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Abstract- Nowadays operating systems are inseparable part of 

computer systems. Real-time operating systems (RTOS) are a 

special kind of operating systems that their main goal is to 

operate correctly and provide correct and valid results in a 

bounded and predetermined time. RTOSs are widely used in 

safety-critical domains. In these domains all the system’s 

requirements should be met and a catastrophe occurs if the 

system fails. Hence, fault tolerance is an essential requirement of 

RTOSs employed in safety-critical domains. In the past decades, 

several fault tolerance techniques have been proposed to protect 

different parts of an RTOS against faults and errors. In this 

paper, after presenting primary concepts of RTOSs, some 

features of these operating systems are reviewed and then a 

number of fault tolerance techniques that can be applied to each 

feature and their impact on system reliability is investigated. The 

main contribution of this work is to review and categorize 

several fault tolerance techniques applicable to RTOSs based on 

the operating system’s features. 
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I. INTRODUCTION 

“An operating system acts as an intermediary between the 

user of a computer and the computer hardware. The purpose 

of an operating system is to provide an environment in which 

the user can execute programs in a convenient and efficient 

manner”[1]. In fact the main role of an operating system is to 

employ some methods to manage a computer system, such as 

scheduling processor(s), process and thread management, 

inter-process communication, memory management, I/O 

management, concurrency control, critical sections, 

synchronization, interrupt and event handling, controlling 

timers and clocks and etc. which are known as operating 

systems’ features. 

In the non-real-time world, the value domain is the sole 

dimension of computations and correctness of results is the 

sufficient condition to consider results as valid results. The 

inclusion of the time domain in real-time systems adds a new 

dimension to the computations. Real-time applications in 

addition to correct results, have to produce valid results too. 

In these applications, correctness is achieved when correct 

results are produced and validness is achieved when correct 

results are produced on-time, in a bounded and predetermined 

time.  

Time-sharing operating systems provide an environment 

to run applications and produce correct results by utilizing 

resources fairly and efficiently. A typical RTOS monitors and 

controls some external processes/objects, and it should 

become aware of changes in the external process/object and 

respond to them in a timely manner. In order to meet such 

timing constraints, RTOSs should provide timeliness and 

predictability by considering real-time requirements while 

designing operating system’s features as mentioned before. In 

fact, RTOSs should provide both predictability and suitable 

feature set for application development. 

A system is called safety-critical if the occurrence of a 

failure in meeting system requirements causes to catastrophic 

effects. In addition to meeting predefined requirements, these 

systems should satisfy real-time constraints if they want to 

perform their intended functions effectively [2]. Hence 

RTOSs are widely used in safety-critical systems. Military 

and civilian aircrafts, nuclear plants, and medical devices are 

examples of safety-critical systems. 

In safety-critical systems, in addition to hardware, 

applications and the host operating system ought to be fault-

tolerant and their operations should not be failed. In other 

words, the operating systems employed in safety-critical 

domains should produce correct and valid results in the 

presence or in the absence of faults. Such feature is known as 

reliable computing [3]. Requirement of this reliability is to 

implement fault tolerance techniques on the operating system 

[4]. In spite of the efforts made to prevent and remove faults 

during development phases of safety-critical systems, 

software faults aren’t eliminated yet completely and also the 

system hardware may still fail during operation because of 

internal or external faults. Hence, implementing fault 

tolerance techniques on an RTOS to tolerate faults and errors 

in a safety-critical system is crucial. 

In this paper first some basic concepts of RTOSs are 

presented and then a number of the most important features of 

RTOSs are reviewed. Afterward, some fault tolerance 

techniques applicable to the mentioned features along with 

their impact on system reliability is investigated. The 

investigated techniques include both hardware-based and 

software-based techniques which are employed to tolerate 

transient and permanent faults. 

The organization of this paper is as follows. Section 2 

presents some basic concepts and different types of RTOSs. 

Section 3 investigates a number of RTOSs’ features along 

with some fault tolerance techniques that can be applied to 

each feature. Finally Section 4 concludes the paper.  

II. BASIC CONCEPTS 

In this section first some definitions of RTOSs are presented 

and then three kinds of these operating systems along with 

their primary requirements are discussed. 

A) Real-Time Operating System (RTOS) 

“Real-time operating systems emphasize predictability, 

efficiency and include features to support timing constraints” 

[5]. In RTOSs all tasks should be released on-time (on release 

time) and also should be completed before particular times 

called deadline. A real-time task fails if it couldn’t meet these 

timing constraints [6]. In other words, violating timing 

constraints in RTOSs leads to system failure. In order to 

analyze RTOSs precisely and guaranty system safety, their 

internal parts should be defined exactly and also their 

behavior should be predictable. 
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For example XOberon is a small RTOS which provides 

predictability and safety together [7]. 

B) Soft, Firm and Hard Deadlines 

Deadline is an important property concerned to tasks in 

RTOSs and is the instant when the results should be produced 

before it. If a result has utility even after the deadline is 

passed, the deadline is classified as soft, otherwise it is firm. If 

severe consequences could result if a firm deadline is missed, 

the deadline is called hard [8]. In other words violating firm 

deadlines results in failure and violating hard deadlines results 

in catastrophe. 

Different requirements of hard and soft RTOSs have 

important effects on the system design. If the system has hard 

real-time constraints, the designer has to spend a lot of time to 

guaranty system safety and predictability and also guaranty 

that all timing constraints (deadlines) are met. If the system 

timing requirements are soft, a system that has best effort to 

meeting timing constraints and also has minimum quality loss 

while violating timing constraints should be designed. 

Portable media players and online video conferences are 

examples of soft real-time systems. Examples of hard real-

time systems include drive-by-wire systems in automobiles, 

fly-by-wire systems in avionics, missile control systems and 

autonomous space systems. 

Hard real-time operating systems focus on timing 

constraints as the most important issue in the system design 

and don’t pay attention to fault tolerance as much as timing 

constraints. Since occurrence of failure in the RTOS either 

would causes to produce incorrect results because of wrong 

computations or would causes to produce invalid results 

because of missing deadlines, implementing fault tolerance 

techniques should be considered in the system design. In this 

paper several primary features of RTOSs along with a number 

of fault tolerance techniques that could be applied to each 

feature are presented. 

III. RTOSS’ FEATURES  AND FAULT TOLERANCE TECHNIQUES 

In the previous sections, the importance of implementing fault 

tolerance techniques on RTOSs, especially those that are 

employed in safety-critical domains was discussed. In this 

section, a number of RTOSs’ features along with some fault 

tolerance techniques that could be applied to each feature are 

presented. 

A) Memory Management 

In order to protect operating systems’ components prone to 

failure, fault tolerance begins with memory protection. Sine 

programs behavior depends to data in memory, the existence 

of faults in these data would cause to program error and 

failure. 

Since the flexibility and functionality of applications are 

being increased and also they need dynamic access to 

memories, dynamic storage allocation (DSA) algorithms play 

an important role in the operating systems. In addition to 

flexibility, real-time applications require predictability too, 

i.e. memory should be managed dynamically in a bounded 

and predetermined time. The use of DSA leads to uncertainty 

in RTOSs, because of the unconstrained response time of 

DSA algorithms and the fragmentation problem. In [9] a DSA 

algorithm called TLSF has been developed to be employed in 

RTOSs. TLSF provides explicit allocation and de-allocation 

of memory blocks with a bounded and acceptable timing 

behavior Ɵ(1). Using bitmaps and the aid bitmaps is another 

technique to make allocating and de-allocating memory safely 

and reliably. This technique was introduced by [10] to be 

employed in RTEMS RTOS.  

Operating systems use memory management units (MMU) 

to run tasks in their protected memory address. Nevertheless 

some RTOSs disable MMU and don’t use it [9]. OSEK-VDX, 

µITRON and RTAI are examples of such RTOSs that disable 

MMU [11]. By disabling MMU the operating system and all 

processes are run in the same address space and each task has 

access to operating system’s and other processes’ codes and 

data. Hence a bad written code or a bug in a code, for example 

in managing pointers, would cause to failure in the kernel, 

resulting in the operating system crash. Without memory 

address protection, also some bugs would cause to special 

corruptions that are difficult to detect. For example in 

PowerPC processors, RAM is often located at physical 

address 0, so even a NULL pointer dereference may not be 

detected [12]. In order to prevent such failures, RTOSs must 

use MMU. By enabling MMU, whenever the stack of a task 

overflows, an overflow exception is raised and the operating 

system stops the task execution. Instead of stopping the task 

execution, the operating system can suspend the task and 

solve the problem of stack limitation by migrating the 

overflowed task to a new memory address space with a larger 

capacity, by regarding reserved and unreserved spaces and 

then re-executing the suspended task. The RTOS designer 

should take the migration time into account when analyzing 

system. 

Redundancy is one of the most important techniques in 

fault tolerance [3]. This technique can be applied to memory 

in a way that when a process is loaded, the operating system 

duplicates its data and states in more than one place/memory 

(three places/memories to imitate TMR). Whenever a task’s 

data/states are changed, these changes are applied to all 

replicas. Whenever the task wants to read data from memory, 

a voting is done on replicas to determine if data are changed 

inadvertently or are corrupted (for any reason, such as heavy 

ion radiation) and also to determine which data is correct and 

could be used. Memory redundancy could be supported in 

both software level and hardware level [13]. 

In addition to redundancy, a fault-tolerant memory 

management system could be constructed by four concurrent 

mechanisms as: a first recording mechanism that is activated 

to record memory update (write) events, a second recording 

mechanism that records at least a limited number of memory 

update events, an activator to activate the first recording 

mechanism in the event of a fault event and a memory 

reintegration mechanism that is utilized to data recovery by 

reintegrating some parts of memory [14]. In this memory 

management system, error recovery can be done rapidly and 

efficiently by reintegrating memory pages identified in the 

first and second recording mechanisms by considering 

memory updates log. 

Error-correcting code memory (ECC memory) is an 

instrument to improve operating systems reliability from the 

memory protection perspective. ECC memory is a type of 

computer data storage that has ability to detect and correct 

many kinds of internal data corruption. This memory is 

resistant to single-bit errors: the data that is read from each 

word is always the same as the data that has been written to it, 

even if a single bit has been flipped to the wrong state [15]. 

Some non-ECC memories with parity support allows errors to 

be detected, but not corrected. The reliability of a fault-

tolerant RTOS would be improved by employing this kind of 

memory. In contrast to these hardware-based techniques, 

software-based memory error detection and correction 

methods such as [16] would provide both reliability and 

flexibility. 
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B) Kernel Considerations 

Error detection could be done by hardware or software 

methods, such as “Transient fault detection via simultaneous 

multithreading” [17] which is an example of software 

methods. The kernel of a fault-tolerant RTOS should provide 

a mechanism that whenever an error occurs, a notification is 

sent to an agent that has duty to perform some types of error 

recovery actions. This agent is called supervisor and must be 

run in an isolated address space, because data in the address 

space containing faulty task may be corrupted. For example in 

Nooks which is a reliability subsystem, Nooks Recovery 

Manager is an agent for error recovery [18]. VxWorks RTOS 

employs a tree structure to manage error notifications 

produced by OS’s components by higher-level components in 

the hierarchical tree [19]. The supervisor would recover the 

faulty task by using backward- or forward- recovery or by re-

starting it from the beginning. The selected recovery strategy 

should be considered and defined in the system analysis. 

The kernel also has to provide an event logging 

mechanism to determine the root of an explicit error by 

analyzing everything that has been happened in the system, 

such as kernel service calls, task context switches and 

interrupts, prior to the fault [12]. To detect implicit errors, the 

kernel should provide a software watchdog capability to be 

notified whenever a task is not run in its expected code 

sequence or time slices. This mechanism also is useful in the 

control flow checking technique [20]. For example QNX 

RTOS uses Critical Process Monitor (CPM) module and 

VxWorks RTOS uses Failover Management System (FMS) 

module to detect malfunctioning system’s components. 

As a technique for error prevention, fault-tolerant RTOSs 

should protect themselves against improper invoking system 

calls and passing invalid parameters. For example some 

RTOSs send an actual pointer of kernel objects (e.g. 

semaphores) to tasks and then dereference this pointer when 

changed and passed into other kernel service calls made by 

the tasks. In this sequence if a task after receiving a pointer 

fails, this failure would cause to pointer corruption and as a 

result passing the corrupted pointer to the kernel and using it 

by the RTOS may leads to the RTOS crash [12]. To make this 

kind of failures impossible, RTOSs’ kernel must validate the 

parameters sent to all service calls. This validation could be 

done by employing descriptors for application’s references to 

kernel objects or by using n-copy programming technique [3]. 

Availability is an important part of dependable computing 

which can be achieved by providing replications of operating 

nodes. These replicas are operated concurrently and their 

internal data and states are synchronous and equivalent. OSs 

would detect nodes failure by sending and receiving heartbeat 

message to and from active nodes via reliable channels. When 

the heartbeat message fails to arrive, the active node is 

discarded and one of the redundant nodes is tagged as active 

node and then it can be taken into processing. Figure 1 depicts 

this scenario. In RTOSs it’s preferable to use Active 

Replication instead of Passive Replication when using 

redundancy techniques [8]. 

Fault-tolerant RTOS also should prevent the spread of 

faults to the kernel. This goal can be achieved by reducing the 

size of the kernel by keeping fundamental services inside the 

kernel and excluding others, especially those that are prone to 

errors, such as drivers [21]. VxWorks RTOS provides such 

isolation by inserting protection boundaries between different 

components [19]. 

 
Figure 1 - Redundancy in Operating Nodes 

C) Process and Thread Management 

Similar to time-sharing OSs, process definition and activation 

is one of the most important roles of RTOSs. But, there are 

some differences between these two kinds of OS in managing 

processes because of timing constraints in RTOSs. Time-

sharing OSs do their best effort to activate and release tasks 

timely. But in contrast, RTOSs should activate a process once 

and release it once or periodically and also guaranty each 

release is started on-time and is finished before its deadline. In 

order to adhere these timing constraints, an RTOS must 

guaranty the availability of the processes’ required resources.  

If tasks’ behavior is not monitored and controlled by the 

RTOS, a task may, as a result of malicious or careless 

execution of another task, cannot use processor or other 

system resources. When a task creates a new task or another 

kernel object, the kernel allocates some system resource, 

especially a chunk of memory and CPU time to this new task. 

A bug or a fault in the application would cause a situation 

where this task creates too many other tasks or kernel objects 

and exhausts system resources. As a result other tasks may 

fail because of their inability in acquiring required resources 

and resulting in deadline miss. In a fault-tolerant RTOS, a 

mechanism must exist to prevent such failures caused by 

resources shortage. One possible solution is to determine the 

maximum required resources, especially memory space and 

CPU time by processes before the execution, so the RTOS can 

reserve required resources for each process and as result none 

of processes are stopped because of resources shortage. In this 

method none of processes can acquire more than reserved 

resources and if they want to use more than their quota, this 

act is regarded as an error and should be discarded. Since in 

systems with static tasks, the attributes of all tasks are known 

in advance, a more relax approach can be chosen in resource 

allocation in a way that the RTOS allocates resources to each 

process from its reserved resources and from the remaining 

resources that are free and also aren’t reserved by other 

processes. For example a framework called RRES has been 

introduced by [22] for resource reservation that with a little 

coding improves system reliability significantly.  

In fixed-priority systems, tasks’ priority would be changed 

incorrectly because of fault occurrence in process table. A 

possible technique to solve this problem is to acquaint process 

manager with the importance of the tasks (e.g. hard RT task 

versus soft RT task or critical task versus normal tasks) by 

using partitions in the memory. The concept of partition 

process management is a major part of ARINC Specification 

653, an Avionics Application Software Standard Interface 

[23]. The ARINC 653 partition process manager runs 

partitions, or address spaces, according to a timeline provided 

by the system designer. Each address space is placed into one 
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or more windows of execution in a hyper period. During each 

window, all tasks in other address spaces cannot be run, and 

only tasks within the currently active address space are 

selected by process manager to be run. When the hard/critical 

processes’ window is active, its processing resource is 

guaranteed and soft/normal processes cannot be run and take 

away processing time from the hard/critical process. An 

implementation of ARINC 653 in RTEMS RTOS has been 

addressed in [24]. 

D) Scheduling 

Scheduler is the heart of an RTOS. In fact in order to guaranty 

system safety, the scheduler by considering tasks attributes 

have to determine what task should be released and should be 

preempted at what times. There are different scheduling 

algorithms in RTOSs. The most important of them are as 

follows [25]: 

 RM: Rate Monotonic (RM) is a fixed-priority scheduling 

algorithm which tasks priority is defined in advance and 

tasks with smaller period have higher priority. 

 EDF: Earliest Deadline First (EDF) is a dynamic 

scheduling algorithm which tasks priority is defined 

dynamically in run-time in a way that tasks with closer 

deadline have higher priority. 

 LLS: similar to EDF, Least Laxity First (LLF) is a 

dynamic scheduling algorithm. It assigns priority based 

on the slack time of a process. Slack time is the amount 

of time left after a job if the job was started now. In LLS 

processes with smaller slack time have higher priority 

[26]. 

Scheduler as the most important task of an RTOS has to 

be protected against failures. If the scheduler fails, other 

system tasks are not scheduled and released correctly and as 

result the system crashes. If the scheduler is fixed-priority, its 

misbehavior can be detected by using a pre-constructed static 

scheduling table and comparing the output of the scheduler 

with this table. This table has to be constructed for a hyper 

period. N-copy programming (NCP) is another fault tolerance 

technique that can be employed for both fixed-priority and 

dynamic scheduling algorithms. With this technique, n copies 

of a scheduler (n ≥ 3) are run concurrently in different address 

spaces. Then the right scheduling can be done by taking votes 

of these replicas. 

In addition to be fault-tolerant, the scheduler should take 

the required time to handle faulty tasks into its time analyses. 

As it was mentioned before, a faulty task can be re-executed 

from the beginning or can be restored from the last checkpoint 

prior to fault. This recovery and re-executing of faulty tasks, 

wastes time and could violate timing constraints. In order to 

guaranty system safety in the presence of failures, fault-

tolerant RTOSs must consider these wasting times in system 

analysis and scheduler design. In system analysis it should be 

explicitly determined for each task at-most how many re-

execution is possible, if task recovery is done by re-starting it 

from the beginning, and in situation of using backward 

recovery as fault tolerance scheme, by having fault rate, error 

detection latency and required time for saving and restoring 

checkpoints data, at-most how many failures could be 

recovered and also how many checkpoints has to be taken to 

do that, [27, 28]. This analysis can be done statically in 

advance or dynamically in run-time. RTOS more tend to use 

g-state instead of checkpoint [8]. 

In addition to recovering tasks from errors, fault-tolerant 

RTOSs should be able to recover processors from transient 

and permanent faults too. If a processor fails temporarily and 

its internal states and assigned tasks are not recovered, this 

failure leads to violate timing constraints and system crash. 

By sending heartbeat messages, a processor failure could be 

detected and by having checkpoints of the entire processor 

states and the assigned tasks, in disks, the faulty processor 

would be recovered from transient faults correctly [29]. In 

situation of permanent faults, after recovering faulty processor 

states, task migration must be done to run recovered tasks on 

another hale processor. Also tolerating more than one faulty 

processor preferably must be taken into account while system 

design [30]. Since disks have low speed, using diskless 

checkpointing schemas and storing checkpoints data on other 

processors’ memory would help to decrease waste times [31].  

A research on implementing a fault tolerance scheduler in 

RTEMS RTOS has been presented in [32]. In addition to fault 

tolerance, energy management and dynamic voltage scaling 

issues could be considered in time analysis especially for 

embedded systems [33]. 

E) Communications 

In all operating systems, processes need to communicate with 

each other through some mechanisms, such as message 

passing or memory sharing. Message passing methods causes 

to uncertainty in the system timing, because of systems 

architecture features, i.e. it’s impossible to determine exactly 

how long a message passing takes. In an RTOS the maximum 

latency of message passing should be determined. To achieve 

such determinacy some token based techniques such as Ring 

and TDMA can be employed [34]. Moreover if the reliability 

of communication channels is not 100%, some techniques 

such as dynamic time redundancy in the lower levels of the 

communication protocols or using QoS services could be 

employed to increase the communication channels reliability 

significantly [34]. 

In addition to physical and dynamic time redundancy, 

there are other approaches and methodologies to increase the 

reliability of inter-processes communications. For example in 

[35] a facility has been introduced that provides supports for 

fault-tolerant process groups by a family of reliable multicast 

protocols that can be employed in fault-tolerant RTOSs. In 

this facility a protocol that guaranties delivery orderings has 

been introduced which ensures the processes belonging to a 

fault-tolerant process group will see consistent orderings of 

events that affect the system reliability including process 

failures, recoveries, migration, and dynamic changes to group 

properties like member rankings. This is done by using some 

broadcast primitives, such as: group broadcast (GBCAST), 

atomic broadcast (ABCAST) and causal broadcast 

(CBCAST). 

Similar to inter-process communications, inter-processors 

communications should be reliable too. In [36] a subsystem 

called Transis has been introduced that by using reliable 

multicast message services, supports reliable communication 

among processors. VxFusion is a run-time extension to 

support inter-processor communication that is employed by 

VxWorks RTOS [19]. In addition to the mentioned 

mechanisms, there are different channel models that by using 

appropriate encoders and decoders, guaranty cannels 

reliability [37]. In order to select a model for a 

communication, several factors must be considered. These 

factors include the physical and statistical nature of the 

channel disturbances, the information available to the 

transmitter and receiver, the presence of any feedback link 

from the receiver to the transmitter, and the availability of the 

transmitter and receiver of a shared source (independent of the 

channel disturbances) [37]. 

RPC is a remote communication method which in order to 

meet requirements of fault-tolerant RTOSs, should be done in 

a reliable manner. Sun Batching RPC is a variation of RPC 
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that performs reliable and dependable telecommunications. It 

typically uses reliable byte stream protocols (like TCP) for its 

transport [38] which in addition to guaranty reliable 

communication, guaranties at-most-once semantics and 

ordered delivery of messages. These features qualify Sun 

Batching RPC to be employed by fault-tolerant RTOSs. 

The implementation of a fault-tolerant RPC based grid 

applications was discussed in [39]. 

F) I/O Management 

RTOSs should manage the order of I/O accesses in a way that 

interferences are prevented and also all tasks (especially hard 

real-time tasks) could meet their timing constraints. In 

addition to considering timing constraints, fault-tolerance 

RTOSs must provide some fault tolerance techniques to 

tolerate faulty I/O devices. There are many fault tolerance 

techniques for I/O devices that are concerned to the target 

device. Replication is the most common technique that can be 

employed by duplicating I/O devices. The main I/O device is 

called active (primary) and the replicated ones are called 

backup. Once an active device fails and its failure is detected 

by heartbeat messages, one of the backup devices must 

perform the duties of active device from the fault point. Such 

duplications via PCIs have been investigated in [40]. In order 

to mitigate wasting times, it’s desired to design backups as 

active redundancy. For example RAID is an example of 

active redundancy in secondary storage devices [41]. 

Robustness is an important system quality feature which is 

defined by the IEEE standard glossary of software 

engineering terminology  as: “The degree to which a system 

or component can function correctly in the presence of invalid 

inputs or stressful environmental conditions” [42]. Avizienis 

et al. also define robustness as “dependability with respect to 

erroneous input” [43]. When the input data are missed or 

incorrect, robustness techniques try to fix or calculate the 

exact or approximate value of the input data. One technique in 

robustness is to request correct data from the sender or user by 

considering correct data format which has been defined in a 

predefined data pattern table. Another technique is to use last 

correct data instead of the missed/incorrect input data or to 

approximate correct value of the input data by applying some 

machine learning algorithms to previous input data in similar 

situations. Such techniques don’t guaranty a correct behavior 

in the system, but they would alleviate the side effects of data 

loss. 

The robustness of an OS would be measured by the ability 

of its APIs in handling exceptional input parameters which 

consists of detecting invalid parameters and tolerating them 

[44]. Experiments on 233 functions of 13 POSIX OSs reveals 

a 6% to 19% robustness failure rate for single-OS tests that by 

employing N-version technique this rate was reduced to 3.8%. 

The desired robustness model should be selected while the 

system development. Based on study in [45], almost 47% of 

researches consider robustness in verification & validation 

phase of the system development and only 35% of researches 

consider it in the system design phase. Other researches do it 

in different phases. 

G) Interrupt Handling 

OSs have several types of interrupts with different priorities 

and execution times. Interrupts with higher priority need a 

faster response time. When internal data structures are being 

manipulated by and during service calls, other interrupts 

especially timer’s scheduler should be disabled because 

otherwise a related service call may be executed and cause an 

access to inconsistent data. In fact in order to handle lower 

priority interrupts reliably, the higher priority interrupts are 

discarded or hindered unboundedly which cause to 

indeterminacy in timing system calls that is undesired for 

RTOSs [12]. A static analysis approach to obtain the WCET 

of system calls in RTEMS RTOS has been introduced in [46]. 

Fault-tolerant RTOSs should guaranty both predictability 

and reliability while handling interrupts. To achieve these 

goals, all kernel service calls should be revertible, so that the 

RTOS can preempt the service call, restore carried out 

operations and restart it later. Therefore the time to get back 

to the scheduler may take by a few instructions and the higher 

priority interrupts are always executed with an absolute 

minimum latency. This method improves system 

predictability and reliability in terms of avoidance of access to 

inconsistent data. 

H) Programming Languages 

Since fault-tolerant RTOSs have special requirements, in 

order to meet them special programming languages should be 

employed as well. Some features of traditional programming 

languages are prone to problems that using them in fault-

tolerant RTOSs is discouraged, such as: pointers, dynamic 

memory allocation and de-allocation, unstructured 

programming, multiple entry points and exit points, variant 

data, implicit declaration and implicit initialization, 

procedural parameters, recursion, concurrency and race, and 

interrupts aware programming [47]. In addition to considering 

these programming features, real-time applications has to 

guaranty correct responses within strict timing constraints. In 

other words the maximum required time to respond to a 

request or to complete a work by a process should be 

accountable. To attain this time, the maximum time that each 

part of a program takes should be determined explicitly. 

Hence for example in the real-time programming, variable 

loops with undetermined or unbounded iteration are not 

acceptable.  

In general, real-time programming languages are 

employed in three real-time programming models as 

synchronous, scheduled, and timed that differ in time they 

take to complete and in their compiler to meet corresponding 

requirements [48]. In addition to considering these models, 

programming languages employed in fault-tolerant RTOSs 

should support some error detection and error correction 

techniques. Ada is one of the most widely used programming 

language in fault-tolerant real-time domains because of its 

major strengths, such as: the well-defined language semantics, 

the strong type checking, structuring mechanisms like 

packages and supporting the development of code analysis, 

verification and testing tools [49]. Euclid is another fault-

tolerant real-time programming language that employs 

exception handlers and import/export lists to provide 

comprehensive error detection, isolation, and recovery. The 

philosophy of this language is that every exception detectable 

by the hardware or the software should have an exception 

handler associated with it. Moreover, Euclid forces everything 

in the language to be time- and space-bounded [50]. Using 

such programming languages would cause to improve the 

system reliability [51]. 

IV. CONCLUSION 

Real-time operating systems are widely used in safety-critical 

domains to interact with controlled objects in the external 

environment and should provide correct and valid results in a 

bounded and predetermined time. In these domains, the costs 

of a system failure leads to catastrophe and exceeds the initial 

investment in the computer and in the controlled object. To 

prevent such failures, system designer must guaranty that the 

system can meet requirements as specified in the domains of 
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both value and time during all anticipated operational 

situations, even when an error occurs. To attain this goal, the 

employed RTOS should be able to tolerate faults and errors 

appear in the system. 

Similar to traditional operating systems, RTOSs have 

some primitive features that are essential for a basic RTOSs to 

meet value and time domains requirements. Implementing 

fault tolerance techniques on these features would cause to 

improve the reliability of the RTOS and the whole system as 

well. 

In this paper first some definitions of RTOSs along with 

their requirements was reviewed followed by investigating 

some primitive features of an RTOS such as Memory 

Management, Kernel Considerations, Process and Thread 

Management, Communications, I/O Management, Interrupt 

Handling and Programming Languages. Then a number of 

fault tolerance techniques that could be applied to each 

mentioned features were presented. This paper in fact 

categorizes several fault tolerance techniques applicable to 

RTOSs based on some primitive features of operating 

systems. Some techniques could only deal with transient 

faults and some could tolerate both transient and permanent 

faults. Some techniques are only software-based and some 

rely on the involved hardware. In order to have a fault-tolerant 

RTOS, the system designer has to consider the requirements 

of the intended fault tolerance techniques in the requirement 

analysis and system design phases while developing system. 
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