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Abstract —This paper considers the use of the partial 
transmit sequence (PTS) technique in reducing the peak-to-
average power ratio (PAPR) of an orthogonal frequency 
division multiplexing (OFDM) signal. The conventional PTS 
technique is highly successful in PAPR reduction for OFDM 
signals, but the considerable computational complexity for the 
required search through a high dimensional vector space is a 
potential problem for practical implementation. To reduce the 
search complexity while still improving the PAPR statistics, 
stochastic optimization techniques such as the simulated 
annealing (SA) algorithm, Cross-Entropy (CE) method, and 
particle swarm optimization (PSO) have recently been 
proposed to search for a phase factor that reduces both the 
PAPR statistics and the computational load. In this paper, a 
novel stochastic optimization approach, that is, the 
electromagnetism-like (EM) algorithm, is applied to reduce 
the PAPR of an OFDM signal. The computer simulation 
results show that compared with the various stochastic search 
techniques developed previously, the proposed EM method 
obtains the most desirable PAPR reduction with low 
computational complexity.1

Index Terms —Orthogonal frequency division multiplexing 
(OFDM), peak to-average power ratio (PAPR), partial transmit 
sequence (PTS), electromagnetism like (EM) algorithm, 
stochastic optimization technique

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) has 

been widely used in a variety of digital transmissions 
including digital video/audio broadcasting, digital subscriber 
lines, and wireless local area networks [1][2] because of its 
ability to cope with the frequency selective fading of 
wideband communication with reasonable complexity. 
However, one major problem associated with OFDM is its 
high peak-to-average power ratio (PAPR) for the time-domain 
transmitted signal especially for a large number of subcarriers. 
As a result, when a high PAPR signal passes through a power 
amplifier (PA), the PA may be pushed to a saturation region, 
causing both in-band and out-of-band distortion. 

To alleviate the PAPR of the OFDM system, many 
approaches [1]-[20] have been proposed including clipping, 
coding, and multiple signal representation techniques such as 
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partial transmit sequence (PTS) and selected mapping (SLM). 
Among these methods, the PTS technique [3] is an efficient 
and a distortionless phase optimization technique for PAPR 
reduction by optimally combining signal subblocks. In a PTS 
scheme, the input data is divided into smaller disjoint 
subblocks. Each subblock is then multiplied by rotating phase 
factors, where the phase factor can be chosen freely within 

. Subsequently, the subblocks are added to form the 
OFDM symbol for transmission. Accordingly, the objective of 
the PTS is to design an optimal phase factor for the subblock 
set that minimizes the PAPR. 

PTS significantly improves PAPR performance, but 
unfortunately, finding the optimal phase factors is a complex, 
non-linear optimization problem. Moreover, the conventional 
PTS requires an exhaustive search from all combinations of 
allowed phase factors. It turns out that search complexity 
increases exponentially with the number of subblocks. To 
reduce search complexity, stochastic search techniques have 
recently been proposed [15]-[20] because they can obtain the 
desirable PAPR reduction with low computational complexity. 
Famous stochastic techniques for PAPR reduction include the 
simulated annealing (SA) algorithm [15][16], the Cross-
Entropy (CE) method [17][18], and particle swarm 
optimization (PSO) [19][20]. 

Recently, Birbil and Fang proposed a novel population-
based stochastic search method called electromagnetism-like 
mechanism (EM) for global optimization [21]. Inspired by the 
Coulomb’s Law of electromagnetism, the EM method 
considers each particle (i.e., the solution) in the population to 
be an electrical charge and simulates the behavior of 
electrically charged particles. Through the attraction and 
repulsion of the charged particles, particles move towards 
optimality. Compared with genetic algorithms (GA), the EM 
requires neither coding nor encoding procedure as in the GA. 
Moreover, the method has the advantages of SA, that is, the 
particle’s movement gradually slows down in the latter stages 
of iteration. In general, this method is similar to PSO, only it 
requires fewer particles. Most importantly, the EM method 
has shown its robustness in practice. It is also proven to 
exhibit global convergence with probability one [22]. 

Based on the above points, we state our interest to employ a 
novel PTS technique based on the EM algorithm to reduce the 
PAPR of OFDM signals through this paper. The simulations 
demonstrate that the proposed EM not only achieves 
significant PAPR reduction but also enjoys complexity 
advantages compared with the other well-known stochastic 
approaches.
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This paper is organized as follows. In Section II, we 
describe the OFDM system model and PAPR problem 
definition. Next, the proposed EM algorithm is developed in 
Section III. Simulation results that compare the PAPR 
reduction performance of various stochastic optimization 
techniques including the proposed one are given in Section IV. 
The conclusions are presented in the last section. 

II. SYSTEM MODEL AND PROBLEM DEFINITION

Consider an OFDM system with  subcarriers. The 
discrete time transmitted OFDM signal is given by 

(1) 

where ,  is an input 
symbol sequence,  stands for a discrete time index, and  is 
an integer that is larger or equal to  called over sampling 
factor. When , the samples are achieved by using the 
Nyquist rate sampling. The PAPR of the transmitted signal in 
(1) is defined as 

(2) 

where  denotes the expected value operation. 
 In the PTS approach, the input data  is partitioned into 

smaller  non overlapping subblocks 
with the same number of subcarriers such that 

(3) 

The partitioned subblocks are then transformed into  time
domain partial transmit sequences using -point inverse fast 
Fourier transform (IFFT). Since the IFFT is a linear 
transformation, the representation of the block in time domain 
can be expressed as 

   (4) 

Next, the time domain sequences are independently rotated by 
phase factors  to produce a PAR
reduced OFDM signal 

(5) 

The objective of the PTS scheme is to search for an optimal 
phase factor that yields the transmit signal with the minimum 
PAPR. Accordingly, we can state the optimization problem of 
the PTS scheme as 

   (6) 
It is obvious that finding a best phase factor set is a complex 
and difficult problem; therefore, in the next section, we 
propose a novel implementation of the PTS scheme based on 
the EM method.   

III. A NEW PTS SCHEME USING THE EM METHOD

A. The EM Optimization Algorithm 
The Electromagnetism-like Method (EM) developed by 

Birbil and Fang [21] is a population-based stochastic global 
optimization method inspired by the Coulomb’s Law of the 
electromagnetism theory. The EM method starts with an initial 
solution set (particles), and an attraction-repulsion mechanism 
is then used iteratively to move those particles towards 
optimality. The general scheme for the EM method is shown 
in Algorithm 1, which consists of four main procedures:
initialization, local search, calculation of the total force, and
movement of the particles, respectively. These procedures are 
interpreted as follows. The first procedure, initialization, is 
used to sample  points (particles) 2  randomly from the 
feasible region. The next procedure, local search, is a 
neighborhood search procedure which can be applied to one 
or many points for local refinement to get better solutions at 
each iteration. The total force exerted on each point by all 
other points is calculated in the calculation of the total force
procedure. The remaining procedure of the EM algorithm is 
the movement of the particles procedure, which is used for 
moving the sample points along the direction of the total force. 
For a more in-depth discussion on the EM method, the reader 
is referred to [21]. 

ALGORITHM 1 Electromagnetism-like Algorithm 
1: Initialize() 

2: while termination criteria are not satisfied do

3: Local search() 

4: Calculation of the total force() 

5: Movement of the particles() 

6: end while

B. The EM Optimization Algorithm 

In principle, the EM algorithm is a population based search 
method in which a set of potential solutions (particles) to the 
problem is evolved. At iteration , a population with 
particles is generated. Each solution particle is considered as a 
particle in a multidimensional solution space with a certain 
charge. This charge is related to the objective function values 
associated with all the solution particles. The population is 
evolved by utilizing an attraction repulsion mechanism to 
move sample particles towards optimality. In the following, 
we employ the EM method to search the optimal phase factor 
for the PTS technique in order to reduce the PAPR. The 
procedure of the proposed EM based PTS can be described as 
follows: 

2 The words particle and point are interchangeably used.
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Step 1) Initialize the particle population at : Like 
most stochastic algorithms, the EM method starts with 
generating  random sample particles 

 from the feasible region, where 

is the dimension of the problem (i.e., the number of 
subblocks) and  denotes the th coordinate of the 
particle  of the population at iteration . Analogous to 
electromagnetism, each particle  is 
regarded as a virtually charged particle that is released 
in the space. It should be noted that in a multi
dimensional solution space where each particle 
represents a solution, a charge is associated with each 
particle. As such, each coordinate of a particle, denoted 
as , is computed by 

(7) 
where  is the upper bound of the th dimension;  is 
the lower bound of the th dimension; and  is a uniform 
random number generator within . As we are 
interested in the values of phase factors in the range of 
to , the upper bound and lower bound are set to  and 

, respectively. Therefore, the range of phase factor 
will be bounded at . Meanwhile, since  is a 
uniform random number generator within , the 
distribution of phase factor is uniform distribution with 

. After a particle is sampled from the space, the 
objective function value for the particle is calculated. 
Given a particle (i.e., phase factor vector)  , the 
fitness function, defined as the amount of PAPR 
reduction, can be expressed as 

            (8) 

When the  particles are all identified, the particle with 
the best objective function value is stored into 

.
Step 2) Local search: Local search is used to gather the 
neighborhood information for a sampled particle, which 
can be applied to one particle or to all particles in the 
population for local refinement at each iteration. 
Theoretically, the local search is expected to find a 
better solution especially when it is applied to all 
particles. However, the local search is usually time
consuming. Therefore, in this study, the EM algorithm 
is implemented with local search on the current better 
particle. The procedure of the local search can be 
described as follows: 
Step 2.1) Calculate maximum feasible random step 
length : First, the length is calculated by the 
maximum difference of each dimension’s upper and 
lower bound. Since the upper and lower bound of each 
dimension is  and , respectively, the maximum 
difference of each dimension’s upper and lower bound 

is . Second, it makes use of the parameter 
to have a feasible random length. Therefore, the 
maximum feasible step length can be computed using 
the following equation: 

(9) 

Step 2.2) Generate a candidate of particle 

: A new particle  is generated from the 

current best particle . As  is a small random 
change coming from , here, we randomly change 
two coordinates to generate , where the modified 
coordinate of the current best particle, denoted as , is 
computed using the following equation: 

         (10)
Step 2.3) Decide whether to update the current best 
particle : If the new particle  observes a better 
particle, the sample particle  is replaced by this 
new particle .
Step 2.4) Repeat Step 2.1 to Step 2.3 until the maximum 
number of local search iteration is met. 
Step 3) Calculation of the total force: In this procedure, 
an artificial electromagnetism field is built to propel the 
particles to new positions via the Coulomb’s law of the 
electromagnetism theory. The artificial charge  at 
particle  is determined by the fitness function value, 
and is calculated using the following equation: 

 (11) 

By observing (11), we can find that 1) a large 
results in a small , and vice versa; and 2) the 
artificial charges are all positive. Now, the problem on 
hand is how to determine the force of attraction or 
repulsion between each pair of particles  and .
Suppose that , which implies that 

, in this case the one that has better fitness 
function value is preferred, that is,  is the preferred 
particle and particle  should be “attracted" to particle 

. That means the particle attracts other particles 
with better fitness function values and repels other 
particles with fitness cost function values. After 
determining the charge of each particle on 

and defining the rule of attraction repulsion mechanism 
of artificial charge, the force vector, , between two 
particles  and , is computed as 
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 (12) 
The total force 
exerted on each particle  by the other 
particles is then calculated by 

(13)

Step 4) Movement of the particles: After calculating the 
total force , the particle  is updated in th 
coordinate of the force by a random step length as given 
as

 (14)

Step 5) Repeat Step 2 to Step 4 for  until the 
maximum number of iteration is met. 

C. Complexity Comparison for Finding Suboptimal 
Solutions 

As SA, CE, PSO, and the EM are all population based
search methods, we may therefore fix the number of samples, 

, to find the suboptimal solutions with low complexity. 
In this case, the complexity for SA, CE, PSO, and the EM 
method can further be expressed in term of the number of 
samples, where each sample is calculated using the point 
IFFT. Accordingly, the number of samples for SA, CE, PSO, 
and the EM are , ,

, and ,
respectively, where  is the maximum number of 
iterations,  is the number of sample points (particles), and 

 is the maximum number of local search iterations. 
It should be noted that the complexity for each sample to find 
a suboptimal solution is  multiplications.

IV. NUMERICAL RESULTS
Simulation experiments are conducted in this section to 

verify the PAPR performance of the proposed EM method 
presented in Section III for OFDM systems. In the simulations, 
the numbers of subcarriers are set to be N = 64 and N = 128 
subcarriers, respectively, which are divided into 
subblocks, and data symbols are modulated using the QPSK 
constellation with four times oversampling (i.e., ). The 
criteria for performance measurement considered here are the 
complementary cumulative distribution function 

 of the PAPR and the 
average PAPR performance, where the CCDF is the 
probability that the PAPR of a symbol exceeds the threshold 
level . In order to generate the CCDF of the PAPR, 

10,000 OFDM blocks are generated randomly. For 
comparison, we also tested some existing stochastic 
optimization based approaches for PAPR reduction, including 
the SA algorithm [15][16], the CE method [18], and PSO 
[19][20]. 

Fig. 1. Comparison of the PAPR CCDF of the different numbers of the 
maximum number of iterations of the EM method for N =64.

Fig. 2. Comparison of the PAPR CCDF of the different numbers of the 
maximum number of iterations of the EM method for N =128.

Figs. 1 and 2 show the variation in CCDF with the 
proposed EM method for different numbers of the maximum 
number of iterations, , with  and ,
respectively. In the EM method, the population size is 
assumed to be ; the maximum number of local 
search iterations is ; and the corresponding 
maximum number of iterations are , , ,

, and , respectively. In addition, we selected the 
exhaustive search algorithm (ESA) mentioned in [3] to 
compare the performance of PAPR reduction with that of the 
EM searching method. In the ESA, the selection of the phase 
factors was limited to a set of finite number of elements .
The ESA was then employed to find the best phase factor. 
Here, four allowed phase factors , , , and 
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 were used for the ESA, and the PAPR reduction 
performance was obtained by a Monte Carlo search with a full 
enumeration of  phase factors. As shown 
in Figs. 1 and 2, as the maximum number of iterations was 
increased, and the CCDF of the PAPR has been improved. 
When , we can see that the 
performance of the proposed EM method provides an 
approximate PAPR reduction as with that of the conventional 
ESA. When , it is found in Table 
I that the proposed EM method not only achieves an 
improvement of 0.11-0.31 dB in PAPR reduction for different 
scenarios than the ESA but also has a much lower 
computational complexity than the ESA. 

TABLE I
COMPARISONS OF THE PAPR PERFORMANCE OF THE VARIOUS MAXIMUM 

NUMBER OF ITERATIONS OF THE PROPOSED EM METHOD AND THE ESA
WITH  AND , RESPECTIVELY, AT 

Fig. 3. Comparison of the PAPR CCDF of CE, SA, PSO, and the 
proposed EM for N = 64 and QPSK modulation. 

Next, we compared the proposed EM based PTS scheme 
with other existing stochastic optimization based PTS 
approaches for the same number of samples, .
Figs. 3 and 4 show the CCDFs of the PAPR of the OFDM 

system using the SA, the CE method, PSO, the proposed EM 
method, and the original OFDM with the number of 
subcarriers N = 64 and N = 128, respectively, where the 
original OFDM was directly obtained from the output of the 
IFFT operation and the simulation parameters for various 
stochastic optimization based approaches given in Table II. It 
can be seen that the PAPR of the original OFDM signal at 

 for  and  is 
10.31 and 10.56 dB, respectively, which indicates a large 
PAPR. For , the suppressed PAPRs of the SA, the CE 
method, PSO, and the proposed EM method at 

 are 6.14, 6.04, 5.78, and 5.67 
dB, respectively. For , the PAPRs of the CE method, 
the SA, PSO, and the proposed EM method at 

 are reduced to 6.69, 6.63, 6.40, 
and 6.23 dB, respectively. With the same complexity, Figures 
3 and 4 show the superiority of our proposed EM based PTS 
scheme. By decreasing the complexity, the proposed EM 
method with  obtains almost the same PAPR 
reduction as that of the PSO with . This means 
PSO requires more samples (i.e., higher complexity) to obtain 
the same PAPR reduction performance as the proposed EM 
method. Therefore, the proposed EM method can offer better 
PAPR reduction while keeping a low complexity. 

TABLE II
SIMULATION PARAMETERS FOR THE SA, THE CE METHOD, PSO, AND THE 

PROPOSED EM METHOD

Fig. 4. Comparison of the PAPR CCDF of CE, SA, PSO, and the 
proposed EM for N = 128 and QPSK modulation.

Lastly, a fair comparison of the performance complexity 
tradeoffs for the different stochastic PTS searching strategies 
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with  and , respectively, is provided in Fig. 5, 
where the average PAPR reduction is the function of the 
number of sample. It can be seen that 1) it is beneficial to 
select more samples so that the average PAPR reduction 
performance can be improved; 2) as the number of sample 
becomes greater than 1,200, the figure illustrates that the EM 
method leads to a much smaller average PAPR than the other 
stochastic methods; and 3) the application of the EM method 
to solve the optimum phase searching problem of PTS yields 
an enhanced tradeoff in the low average PAPR range about 
4.77 and 5.54 dB for  and , respectively. 

Fig. 5. Average PAPR reduction comparison of CE, SA, PSO, and the 
proposed EM for the same complexity with N = 64, N = 128, and QPSK 
modulation.

V.  CONCLUSIONS

This paper presented an EM based method that was used to 
obtain the optimal phase factor for the PTS technique to 
reduce computational complexity and improve PAPR 
performance. We formulated the phase factor search of the 
PTS technique as a global optimization problem with bound 
constraints. We then applied the EM based method to search 
for the optimal phase factor. The computer simulation results 
showed that compared with the various stochastic search 
techniques developed previously, the proposed EM method 
obtained the desirable PAPR reduction with low 
computational complexity. 
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