).

Currently, the smallest unit of lock granularity is a whole
site. Since write transactions are not expected to last long
and validation involves many object-states from different
classes, this is sufficient. We differentiate between write
and read transactions.

Persistence. The Persistence component stores and
retrieves serialized object-states using the Replication
component. Additionally, it provides methods to access
object-states in a transactional way, which are used by
Transaction. Persistence does not distinguish be-
tween object-states that are home at the local site and
object-states that are home at a remote site, but always per-
sists to and retrieves from the local Replication com-
ponent. Factories always ask their local Persistence
component for retrieving persisted object-states. An object
persists itself providing its ID, its type and its object-state
to Persistence, which in turn provides transactional ac-
cess to the stable object-store.

Database. The Database component essentially encapsu-
lates the actual stable storage. It provides function primi-
tives to persist and retrieve data. It may also encapsulate
local database redundancy for even higher availability.

Replication. The Replication component is at the
heart of the architecture, as it implements the replication al-
gorithm. It performs a replication protocol in accordance
with Replication at other sites to propagate object-
states, to build constructed object-states, and to calculate
their object readiness accordingly. It uses the Database
component to persist data locally and it provides methods
to access the stored object-states.

3. Lessons learned

We provide the most important lessons learned with a
focus on conceptual aspects rather than implementation de-
tails or findings regarding particular COTS (commercial off
the shelf) products and tools.

Semantics of methods versus read/write: There is a
considerable amount of theory on the subject of exploiting
method semantics in order to increase availability of certain
methods (e.g. [8], where “intersection relations” capture the
information flow among method invocations). In practice,
we have not been able to deploy any further classification of
methods than read-methods and write-methods, especially

in regard to common use cases. Apart from a significant
increase of implementation complexity (consider a replica-
tion mechanism, which knows about method semantics of
every object type and calculates the objects’ availability ac-
cordingly) it renders the system incomprehensible from the
users’ point of view.

Mapping of object identity to object reference: Obtain-
ing an object reference (i.e. locating an object) given an
object identifier (i.e. an object name) is always of concern
if objects are instantiated out of process or even remotely
(compare the CORBA Naming Service [1] or the Java Nam-
ing and Directory Interface [2]). Though such a naming ser-
vice is already needed for basic persistence, the matter gets
complicated if objects might live in different places due to a
particular degradation scenario. On the one hand, the nam-
ing service maintains information about the references to
objects (where a reference also determines the objects’ loca-
tion), on the other hand, the replication component decides
where objects are instantiated if degradation occurs. Thus,
the mapping of identity to reference is very dependent on
the underlying mechanisms instilled to provide failure tol-
erance. Furthermore, the required fail-safe naming service
has to be available at every site at every time, because the
naming service itself has to be fault-tolerant as well.

In our case we resolve an object identifier using two
steps. At first, the Topology component is queried for
the presently responsible naming service (the factories in
the DTMS), which can be either remote or local depending
on the degradation scenario. Secondly, the object identifier
is finally resolved.

Additionally, the mandatory use of object identifiers to
store references (we call them “soft references”) introduces
the problem of either having to resolve an identity every
time the respective reference is used (which usually yields
bad performance) or to maintain a kind of identity/reference
cache within every object.

Granularity: Defining the unit of granularity for system
operations is a fundamental design decision. It can vary for
different parts of the system entailing different implemen-
tation complexity and system behavior. The boundaries of
granularity in an object-oriented model range from single
attributes to the whole model.

We experienced that single objects as unit of granular-
ity are a reasonable approach, mainly because objects are
designed to be the units of coherence especially from the
use-cases’ point of view. However, we use different granu-
larity in different components:

Persistence: Persisting object data using whole objects as
unit of granularity was comparatively easy to achieve,
because we generate the necessary code from the mod-

���������	
���	�������	�����������
������������� !�"���#�����������

elling information using the APIs (application pro-
gramming interfaces) of our CASE (computer aided
software engineering) tools (Rational in our case).

Transactions and concurrency: Currently, a site is the
unit of lock granularity. Since this is clearly not suf-
ficient, we strive to use object granularity here as
well. This entails the ability of each object to asso-
ciate method invocations with a particular transaction
context and to calculate whether a commit is possible
or not. Additionally, more complexity is introduced
because of “indirect” write operations due to object
relationships and because of the necessary locking of
“uninvolved” objects that are used during validation of
constraints. We plan to generate the necessary code,
which obviously is far more complex.

Two-layer architecture: The design of our two-layer ar-
chitecture focuses mainly on one requirement: Read access
to every object must be possible at all times, while write ac-
cess must be possible at a particular site (its home site) at
all times. To free the object implementation from the ad-
ditional burden of handling synchronous replication (prop-
agate the data and coordinated commit using an atomicity
control protocol like in group communication [4]), we de-
cided to use asynchronous replication (commit first, prop-
agate afterwards using queues). Asynchronous replication
jeopardizes consistency, if multiple instances of a single ob-
ject live in the system (e.g. an objects is accessed before
changes from a remote site arrive). Therefore, during peri-
ods of a healthy system, we use a conventional setup of a
distributed system: Every object is instantiated only once,
objects communicate with other objects in an synchronous
way and concepts of distributed computing can be smoothly
applied. This makes up the upper layer, called distribu-
tion layer. Furthermore, persisted object-data is propagated
asynchronously to prepare the system for a degraded sce-
nario. This makes up the lower layer, called replication
layer. All of the above considerations apply to model ob-
jects only, combined in the the “model” component. In con-
trast, “system” components exist at every site and manage
the distributed model objects.

Derived from our experience, the lesson here is to use
asynchronous replication of object data rather than syn-
chronous replication at the instance level.

CBSE: Persistence and Transaction are usually consid-
ered as services of the component model implementation
(CMI), but since orthogonality is desired (i.e. replace the
replication algorithm) CMI itself should be component-
based. The DTMS is not implemented using a particular
component model implementation but its design is based
on a basic principle of CBSE: strong coherence of concern

and accompanying interface standards. From our experi-
ence, this approach increases the effort at the beginning of
the project, but later on the coordination is reduced signifi-
cantly, both in terms of technical and organizational issues.
So far, our software is used in three projects for different
customers on different platforms (Microsoft Windows and
Sun Solaris) and only two components were altered to ac-
commodate customer requirements: The rest of the frame-
work remains unchanged and is stable.

However, also a disadvantage of CBSE was encoun-
tered. Due to the strict encapsulation of components,
multiple mappings from component-internal interfaces to
component-external (“provided”) interfaces are necessary
instead of one single invocation (object to object). That
yields a loss in runtime performance, which can pile up
considerably as the size of the system grows. Therefore,
there is a hidden trade-off between component coherence
and runtime performance.

WAN-Bandwidth: During the design phase of the project
we did not distinguish between in-process, out-of-process
and CORBA calls, because we expected the middleware
to hide any related issues from the application program-
mers point of view. Though this is true, we afterwards
experienced that such a unregulated use of CORBA calls
congested our 2MBit WAN links dramatically. Apart from
CORBA optimization, we had to reconsider carefully where
CORBA calls are really necessary.

Object-states to database mapping: We designed our
database scheme to accommodate object-states in a generic
way using a table with three columns: object id, object type
and serialized XML-formatted object-data. This setup pro-
vides the flexibility to handle changes in the model with-
out altering either the database scheme or the persistence
and replication component. However, we experienced some
drawbacks:

• Since no static validation can be applied, the database
allows inconsistency of object-states. Though obvi-
ous, this proved to be quite unpleasing, because now
even small failures in the object model may render the
database in an inconsistent state.

• Queries that operate directly on the database are very
laborious to implement, since neither pure SQL nor
pure XPath/XQuery can be used.

• XML is readable for a human consumer, but this comes
at the price of a large amount of redundant informa-
tion. The size of the XML data is increasing quickly
as the size of the system grows and therefore becomes
increasingly inefficient to handle. In turn the human

���������	
���	�������	�����������
������������� !�"���#�����������

readability of these large and complex structures van-
ishes. Thus, we currently develop a binary format to
substitute XML at the database level.

Hierarchical structure: The hierarchy has proven to be
one of the most robust, feasible and practical structures [9].
On the other hand, the structure of the model cannot be lim-
ited, because many-to-many relations are needed as well
as additional arbitrary associations. Therefore, we found
it useful to build a hierarchical structure by means of aggre-
gation references. We introduced a model rule, demanding
each object to be reachable by exactly one aggregation hi-
erarchy.

Query engine: Two simple types of query are supported:
Get object by ID and get all objects of a certain type. For
efficient UI implementation purposes, additional queries for
navigation through the object hierarchy are essential, e.g.
get the ancestor or get the descendants of an object where
additional conditions on attributes are fulfilled. Though
a descriptive query language like OQL (object query lan-
guage [1]) is desirable, the mentioned queries are sufficient.

Propagation of delete operation: When an object in-
stance is to be deleted, there may exist other objects refer-
encing this object. Similar to relational databases, it has to
be determined whether or not the reference or the referenc-
ing object has to be deleted. This may result in cascading
delete operations or in delete restrictions when constraints
would be violated. Sometimes this results in quite complex
delete implementations on the client side. We do not have
an appropriate general solution yet, but we consider this to
be an important issue for further investigation.

4. Future work

The following improvement possibilities have been iden-
tified:

• Support for a query engine, that allows descriptive
queries using OQL.

• Support for finer granularity of locking to yield better
concurrency of model access for clients.

• Invocation of write methods at model objects at all
sites even during system degradation is a major future
requirement.

• A better exploitation of transaction types (currently
read/write-available) regarding the trade-off between
availability of object-states and consistency require-
ments is desired [5, 10].

By improving these current system weaknesses we are
well underway to provide a highly available, distributed
platform for persistent object systems.

References

[1] http://www.omg.org/. The Object Management Group.
[2] http://www.sun.com/. Sun Microsystems.
[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[4] K. Birman. The process group approach to reliable dis-
tributed computing. Communication of ACM, 36(12):37–53,
December 1993.

[5] H. Garcia-Molina and G. Wiederhold. Read-only trans-
actions in a distributed database. ACM Transactions on
Database Systems, 7(2):209–234, June 1982.

[6] G. Heineman and W. Councill. Component-Based Software
Engineering. Addison-Wesley, 2001.

[7] A. Helal, A. Heddaya, and B. Bhargava. Replication Tech-
niques in Distributed Systems. Kluwer Academic Publish-
ers, 1995.

[8] M. Herlihy. A quorum consensus replication method for ab-
stract data types. ACM Transactions on Computer Systems,
4(1):32–53, February 1986.

[9] P. Kahn. Information architecture: a new discipline for or-
ganizing hypertext. In Proceedings of the twelfth ACM con-
ference on Hypertext and Hypermedia, pages 1–2. ACM,
September 2001.

[10] D. Skeen. Achieving high availability in partitioned data-
base systems. In Proceedings of the International Confer-
ence on Data Engineering, pages 159–166. IEEE, 1985.

���������	
���	�������	�����������
������������� !�"���#�����������

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

