
105

Chapter 8

Distributed Database Patterns

The manager is to be blamed who distributes parts to his players which they are unable 
to act.

—Franz Schubert

The speed of communications is wondrous to behold. It is also true that speed can multiply 
the distribution of information that we know to be untrue.

—Edward R. Murrow

Administrators of web applications have traditionally had two choices when the application demand 
exceeds database capacity: scaling up by increasing the power of individual servers, or scaling out by adding 
more servers. For most of the relational database era, scaling up was the more practical option. Early 
relational databases did not provide a clustering option, whereas the CPU and memory supplied by a single 
server was constantly and exponentially increasing in line with Moore’s law. Consequently, scaling out was 
neither practical nor necessary.

However, as database workloads shifted from client-server applications running behind the firewall 
to web applications with potentially global scope, it became increasingly difficult to support workload 
and availability requirements on a single server. Furthermore, Internet applications were often subject to 
unpredictable and massive growth in workload: it became possible for an application to “go viral” and to 
suddenly experience exponential growth in demand. The economic sweet spot for computer hardware 
and the imperatives of growth increasingly encouraged clusters of servers rather than single, monolithic 
proprietary servers.  A scale-out solution for databases became imperative.

To address the demands of web-scale applications, a new generation of distributed nonrelational 
databases emerged. In this chapter, we’ll dive deep into the architectures of these distributed database systems.

Distributed Relational Databases
The first database systems were designed to run on a single computer. Indeed, prior to the client-server 
revolution, all components of early database applications—including all the application code—would reside 
on a single system: the mainframe.

In this centralized model, all program code runs on the server, and users communicate with the 
application code through dumb terminals (the terminals are “dumb” because they contain no application 
code). In the client-server model, presentation and business logic were implemented on workstations—
usually Windows PCs—that communicated with a single back-end database server.  In early Internet 
applications, business logic was implemented on one or more web application servers, while presentation 
logic was shared between the web browser and the application server, which still almost always 
communicated with a single database server.



Chapter 8 ■ DistributeD Database patterns

106

Figure 8-1 Illustrates the three architectures, showing how each pattern continued to rely on a single, 
monolithic database server.

Figure 8-1. Mainframe, client-server, and early web architectures relied on single, monolithic database servers



Chapter 8 ■ DistributeD Database patterns

107

Replication
Database replication was initially adopted as a means of achieving high availability. Using replication, 
database administrators could configure a standby database that could take over for the primary database in 
the event of failure.

Database replication often took advantage of the transaction log that most relational databases used 
to support ACID transactions. We introduced the transaction log pattern in the context of in-memory 
databases in Chapter 7. When a transaction commits in an ACID-compliant database, the transaction record 
is immediately written to the transaction log so that it is preserved in the event of failure. A replication 
process monitoring the transaction log can apply changes to a backup database, thereby creating a replica.

Figure 8-2 illustrates the log-based replication approach. Database transactions are written in an 
asynchronous “lazy” manner to the database files (1), but a database transaction immediately writes to 
the transaction log upon commit (2). The replication process monitors the transaction log and applies 
transactions as they are written to the read-only slave database (3). Replication is usually asynchronous, but 
in some databases the commit can be deferred until the transaction has been replicated to the slave.

Figure 8-2. Log-based replication

As we saw in Chapter 3, replication is typically a first step toward distributing the database load across 
multiple servers. Using replication, the read workload can be distributed in a scale-out fashion, although 
database transactions must still be applied to the master copy.

Shared Nothing and Shared Disk
The replication pattern for distributing database workloads works well to distribute read activity across 
multiple servers, but it does not distribute transactional write loads, which still must be directed exclusively 
to the master server.

Replication is also of limited value for distributing data warehousing workloads. An OLTP workload 
typically consists of large numbers of short-duration requests. However, in a data warehousing environment, 
the workload usually consists of smaller numbers of data-intensive queries.  In high-end database servers, 
these massive queries are executed by multiple processes or threads, each of which can leverage a separate 
CPU core and take advantage of multiple IO channels.



Chapter 8 ■ DistributeD Database patterns

108

Parallelizing a query across multiple database servers requires a new approach. Data warehousing 
vendors provided a solution to this problem by implementing a shared-nothing clustered database 
architecture. Like so many concepts in the relational world, the shared-nothing idea was most notably 
outlined by Michael Stonebraker in the 1980s.  A database server may be classified as:

• Shared-everything: In this case, every database process shares the same memory, 
CPU, and disk resources. Sharing memory implies that every process is on the same 
server and hence this architecture is a single-node database architecture.

• Shared-disk: In this case, database processes may exist on separate nodes in the 
cluster and have access to the CPU and memory of the server on which they reside. 
However, every process has equal access to disk devices, which are shared across all 
nodes of the cluster.

• Shared-nothing: In this case, each node in the cluster has access not only to its 
own memory and CPU but also to dedicated disk devices and its own subset of 
the database. We’ve seen several examples of shared-nothing architecture in this 
book already, including the sharded MySQL design in Chapter 3 and the VoltDB 
partitioning scheme in Chapter 7.

The shared-nothing model became the basis for several early clustered database systems, such as 
Teradata. It provides an attractive model for data warehousing workloads because queries can easily be 
parallelized across the multiple nodes based on the data they wish to access. For a system that wishes to 
maximize read-centric workloads, it is significantly easier to implement. Databases implementing the 
shared-nothing model often refer to themselves as massively parallel processing (MPP) databases. Figure 8-3 
illustrates the shared-nothing model.

Figure 8-3. Shared-nothing database architecture



Chapter 8 ■ DistributeD Database patterns

109

The shared-nothing architecture tends to break down in transactional scenarios, because of the need 
to coordinate transactions that may touch data on multiple nodes. Since ACID transactions are “all or 
nothing,” it’s necessary for all nodes in the transaction to coordinate closely on transaction execution. This 
coordination, known as two-phase commit, is notoriously difficult to implement and may result in “in doubt” 
transactional outcomes and poor transactional performance.

The other drawback of the shared-nothing architecture is that without careful partitioning, the cluster 
workload becomes unbalanced. Maintaining correct partitioning becomes a major operational activity. 
When nodes are added or removed from the cluster, expensive rebalancing is required.

A shared-disk architecture theoretically allows for greater and more elastic scalability, and it removes 
the need for rebalancing operations. It also provides a more economical high-availability solution, since no 
node has exclusive responsibility for any particular set of data.  In shared-nothing, a node failure results in 
a portion of the database being unavailable, while in shared-disk, the remaining nodes are able to take over 
responsibility for the failed node.

The challenge for the shared-disk architecture is the need to coordinate cached data across nodes. 
Without an in-memory cache, performance for all operations will degrade to disk speed. But to maintain a 
consistent view of data across all nodes, each node needs to maintain a consistent cache. Maintaining this 
cache coherency puts a strain on the network between the nodes and is difficult to successfully implement.

To date, the only surviving commercially successful shared-disk RDBMS is Oracle’s Real Application 
Clusters (RAC) cluster database. RAC is the basis for Oracle’s Exadata database machine and cloud database 
offerings. Figure 8-4 illustrates the shared-disk model.

Figure 8-4. Shared-disk database architecture



Chapter 8 ■ DistributeD Database patterns

110

Nonrelational Distributed Databases
Maintaining ACID transactional integrity across multiple nodes in a distributed relational database is a 
significant challenge. However, in nonrelational database systems, ACID compliance is often not provided. 
For nonrelational distributed databases, the following considerations become more significant:

• Balancing availability and consistency: As we saw in Chapter 3, Brewer’s CAP 
theorem argues that a distributed database that aims to scale beyond a single local 
network must choose between availability and consistency in the event of a network 
partition. An ACID-compliant database is obliged to favor consistency over all other 
factors. However, a nonrelational database without the constraint of strict ACID 
compliance can strike a different balance. 

• Hardware economics: Even small differences in the cost of individual servers multiply 
quickly when a system scales to thousands or hundreds of thousands of nodes. 
Therefore, an economical database architecture will better leverage commodity 
hardware so as to take advantage of the best price/performance ratios available. 
Furthermore, it may become necessary to be able to cope with disparities between
server configurations, so that new hardware can be added to the database cluster 
without requiring all existing nodes to be upgraded to the latest hardware specification.

• Resilience:In a massive database cluster, nodes will fail from time to time. In the 
event of these failures, there can be no data loss, interruption to availability, or 
maybe even failure at the transaction level.

There have been three broad categories of distributed database architecture adopted by next-generation 
databases. The three models are:

• Variations on traditional sharding architecture, in which data is segmented across 
nodes based on the value of a “shard key.”

• Variations on the Hadoop HDFS/HBase model, in which an “omniscient master” 
determines where data should be located in the cluster, based on load and other factors

• The Amazon Dynamo consistent hashing model, in which data is distributed across 
nodes of the cluster based on predictable mathematical hashing of a key value.

Replication may be inherent within each of these architectures in order to ensure that no data is lost in the 
event of a server failure, although the replication strategies vary. We look at examples of each of these approaches 
in the remainder of this chapter. We use MongoDB as an example of a sharding architecture, HBase as the 
example of an omniscient master, and Cassandra as an example of Dynamo-style consistent hashing.

MongoDB Sharding and Replication
MongoDB supports sharding to provide scale-out capabilities and replication for high availability. Although 
each can be implemented independently of the other, they are usually both present in a production scenario.

Sharding
A high-level representation of the MongoDB sharding architecture is shown in Figure 8-5. Each shard is 
implemented by a distinct MongoDB database, which in most respects is unaware of its role in the broader 
sharded server (1). A separate MongoDB database—the config server (2)—contains the metadata that can 
be used to determine how data is distributed across shards. A router process (3) is responsible for routing 
requests to the appropriate shard server.



Chapter 8 ■ DistributeD Database patterns

111

You may recall that in MongoDB, a collection is used to store multiple JSON documents that usually 
have some common attributes. To shard a collection, we choose a shard key, which is one or more indexed 
attributes that will be used to determine the distribution of documents across shards. The B-tree structure of 
the MongoDB index contains the information necessary to distribute keys evenly across shards.

Sharding Mechanisms
Distribution of data across shards can be either range based or hash based. In range-based partitioning, 
each shard is allocated a specific range of shard key values. MongoDB consults the distribution of key values 
in the index to ensure that each shard is allocated approximately the same number of keys. In hash-based 
sharding, the keys are distributed based on a hash function applied to the shard key.

There are advantages and compromises involved in each scheme. Figure 8-6 illustrates the performance 
trade-offs inherent in range and hash sharding for inserts and range queries.

Figure 8-5. MongoDB sharding architecture



Chapter 8 ■ DistributeD Database patterns

112

Figure 8-6. Comparison of range and hash sharding in MongoDB



Chapter 8 ■ DistributeD Database patterns

113

Range-based partitioning allows for more efficient execution of queries that process ranges of values, 
since these queries can often be resolved by accessing a single shard. Hash-based sharding requires that 
range queries be resolved by accessing all shards. On the other hand, hash-based sharding is more likely 
to distribute “hot” documents (unfilled orders or recent posts, for instance) evenly across the cluster, thus 
balancing the load more effectively.

However, when range partitioning is enabled and the shard key is continuously incrementing, the load 
tends to aggregate against only one of the shards, thus unbalancing the cluster. With hash-based partitioning 
new documents are distributed evenly across all members of the cluster. Furthermore, although MongoDB 
tries to distribute shard keys evenly across the cluster, it may be that there are hotspots within particular 
shard key ranges which again unbalance the load. Hash-based sharding is more likely to evenly distribute 
the load in this scenario.

Tag-aware sharding allows the MongoDB administrator to fine-tune the distribution of documents to 
shards. By associating a shard with the tag, and associating a range of keys within a collection with the same 
tag, the administrator can explicitly determine the shard on which these documents will reside. This can be 
used to archive data to shards on cheaper, slower storage or to direct particular data to a specific data center 
or geography.  

Cluster Balancing
When hash-based sharding is implemented, the number of documents in each shard tends to remain 
balanced in most scenarios. However, in a range-based sharding scenario, it is easy for the shards to 
become unbalanced, especially if the shard key is based on a continuously increasing value, such as an 
auto-incrementing primary key ID.

For this reason, MongoDB will periodically assess the balance of shards across the cluster and perform 
rebalance operations, if needed.  The unit of rebalance is the shard chunk. Shards consist of chunks—typically 
64MB in size—that contain contiguous values of shard keys (or of hashed shard keys). If a shard is added or 
removed from the cluster, or if the balancer determines that a shard has become unbalanced, it can move 
chunks from one shard to another. The chunks themselves will be split if they grow too large.

Replication
Sharding is almost always combined with replication so as to ensure both availability and scalability in a 
production MongoDB deployment.

In MongoDB, data can be replicated across machines by the means of replica sets. A replica set consists 
of a primary node together with two or more secondary nodes. The primary node accepts all write requests, 
which are propagated asynchronously to the secondary nodes.

The primary node is determined by an election involving all available nodes. To be eligible to become 
primary, a node must be able to contact more than half of the replica set. This ensures that if a network 
partitions a replica set in two, only one of the partitions will attempt to establish a primary.

The successful primary will be elected based on the number of nodes to which it is in contact, together 
with a priority value that may be assigned by the system administrator.  Setting a priority of 0 to an instance 
prevents it from ever being elected as primary. In the event of a tie, the server with the most recent optime—
the timestamp of the last operation—will be selected.

The primary stores information about document changes in a collection within its local database, called 
the oplog. The primary will continuously attempt to apply these changes to secondary instances.

Members within a replica set communicate frequently via heartbeat messages. If a primary finds it 
is unable to receive heartbeat messages from more than half of the secondaries, then it will renounce its 
primary status and a new election will be called. Figure 8-7 illustrates a three-member replica set and shows 
how a network partition leads to a change of primary. 



Chapter 8 ■ DistributeD Database patterns

114

Figure 8-7. MongoDB replica set and primary failover

Arbiters are special servers that can vote in the primary election, but that don’t hold data. For large 
databases, these arbiters can avoid the necessity of creating otherwise unnecessary extra servers to ensure 
that a quorum is available when electing a primary.



Chapter 8 ■ DistributeD Database patterns

115

Write Concern and Read Preference
A MongoDB application has some control over the behavior of read and write operations, providing a degree 
of tunable consistency and availability.

•	 The write concern setting determines when MongoDB regards a write operation 
as having completed. By default, write operations complete once the primary has 
received the modification. This means that if the primary should fail irrecoverably, 
then data might be lost. To ensure that write operations have been propagated 
beyond the primary, the client can issue a blocking call, which will wait until the 
write has been received by all secondaries, a majority of secondaries, or a specified 
number of secondaries.

•	 The read preference determines where the client sends read requests. By default, 
all read requests are sent to the primary. However, the client driver can request 
that read requests be routed to the secondary if the primary is unavailable, or to 
secondaries, or to whichever server is “nearest.” The latter setting is intended to favor 
low latency over consistency.

The default settings for read preference and write concern result in MongoDB behaving as a strictly 
consistent system: everybody will see the same version of a document. Allowing reads to be satisfied from a 
secondary node results in a more eventually consistent behavior, unless the write concern is configured to 
block writes until they reach secondary nodes.

We’ll look more at MongoDB consistency in the next chapter.

HBase
HBase can be thought of both as the “Hadoop database” and as “open-source BigTable.” That is, we can 
describe HBase as a mechanism for providing random access database services on top of the Hadoop HDFS 
file system, or we can think of HBase as an open-source implementation of Google’s BigTable database that 
happens to use HDFS for data storage. Both of these descriptions are accurate: although HBase theoretically 
can be implemented on top of any distributed file system—or, indeed, even a nondistributed file system—
it’s almost always implemented on top of Hadoop HDFS, and many of HBase’s architectural assumptions 
reflect this. On the other hand, HBase implements real-time random access database functionality, which is 
essentially distinct from the base capabilities of Hadoop.

In the discussion that follows, we are going to concentrate on the HBase architecture as it is most 
commonly encountered: as implemented on top of HDFS. The implementation of HBase over HDFS creates 
a sort of hybrid, a mix of shared-nothing and shared-disk clustering patterns. On the one hand, every HBase 
node can access any element of data in the database because all data is accessible via HDFS. On the other 
hand, it is typical to co-locate HBase servers with HDFS DataNodes, which means that in practice each node 
tends to be responsible for an exclusive subset of data stored on local disk.

In either case, HDFS provides the reliability guarantees for data on disk: the HBase architecture is 
not required to concern itself with write mirroring or disk failure management, because these are handled 
automatically by the underlying HDFS system.

We introduced HDFS and Hadoop architecture in Chapter 2; please refer to that chapter if you need a 
refresher.  HDFS implements a distributed file system using disks that are directly attached to the servers—
DataNodes—that constitute a Hadoop cluster. HDFS automatically manages redundancy of data: by default, 
data is replicated across three DataNodes, one of which (if possible) is located on a separate server rack.



Chapter 8 ■ DistributeD Database patterns

116

Tables, Regions, and RegionServers
HBase implements a wide column store based on Google’s BigTable specification. We touched on that data 
model in Chapter 2, and we’ll talk more about it in Chapter 10. For now, we can consider HBase tables 
as potentially massive tabular datasets that are implemented on disk by a variable number of HDFS files 
called Hfiles.

All rows in an HBase table are identified by a unique row key. A table of nontrivial size will be split into 
multiple horizontal partitions called regions. Each region consists of a contiguous, sorted range of key values. 
This resembles the MongoDB range-based sharding scheme we described earlier in this chapter.

Read or write access to a region is controlled by a RegionServer. Each RegionServer normally runs on a 
dedicated host, and is typically co-located with the Hadoop DataNode.

There will usually be more than one region in each RegionServer. As regions grow, they split into 
multiple regions based on configurable policies. Regions may also be split manually. We’ll discuss this more 
a little later in this chapter.

Each HBase installation will include a Hadoop Zookeeper service that is implemented across 
multiple nodes. Hbase may share this Zookeeper ensemble with the rest of the Hadoop cluster or use a 
dedicated service.

When an HBase client wishes to read or write to a specific key value, it will ask Zookeeper for the 
address of the RegionServer that controls the HBase catalog. This catalog consists of the tables -ROOT- and 
.META., which identify the RegionServers that are responsible for specific key ranges. The client will then 
establish a connection with that RegionServer and request to read or write the key value concerned.

The HBase master server performs a variety of housekeeping tasks. In particular, it controls the 
balancing of regions among RegionServers. If a RegionServer is added or removed, the master will organize 
for its regions to be relocated to other RegionServers.

Figure 8-8 illustrates some of these architectural elements. An HBase client consults Zookeeper to 
determine the location of the HBase catalog tables (1), which can be then be interrogated to determine the 
location of the appropriate RegionServer (2). The client will then request to read or modify a key value from 
the appropriate RegionServer (3). The RegionServer reads or writes to the appropriate disk files, which are 
located on HDFS (4).



Chapter 8 ■ DistributeD Database patterns

117

Caching and Data Locality
The RegionServer includes a block cache that can satisfy many reads from memory, and a MemStore, 
which writes in memory before being flushed to disk. However, to ensure durability of the writes, each 
RegionServer has a dedicated write ahead log (WAL), which journals all writes to HDFS. This architecture is 
an implementation of the log-structured merge tree (LSM) pattern that is more fully described in Chapter 10.

The RegionServer can act as a generic HDFS client, communicating with the HDFS NameNode to perform 
read and write operations to files. In the most typical production deployment scenario, each RegionServer is 
located on a Hadoop NameNode, and as a result, region data will be co-located with the RegionServer, providing 
good data locality.  This data locality will be disrupted by rebalance operations and RegionServer failovers, 
but compactions—which merge HDFS disk files as described in Chapter 10—will restore  
data locality.

Hadoop and HBase support a mode known as short-circuit reads, in which the RegionServer can read 
directly from local disk, bypassing the NameNode. This, of course, is only possible when the data is stored on 
a DataNode that also hosts the RegionServer.

Figure 8-8. HBase architecture



Chapter 8 ■ DistributeD Database patterns

118

The three levels of data locality are shown in Figure 8-9. In the first configuration, the RegionServer and 
the DataNode are located on different servers and all reads and writes have to pass across the network. In 
the second configuration, the RegionServer and the DataNode are co-located and all reads and writes pass 
through the DataNode, but they are satisfied by the local disk. In the third scenario, short-circuit reads are 
configured and the RegionServer can read directly from the local disk.

Figure 8-9. Data locality in HBase

Rowkey Ordering
The HBase region partitioning scheme requires that regions consist of contiguous ranges of rowkeys.  This 
range-based partitioning has a significant impact on performance when the rowkey contains some form 
of monotonically incrementing value, such as a timestamp or a incrementing counter. In this event, all 
write operations will be directed to a specific region and hence to a single RegionServer. This can create a 
bottleneck on write throughput.

HBase offers no internal mechanisms to mitigate this issue. It’s up to the application designer to 
construct a key that is either randomized—a hash of the timestamp, for instance—or is prefixed in some way 
with a more balanced attribute. In the HBase time series database OpenTSDB, the timestamp is prefixed by 
a metric identifier variable that has a large number of values.  Data for a single metric will be located in a 
specific RegionServer, but data for a specific timestamp will be distributed across all the RegionServers.



Chapter 8 ■ DistributeD Database patterns

119

RegionServer Splits, Balancing, and Failure
As regions grow, they will be split by the RegionServer as required. The new regions will remain controlled 
by the original RegionServer—at least initially—but they are eligible for relocation during load-balancing 
operations. The default region-split policy results in regions of incrementally greater size, with the first split 
occurring after as little as 128M, while the tenth region will be approximately 10GB in size. However, it is 
possible to split regions manually or to override the split policy with custom code.

One of the most important responsibilities of the HBase master node is to balance regions across 
RegionServers. The master will periodically evaluate the balance of regions across all RegionServers, and 
should it detect an imbalance, it will migrate regions to another server. This is a “soft” rebalance—the 
region’s data remains in its original location on HDFS disk, but the responsibility for managing that data is 
moved to a different RegionServer.

As noted earlier, rebalancing tends to result in a loss of data locality: when the RegionServer acquires 
responsibility for a new region, that region will probably be located on a remote data node—at least until the 
next major compaction. 

Region Replicas
In earlier versions of HBase, a failure of a RegionServer would require a failover to a new RegionServer. 
Because the RegionServers don’t actually store the data for a region (the data is in HDFS), a failure is not 
catastrophic. The master would detect the failure and allocate the regions concerned to other RegionServers 
in a similar way to the balancing operation. However, some interruption of service would result.

Region replicas allow for redundant copies of regions to be stored on multiple RegionServers. Should a 
RegionServer fail, these replicas can be used to service client requests.

The original RegionServer serves as the master copy of the region. Read-only replicas of the region are 
distributed to other RegionServers—located in other racks, if possible—which then “follow” the primary 
RegionServer. Writes to these replicas are asynchronous to primary RegionServer writes, so data in the 
replicas will not always be up to date. We’ll see in the next chapter how the configuration of HBase region 
replicas affects consistency and availability.

HBase also supports a replication facility that can be used to stand up a duplicated HBase database. 
This is typically used to duplicate an entire HBase database in another data center.

Cassandra
In Chapter 3, we introduced Amazon’s Dynamo database and the concept of consistent hashing. A number 
of open-source systems have implemented the Dynamo model.  In this chapter, we consider the Cassandra 
implementation.

Gossip
In HBase and MongoDB, we encountered the concept of master nodes—nodes which have a specialized 
supervisory function, coordinate activities of other nodes, and record the current state of the database 
cluster. In Cassandra and other Dynamo databases, there are no specialized master nodes. Every node is 
equal and every node is capable of performing any of the activities required for cluster operation.

Nodes in Cassandra do, however, have short-term specialized responsibilities. For instance, when a 
client performs an operation, a node will be allocated as the coordinator for that operation. When a new 
member is added to the cluster, a node will be nominated as the seed node from which the new node will 
seek information. However, these short-term responsibilities can be performed by any node in the cluster.



Chapter 8 ■ DistributeD Database patterns

120

One of the advantages of a master node is that it can maintain a canonical version of cluster 
configuration and state. In the absence of such a master node, Cassandra requires that all members of the 
cluster be kept up to date with the current state of cluster configuration and status. This is achieved by use 
of the gossip protocol. Every second each member of the cluster will transmit information about its state and 
the state of any other nodes it is aware of to up to three other nodes in the cluster. In this way, cluster status is 
constantly being updated across all members of the cluster.

The gossip protocol is aptly named: when people gossip, they generally tend to gossip about other 
people! Likewise, in Cassandra, the nodes gossip about other nodes as well as about their own state.

Cluster configuration is persisted in the system keyspace, which is available to all members of the 
cluster.  A keyspace is roughly analogous to a schema in a relational database—the system keyspace contains 
tables that record metadata about the cluster configuration.

This architecture eliminates any single point of failure within the cluster. Although distributed 
databases with master nodes have strategies to allow for rapid failover, the crash of a master node usually 
creates a temporary reduction in availability, such as momentarily falling back to read-only mode.

One of the main topics of gossip within a Cassandra cluster is node availability. The traditional 
mechanism for detecting node failure is to send heartbeats between nodes. However, in a widely distributed 
system, the heartbeats may be lost because of network issues rather than actual node failure. For this reason, 
Cassandra failure detection is more probabilistic: if you like, nodes in the cluster become increasingly 
“worried” about other nodes. If it seems likely that a node is down, then the operations will be directed to 
“known good” nodes.

Consistent Hashing
Cassandra and other dynamo-based databases distribute data throughout the cluster by using consistent 
hashing. The rowkey (analogous to a primary key in an RDBMS) is hashed. Each node is allocated a range of 
hash values, and the node that has the specific range for a hashed key value takes responsibility for the initial 
placement of that data.

In the default Cassandra partitioning scheme, the hash values range from -263 to 263-1. Therefore, if there 
were four nodes in the cluster and we wanted to assign equal numbers of hashes to each node, then the hash 
ranges for each would be approximately as follows:

Node Low Hash High Hash

Node A -263 -263/2

Node B -263/2 0

Node C 0 263/2

Node D 263/2 263

We usually visualize the cluster as a ring: the circumference of the ring represents all the possible hash 
values, and the location of the node on the ring represents its area of responsibility. Figure 8-10 illustrates 
simple consistent hashing: the value for a rowkey is hashed, which determines its position on “the ring.” 
Nodes in the cluster take responsibility for ranges of values within the ring, and therefore take ownership of 
specific rowkey values.



Chapter 8 ■ DistributeD Database patterns

121

Figure 8-10. Consistent hashing

The four-node cluster in Figure 8-10 is well balanced because every node is responsible for hash ranges 
of similar magnitude.  But we risk unbalancing the cluster as we add nodes. If we double the number of 
nodes in the cluster, then we can assign the new nodes at points on the ring between existing nodes and the 
cluster will remain balanced. However, doubling the cluster is usually impractical: it’s more economical to 
grow the cluster incrementally.

Early versions of Cassandra had two options when adding a new node. We could either remap all 
the hash ranges, or we could map the new node within an existing range. In the first option we obtain a 
balanced cluster, but only after an expensive rebalancing process. In the second option the cluster becomes 
unbalanced; since each node is responsible for the region of the ring between itself and its predecessor, 
adding a new node without changing the ranges of other nodes essentially splits a region in half. Figure 8-11 
shows how adding a node to the cluster can unbalance the distribution of hash key ranges.



Chapter 8 ■ DistributeD Database patterns

122

Virtual nodes, implemented in Cassandra, Riak, and many other Dynamo-based systems, provide a 
solution to this issue. When using virtual nodes, the hash ranges are calculated for a relatively large number 
of virtual nodes—256 virtual nodes per physical node, typically—and these virtual nodes are assigned 
to physical nodes. Now when a new node is added, specific virtual nodes can be reallocated to the new 
node, resulting in a balanced configuration with minimal overhead. Figure 8-12 illustrates the relationship 
between virtual nodes and physical nodes.

Figure 8-11. Adding a node to a Cassandra cluster (without virtual nodes)



Chapter 8 ■ DistributeD Database patterns

123

Virtual nodes have some other advantages. For instance, it is easier to balance a cluster made up of 
heterogeneous systems, since you can allocate more virtual nodes to more powerful new machines and 
fewer virtual nodes to underpowered older machines. Also, if a node dies it can be reconstituted from a 
larger number of physical machines, thus sharing the overhead of recovery more equitably across the cluster.

Figure 8-12. Using virtual nodes to partition data among physical nodes



Chapter 8 ■ DistributeD Database patterns

124

Order-Preserving Partitioning
The Cassandra partitioner determines how keys are distributed across nodes. The default partitioner 
uses consistent hashing, as described in the previous section. Cassandra also supports order-preserving 
partitioners that distribute data across the nodes of the cluster as ranges of actual (e.g., not hashed) rowkeys. 
This has the advantage of isolating requests for specific row ranges to specific machines, but it can lead to an 
unbalanced cluster and may create hotspots, especially if the key value is incrementing. For instance, if the 
key value is a timestamp and the order-preserving partitioner is implemented, then all new rows will tend to 
be created on a single node of the cluster.

In early versions of Cassandra, the order-preserving petitioner might be warranted to optimize range 
queries that could not be satisfied in any other way; however, following the introduction of secondary 
indexes, the order-preserving petitioner is maintained primarily for backward compatibility, and Cassandra 
documentation recommends against its use in new applications.

Replicas
So far, we have seen how Cassandra allocates the initial copy of a data item to a node. The consistent hashing 
algorithm also determines where replicas of data items are stored.

The node responsible for the hash range that equates to a specific rowkey value is called the coordinator 
node. The coordinator is responsible for ensuring that the required number of replica copies of the data are 
also written. The number of nodes to which the data must be written is known as the replication factor, and 
is the “N” in the NWR notation that we first encountered in Chapter 3.

By default, the coordinator will write copies of the data to the next N-1 nodes on the ring. So if the 
replication factor is 3, the coordinator will send replicas of the data item to the next two nodes on the ring. In 
this scenario, each node will be replicating data from the previous two nodes on the ring and replicating to 
the next two nodes on the ring. This simple scheme is referred to as the simple replication strategy.

Cassandra also allows you to configure a more complex and highly available scheme. The Network 
Topology Aware replication strategy ensures that copies will be written to nodes on other server racks within 
the same data center, or optionally to nodes in another data center altogether. Figure 8-13 illustrates these 
two replication strategies.



Chapter 8 ■ DistributeD Database patterns

125

Figure 8-13. Replication strategies in Cassandra



Chapter 8 ■ DistributeD Database patterns

126

Snitches
Cassandra uses snitches to help optimize read and write operations. A variety of snitches may be configured.

•	 The simpleSnitch returns only a list of nodes on the ring. This is sufficient for the 
simple replication strategy we discussed in the previous section.

•	 The RackInferringSnitch uses the IP addresses of hosts to infer their rack and data 
center location. This snitch supports the network aware replication strategy.

•	 The PropertyFileSnitch uses data in the configuration file rather than IP addresses 
to determine the data center and rack topology.

In addition, all snitches monitor the read latency for requests and use this to build a statistical model 
that can route requests to the best-performing nodes.

Specialized snitches exist that understand the networked topology inside various cloud platforms, such 
as Amazon EC2.

Summary
In this chapter we’ve reviewed distributed database patterns for traditional relational databases and for 
several nonrelational systems. Relational database architecture was developed in an era of large, monolithic 
database servers, and most relational databases still run as a single instance. However, shared-nothing 
clustering is commonplace in massively parallel data warehouses, and Oracle has a commercially successful 
shared-disk clustered RDBMS.

We looked in detail at three distributed nonrelational database systems. MongoDB uses a combination 
of sharding and replication to enable distributed processing. HBase leverages the distributed file system of 
the Hadoop Distributed File System together with a range-partitioning strategy to achieve a highly scalable 
solution. Cassandra uses the consistent hashing scheme pioneered in Amazon’s Dynamo system to create a 
symmetrical clustering solution in which no master servers are required.

In a distributed database, multiple copies of data are typically maintained across the cluster. In the next 
chapter, we’ll see how these databases manage data consistency within such a distributed system.




