

An Overview of Fault Tolerance Techniques for Real-Time Operating Systems

Reza Ramezani* Yasser Sedaghat**

Dependable Distributed Embedded Systems (DDEmS) Laboratory: http://ddems.um.ac.ir

Department of Computer Engineering

Ferdowsi University of Mashhad, Mashhad, Iran

reza.ramezani@stu.um.ac.ir* y_sedaghat@um.ac.ir**

Abstract- Nowadays operating systems are inseparable part of

computer systems. Real-time operating systems (RTOS) are a

special kind of operating systems that their main goal is to

operate correctly and provide correct and valid results in a

bounded and predetermined time. RTOSs are widely used in

safety-critical domains. In these domains all the system’s

requirements should be met and a catastrophe occurs if the

system fails. Hence, fault tolerance is an essential requirement of

RTOSs employed in safety-critical domains. In the past decades,

several fault tolerance techniques have been proposed to protect

different parts of an RTOS against faults and errors. In this

paper, after presenting primary concepts of RTOSs, some

features of these operating systems are reviewed and then a

number of fault tolerance techniques that can be applied to each

feature and their impact on system reliability is investigated. The

main contribution of this work is to review and categorize

several fault tolerance techniques applicable to RTOSs based on

the operating system’s features.

Keywords: Real-Time Operating System, Fault Tolerance.

I. INTRODUCTION

“An operating system acts as an intermediary between the

user of a computer and the computer hardware. The purpose

of an operating system is to provide an environment in which

the user can execute programs in a convenient and efficient

manner”[1]. In fact the main role of an operating system is to

employ some methods to manage a computer system, such as

scheduling processor(s), process and thread management,

inter-process communication, memory management, I/O

management, concurrency control, critical sections,

synchronization, interrupt and event handling, controlling

timers and clocks and etc. which are known as operating

systems’ features.

In the non-real-time world, the value domain is the sole

dimension of computations and correctness of results is the

sufficient condition to consider results as valid results. The

inclusion of the time domain in real-time systems adds a new

dimension to the computations. Real-time applications in

addition to correct results, have to produce valid results too.

In these applications, correctness is achieved when correct

results are produced and validness is achieved when correct

results are produced on-time, in a bounded and predetermined

time.

Time-sharing operating systems provide an environment

to run applications and produce correct results by utilizing

resources fairly and efficiently. A typical RTOS monitors and

controls some external processes/objects, and it should

become aware of changes in the external process/object and

respond to them in a timely manner. In order to meet such

timing constraints, RTOSs should provide timeliness and

predictability by considering real-time requirements while

designing operating system’s features as mentioned before. In

fact, RTOSs should provide both predictability and suitable

feature set for application development.

A system is called safety-critical if the occurrence of a

failure in meeting system requirements causes to catastrophic

effects. In addition to meeting predefined requirements, these

systems should satisfy real-time constraints if they want to

perform their intended functions effectively [2]. Hence

RTOSs are widely used in safety-critical systems. Military

and civilian aircrafts, nuclear plants, and medical devices are

examples of safety-critical systems.

In safety-critical systems, in addition to hardware,

applications and the host operating system ought to be fault-

tolerant and their operations should not be failed. In other

words, the operating systems employed in safety-critical

domains should produce correct and valid results in the

presence or in the absence of faults. Such feature is known as

reliable computing [3]. Requirement of this reliability is to

implement fault tolerance techniques on the operating system

[4]. In spite of the efforts made to prevent and remove faults

during development phases of safety-critical systems,

software faults aren’t eliminated yet completely and also the

system hardware may still fail during operation because of

internal or external faults. Hence, implementing fault

tolerance techniques on an RTOS to tolerate faults and errors

in a safety-critical system is crucial.

In this paper first some basic concepts of RTOSs are

presented and then a number of the most important features of

RTOSs are reviewed. Afterward, some fault tolerance

techniques applicable to the mentioned features along with

their impact on system reliability is investigated. The

investigated techniques include both hardware-based and

software-based techniques which are employed to tolerate

transient and permanent faults.

The organization of this paper is as follows. Section 2

presents some basic concepts and different types of RTOSs.

Section 3 investigates a number of RTOSs’ features along

with some fault tolerance techniques that can be applied to

each feature. Finally Section 4 concludes the paper.

II. BASIC CONCEPTS

In this section first some definitions of RTOSs are presented

and then three kinds of these operating systems along with

their primary requirements are discussed.

A) Real-Time Operating System (RTOS)

“Real-time operating systems emphasize predictability,

efficiency and include features to support timing constraints”

[5]. In RTOSs all tasks should be released on-time (on release

time) and also should be completed before particular times

called deadline. A real-time task fails if it couldn’t meet these

timing constraints [6]. In other words, violating timing

constraints in RTOSs leads to system failure. In order to

analyze RTOSs precisely and guaranty system safety, their

internal parts should be defined exactly and also their

behavior should be predictable.

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

For example XOberon is a small RTOS which provides

predictability and safety together [7].

B) Soft, Firm and Hard Deadlines

Deadline is an important property concerned to tasks in

RTOSs and is the instant when the results should be produced

before it. If a result has utility even after the deadline is

passed, the deadline is classified as soft, otherwise it is firm. If

severe consequences could result if a firm deadline is missed,

the deadline is called hard [8]. In other words violating firm

deadlines results in failure and violating hard deadlines results

in catastrophe.

Different requirements of hard and soft RTOSs have

important effects on the system design. If the system has hard

real-time constraints, the designer has to spend a lot of time to

guaranty system safety and predictability and also guaranty

that all timing constraints (deadlines) are met. If the system

timing requirements are soft, a system that has best effort to

meeting timing constraints and also has minimum quality loss

while violating timing constraints should be designed.

Portable media players and online video conferences are

examples of soft real-time systems. Examples of hard real-

time systems include drive-by-wire systems in automobiles,

fly-by-wire systems in avionics, missile control systems and

autonomous space systems.

Hard real-time operating systems focus on timing

constraints as the most important issue in the system design

and don’t pay attention to fault tolerance as much as timing

constraints. Since occurrence of failure in the RTOS either

would causes to produce incorrect results because of wrong

computations or would causes to produce invalid results

because of missing deadlines, implementing fault tolerance

techniques should be considered in the system design. In this

paper several primary features of RTOSs along with a number

of fault tolerance techniques that could be applied to each

feature are presented.

III. RTOSS’ FEATURES AND FAULT TOLERANCE TECHNIQUES

In the previous sections, the importance of implementing fault

tolerance techniques on RTOSs, especially those that are

employed in safety-critical domains was discussed. In this

section, a number of RTOSs’ features along with some fault

tolerance techniques that could be applied to each feature are

presented.

A) Memory Management

In order to protect operating systems’ components prone to

failure, fault tolerance begins with memory protection. Sine

programs behavior depends to data in memory, the existence

of faults in these data would cause to program error and

failure.

Since the flexibility and functionality of applications are

being increased and also they need dynamic access to

memories, dynamic storage allocation (DSA) algorithms play

an important role in the operating systems. In addition to

flexibility, real-time applications require predictability too,

i.e. memory should be managed dynamically in a bounded

and predetermined time. The use of DSA leads to uncertainty

in RTOSs, because of the unconstrained response time of

DSA algorithms and the fragmentation problem. In [9] a DSA

algorithm called TLSF has been developed to be employed in

RTOSs. TLSF provides explicit allocation and de-allocation

of memory blocks with a bounded and acceptable timing

behavior Ɵ(1). Using bitmaps and the aid bitmaps is another

technique to make allocating and de-allocating memory safely

and reliably. This technique was introduced by [10] to be

employed in RTEMS RTOS.

Operating systems use memory management units (MMU)

to run tasks in their protected memory address. Nevertheless

some RTOSs disable MMU and don’t use it [9]. OSEK-VDX,

µITRON and RTAI are examples of such RTOSs that disable

MMU [11]. By disabling MMU the operating system and all

processes are run in the same address space and each task has

access to operating system’s and other processes’ codes and

data. Hence a bad written code or a bug in a code, for example

in managing pointers, would cause to failure in the kernel,

resulting in the operating system crash. Without memory

address protection, also some bugs would cause to special

corruptions that are difficult to detect. For example in

PowerPC processors, RAM is often located at physical

address 0, so even a NULL pointer dereference may not be

detected [12]. In order to prevent such failures, RTOSs must

use MMU. By enabling MMU, whenever the stack of a task

overflows, an overflow exception is raised and the operating

system stops the task execution. Instead of stopping the task

execution, the operating system can suspend the task and

solve the problem of stack limitation by migrating the

overflowed task to a new memory address space with a larger

capacity, by regarding reserved and unreserved spaces and

then re-executing the suspended task. The RTOS designer

should take the migration time into account when analyzing

system.

Redundancy is one of the most important techniques in

fault tolerance [3]. This technique can be applied to memory

in a way that when a process is loaded, the operating system

duplicates its data and states in more than one place/memory

(three places/memories to imitate TMR). Whenever a task’s

data/states are changed, these changes are applied to all

replicas. Whenever the task wants to read data from memory,

a voting is done on replicas to determine if data are changed

inadvertently or are corrupted (for any reason, such as heavy

ion radiation) and also to determine which data is correct and

could be used. Memory redundancy could be supported in

both software level and hardware level [13].

In addition to redundancy, a fault-tolerant memory

management system could be constructed by four concurrent

mechanisms as: a first recording mechanism that is activated

to record memory update (write) events, a second recording

mechanism that records at least a limited number of memory

update events, an activator to activate the first recording

mechanism in the event of a fault event and a memory

reintegration mechanism that is utilized to data recovery by

reintegrating some parts of memory [14]. In this memory

management system, error recovery can be done rapidly and

efficiently by reintegrating memory pages identified in the

first and second recording mechanisms by considering

memory updates log.

Error-correcting code memory (ECC memory) is an

instrument to improve operating systems reliability from the

memory protection perspective. ECC memory is a type of

computer data storage that has ability to detect and correct

many kinds of internal data corruption. This memory is

resistant to single-bit errors: the data that is read from each

word is always the same as the data that has been written to it,

even if a single bit has been flipped to the wrong state [15].

Some non-ECC memories with parity support allows errors to

be detected, but not corrected. The reliability of a fault-

tolerant RTOS would be improved by employing this kind of

memory. In contrast to these hardware-based techniques,

software-based memory error detection and correction

methods such as [16] would provide both reliability and

flexibility.

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

B) Kernel Considerations

Error detection could be done by hardware or software

methods, such as “Transient fault detection via simultaneous

multithreading” [17] which is an example of software

methods. The kernel of a fault-tolerant RTOS should provide

a mechanism that whenever an error occurs, a notification is

sent to an agent that has duty to perform some types of error

recovery actions. This agent is called supervisor and must be

run in an isolated address space, because data in the address

space containing faulty task may be corrupted. For example in

Nooks which is a reliability subsystem, Nooks Recovery

Manager is an agent for error recovery [18]. VxWorks RTOS

employs a tree structure to manage error notifications

produced by OS’s components by higher-level components in

the hierarchical tree [19]. The supervisor would recover the

faulty task by using backward- or forward- recovery or by re-

starting it from the beginning. The selected recovery strategy

should be considered and defined in the system analysis.

The kernel also has to provide an event logging

mechanism to determine the root of an explicit error by

analyzing everything that has been happened in the system,

such as kernel service calls, task context switches and

interrupts, prior to the fault [12]. To detect implicit errors, the

kernel should provide a software watchdog capability to be

notified whenever a task is not run in its expected code

sequence or time slices. This mechanism also is useful in the

control flow checking technique [20]. For example QNX

RTOS uses Critical Process Monitor (CPM) module and

VxWorks RTOS uses Failover Management System (FMS)

module to detect malfunctioning system’s components.

As a technique for error prevention, fault-tolerant RTOSs

should protect themselves against improper invoking system

calls and passing invalid parameters. For example some

RTOSs send an actual pointer of kernel objects (e.g.

semaphores) to tasks and then dereference this pointer when

changed and passed into other kernel service calls made by

the tasks. In this sequence if a task after receiving a pointer

fails, this failure would cause to pointer corruption and as a

result passing the corrupted pointer to the kernel and using it

by the RTOS may leads to the RTOS crash [12]. To make this

kind of failures impossible, RTOSs’ kernel must validate the

parameters sent to all service calls. This validation could be

done by employing descriptors for application’s references to

kernel objects or by using n-copy programming technique [3].

Availability is an important part of dependable computing

which can be achieved by providing replications of operating

nodes. These replicas are operated concurrently and their

internal data and states are synchronous and equivalent. OSs

would detect nodes failure by sending and receiving heartbeat

message to and from active nodes via reliable channels. When

the heartbeat message fails to arrive, the active node is

discarded and one of the redundant nodes is tagged as active

node and then it can be taken into processing. Figure 1 depicts

this scenario. In RTOSs it’s preferable to use Active

Replication instead of Passive Replication when using

redundancy techniques [8].

Fault-tolerant RTOS also should prevent the spread of

faults to the kernel. This goal can be achieved by reducing the

size of the kernel by keeping fundamental services inside the

kernel and excluding others, especially those that are prone to

errors, such as drivers [21]. VxWorks RTOS provides such

isolation by inserting protection boundaries between different

components [19].

Figure 1 - Redundancy in Operating Nodes

C) Process and Thread Management

Similar to time-sharing OSs, process definition and activation

is one of the most important roles of RTOSs. But, there are

some differences between these two kinds of OS in managing

processes because of timing constraints in RTOSs. Time-

sharing OSs do their best effort to activate and release tasks

timely. But in contrast, RTOSs should activate a process once

and release it once or periodically and also guaranty each

release is started on-time and is finished before its deadline. In

order to adhere these timing constraints, an RTOS must

guaranty the availability of the processes’ required resources.

If tasks’ behavior is not monitored and controlled by the

RTOS, a task may, as a result of malicious or careless

execution of another task, cannot use processor or other

system resources. When a task creates a new task or another

kernel object, the kernel allocates some system resource,

especially a chunk of memory and CPU time to this new task.

A bug or a fault in the application would cause a situation

where this task creates too many other tasks or kernel objects

and exhausts system resources. As a result other tasks may

fail because of their inability in acquiring required resources

and resulting in deadline miss. In a fault-tolerant RTOS, a

mechanism must exist to prevent such failures caused by

resources shortage. One possible solution is to determine the

maximum required resources, especially memory space and

CPU time by processes before the execution, so the RTOS can

reserve required resources for each process and as result none

of processes are stopped because of resources shortage. In this

method none of processes can acquire more than reserved

resources and if they want to use more than their quota, this

act is regarded as an error and should be discarded. Since in

systems with static tasks, the attributes of all tasks are known

in advance, a more relax approach can be chosen in resource

allocation in a way that the RTOS allocates resources to each

process from its reserved resources and from the remaining

resources that are free and also aren’t reserved by other

processes. For example a framework called RRES has been

introduced by [22] for resource reservation that with a little

coding improves system reliability significantly.

In fixed-priority systems, tasks’ priority would be changed

incorrectly because of fault occurrence in process table. A

possible technique to solve this problem is to acquaint process

manager with the importance of the tasks (e.g. hard RT task

versus soft RT task or critical task versus normal tasks) by

using partitions in the memory. The concept of partition

process management is a major part of ARINC Specification

653, an Avionics Application Software Standard Interface

[23]. The ARINC 653 partition process manager runs

partitions, or address spaces, according to a timeline provided

by the system designer. Each address space is placed into one

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

or more windows of execution in a hyper period. During each

window, all tasks in other address spaces cannot be run, and

only tasks within the currently active address space are

selected by process manager to be run. When the hard/critical

processes’ window is active, its processing resource is

guaranteed and soft/normal processes cannot be run and take

away processing time from the hard/critical process. An

implementation of ARINC 653 in RTEMS RTOS has been

addressed in [24].

D) Scheduling

Scheduler is the heart of an RTOS. In fact in order to guaranty

system safety, the scheduler by considering tasks attributes

have to determine what task should be released and should be

preempted at what times. There are different scheduling

algorithms in RTOSs. The most important of them are as

follows [25]:

 RM: Rate Monotonic (RM) is a fixed-priority scheduling

algorithm which tasks priority is defined in advance and

tasks with smaller period have higher priority.

 EDF: Earliest Deadline First (EDF) is a dynamic

scheduling algorithm which tasks priority is defined

dynamically in run-time in a way that tasks with closer

deadline have higher priority.

 LLS: similar to EDF, Least Laxity First (LLF) is a

dynamic scheduling algorithm. It assigns priority based

on the slack time of a process. Slack time is the amount

of time left after a job if the job was started now. In LLS

processes with smaller slack time have higher priority

[26].

Scheduler as the most important task of an RTOS has to

be protected against failures. If the scheduler fails, other

system tasks are not scheduled and released correctly and as

result the system crashes. If the scheduler is fixed-priority, its

misbehavior can be detected by using a pre-constructed static

scheduling table and comparing the output of the scheduler

with this table. This table has to be constructed for a hyper

period. N-copy programming (NCP) is another fault tolerance

technique that can be employed for both fixed-priority and

dynamic scheduling algorithms. With this technique, n copies

of a scheduler (n ≥ 3) are run concurrently in different address

spaces. Then the right scheduling can be done by taking votes

of these replicas.

In addition to be fault-tolerant, the scheduler should take

the required time to handle faulty tasks into its time analyses.

As it was mentioned before, a faulty task can be re-executed

from the beginning or can be restored from the last checkpoint

prior to fault. This recovery and re-executing of faulty tasks,

wastes time and could violate timing constraints. In order to

guaranty system safety in the presence of failures, fault-

tolerant RTOSs must consider these wasting times in system

analysis and scheduler design. In system analysis it should be

explicitly determined for each task at-most how many re-

execution is possible, if task recovery is done by re-starting it

from the beginning, and in situation of using backward

recovery as fault tolerance scheme, by having fault rate, error

detection latency and required time for saving and restoring

checkpoints data, at-most how many failures could be

recovered and also how many checkpoints has to be taken to

do that, [27, 28]. This analysis can be done statically in

advance or dynamically in run-time. RTOS more tend to use

g-state instead of checkpoint [8].

In addition to recovering tasks from errors, fault-tolerant

RTOSs should be able to recover processors from transient

and permanent faults too. If a processor fails temporarily and

its internal states and assigned tasks are not recovered, this

failure leads to violate timing constraints and system crash.

By sending heartbeat messages, a processor failure could be

detected and by having checkpoints of the entire processor

states and the assigned tasks, in disks, the faulty processor

would be recovered from transient faults correctly [29]. In

situation of permanent faults, after recovering faulty processor

states, task migration must be done to run recovered tasks on

another hale processor. Also tolerating more than one faulty

processor preferably must be taken into account while system

design [30]. Since disks have low speed, using diskless

checkpointing schemas and storing checkpoints data on other

processors’ memory would help to decrease waste times [31].

A research on implementing a fault tolerance scheduler in

RTEMS RTOS has been presented in [32]. In addition to fault

tolerance, energy management and dynamic voltage scaling

issues could be considered in time analysis especially for

embedded systems [33].

E) Communications

In all operating systems, processes need to communicate with

each other through some mechanisms, such as message

passing or memory sharing. Message passing methods causes

to uncertainty in the system timing, because of systems

architecture features, i.e. it’s impossible to determine exactly

how long a message passing takes. In an RTOS the maximum

latency of message passing should be determined. To achieve

such determinacy some token based techniques such as Ring

and TDMA can be employed [34]. Moreover if the reliability

of communication channels is not 100%, some techniques

such as dynamic time redundancy in the lower levels of the

communication protocols or using QoS services could be

employed to increase the communication channels reliability

significantly [34].

In addition to physical and dynamic time redundancy,

there are other approaches and methodologies to increase the

reliability of inter-processes communications. For example in

[35] a facility has been introduced that provides supports for

fault-tolerant process groups by a family of reliable multicast

protocols that can be employed in fault-tolerant RTOSs. In

this facility a protocol that guaranties delivery orderings has

been introduced which ensures the processes belonging to a

fault-tolerant process group will see consistent orderings of

events that affect the system reliability including process

failures, recoveries, migration, and dynamic changes to group

properties like member rankings. This is done by using some

broadcast primitives, such as: group broadcast (GBCAST),

atomic broadcast (ABCAST) and causal broadcast

(CBCAST).

Similar to inter-process communications, inter-processors

communications should be reliable too. In [36] a subsystem

called Transis has been introduced that by using reliable

multicast message services, supports reliable communication

among processors. VxFusion is a run-time extension to

support inter-processor communication that is employed by

VxWorks RTOS [19]. In addition to the mentioned

mechanisms, there are different channel models that by using

appropriate encoders and decoders, guaranty cannels

reliability [37]. In order to select a model for a

communication, several factors must be considered. These

factors include the physical and statistical nature of the

channel disturbances, the information available to the

transmitter and receiver, the presence of any feedback link

from the receiver to the transmitter, and the availability of the

transmitter and receiver of a shared source (independent of the

channel disturbances) [37].

RPC is a remote communication method which in order to

meet requirements of fault-tolerant RTOSs, should be done in

a reliable manner. Sun Batching RPC is a variation of RPC

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

that performs reliable and dependable telecommunications. It

typically uses reliable byte stream protocols (like TCP) for its

transport [38] which in addition to guaranty reliable

communication, guaranties at-most-once semantics and

ordered delivery of messages. These features qualify Sun

Batching RPC to be employed by fault-tolerant RTOSs.

The implementation of a fault-tolerant RPC based grid

applications was discussed in [39].

F) I/O Management

RTOSs should manage the order of I/O accesses in a way that

interferences are prevented and also all tasks (especially hard

real-time tasks) could meet their timing constraints. In

addition to considering timing constraints, fault-tolerance

RTOSs must provide some fault tolerance techniques to

tolerate faulty I/O devices. There are many fault tolerance

techniques for I/O devices that are concerned to the target

device. Replication is the most common technique that can be

employed by duplicating I/O devices. The main I/O device is

called active (primary) and the replicated ones are called

backup. Once an active device fails and its failure is detected

by heartbeat messages, one of the backup devices must

perform the duties of active device from the fault point. Such

duplications via PCIs have been investigated in [40]. In order

to mitigate wasting times, it’s desired to design backups as

active redundancy. For example RAID is an example of

active redundancy in secondary storage devices [41].

Robustness is an important system quality feature which is

defined by the IEEE standard glossary of software

engineering terminology as: “The degree to which a system

or component can function correctly in the presence of invalid

inputs or stressful environmental conditions” [42]. Avizienis

et al. also define robustness as “dependability with respect to

erroneous input” [43]. When the input data are missed or

incorrect, robustness techniques try to fix or calculate the

exact or approximate value of the input data. One technique in

robustness is to request correct data from the sender or user by

considering correct data format which has been defined in a

predefined data pattern table. Another technique is to use last

correct data instead of the missed/incorrect input data or to

approximate correct value of the input data by applying some

machine learning algorithms to previous input data in similar

situations. Such techniques don’t guaranty a correct behavior

in the system, but they would alleviate the side effects of data

loss.

The robustness of an OS would be measured by the ability

of its APIs in handling exceptional input parameters which

consists of detecting invalid parameters and tolerating them

[44]. Experiments on 233 functions of 13 POSIX OSs reveals

a 6% to 19% robustness failure rate for single-OS tests that by

employing N-version technique this rate was reduced to 3.8%.

The desired robustness model should be selected while the

system development. Based on study in [45], almost 47% of

researches consider robustness in verification & validation

phase of the system development and only 35% of researches

consider it in the system design phase. Other researches do it

in different phases.

G) Interrupt Handling

OSs have several types of interrupts with different priorities

and execution times. Interrupts with higher priority need a

faster response time. When internal data structures are being

manipulated by and during service calls, other interrupts

especially timer’s scheduler should be disabled because

otherwise a related service call may be executed and cause an

access to inconsistent data. In fact in order to handle lower

priority interrupts reliably, the higher priority interrupts are

discarded or hindered unboundedly which cause to

indeterminacy in timing system calls that is undesired for

RTOSs [12]. A static analysis approach to obtain the WCET

of system calls in RTEMS RTOS has been introduced in [46].

Fault-tolerant RTOSs should guaranty both predictability

and reliability while handling interrupts. To achieve these

goals, all kernel service calls should be revertible, so that the

RTOS can preempt the service call, restore carried out

operations and restart it later. Therefore the time to get back

to the scheduler may take by a few instructions and the higher

priority interrupts are always executed with an absolute

minimum latency. This method improves system

predictability and reliability in terms of avoidance of access to

inconsistent data.

H) Programming Languages

Since fault-tolerant RTOSs have special requirements, in

order to meet them special programming languages should be

employed as well. Some features of traditional programming

languages are prone to problems that using them in fault-

tolerant RTOSs is discouraged, such as: pointers, dynamic

memory allocation and de-allocation, unstructured

programming, multiple entry points and exit points, variant

data, implicit declaration and implicit initialization,

procedural parameters, recursion, concurrency and race, and

interrupts aware programming [47]. In addition to considering

these programming features, real-time applications has to

guaranty correct responses within strict timing constraints. In

other words the maximum required time to respond to a

request or to complete a work by a process should be

accountable. To attain this time, the maximum time that each

part of a program takes should be determined explicitly.

Hence for example in the real-time programming, variable

loops with undetermined or unbounded iteration are not

acceptable.

In general, real-time programming languages are

employed in three real-time programming models as

synchronous, scheduled, and timed that differ in time they

take to complete and in their compiler to meet corresponding

requirements [48]. In addition to considering these models,

programming languages employed in fault-tolerant RTOSs

should support some error detection and error correction

techniques. Ada is one of the most widely used programming

language in fault-tolerant real-time domains because of its

major strengths, such as: the well-defined language semantics,

the strong type checking, structuring mechanisms like

packages and supporting the development of code analysis,

verification and testing tools [49]. Euclid is another fault-

tolerant real-time programming language that employs

exception handlers and import/export lists to provide

comprehensive error detection, isolation, and recovery. The

philosophy of this language is that every exception detectable

by the hardware or the software should have an exception

handler associated with it. Moreover, Euclid forces everything

in the language to be time- and space-bounded [50]. Using

such programming languages would cause to improve the

system reliability [51].

IV. CONCLUSION

Real-time operating systems are widely used in safety-critical

domains to interact with controlled objects in the external

environment and should provide correct and valid results in a

bounded and predetermined time. In these domains, the costs

of a system failure leads to catastrophe and exceeds the initial

investment in the computer and in the controlled object. To

prevent such failures, system designer must guaranty that the

system can meet requirements as specified in the domains of

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

both value and time during all anticipated operational

situations, even when an error occurs. To attain this goal, the

employed RTOS should be able to tolerate faults and errors

appear in the system.

Similar to traditional operating systems, RTOSs have

some primitive features that are essential for a basic RTOSs to

meet value and time domains requirements. Implementing

fault tolerance techniques on these features would cause to

improve the reliability of the RTOS and the whole system as

well.

In this paper first some definitions of RTOSs along with

their requirements was reviewed followed by investigating

some primitive features of an RTOS such as Memory

Management, Kernel Considerations, Process and Thread

Management, Communications, I/O Management, Interrupt

Handling and Programming Languages. Then a number of

fault tolerance techniques that could be applied to each

mentioned features were presented. This paper in fact

categorizes several fault tolerance techniques applicable to

RTOSs based on some primitive features of operating

systems. Some techniques could only deal with transient

faults and some could tolerate both transient and permanent

faults. Some techniques are only software-based and some

rely on the involved hardware. In order to have a fault-tolerant

RTOS, the system designer has to consider the requirements

of the intended fault tolerance techniques in the requirement

analysis and system design phases while developing system.

V. REFERENCES

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts: J.

Wiley & Sons, 2009.

[2] J. S. Ostroff, "Formal methods for the specification and design of real-time

safety critical systems," Journal of Systems and Software, vol. 18, pp. 33-60,

1992.
[3] L. L. Pullum, Software fault tolerance techniques and implementation: Artech

House Publishers, 2001.

[4] P. J. Denning, "Fault tolerant operating systems," ACM Computing Surveys

(CSUR), vol. 8, pp. 359-389, 1976.

[5] J. A. Stankovic and R. Rajkumar, "Real-time operating systems," Real-Time

Systems, vol. 28, pp. 237-253, 2004.

[6] P. A. Laplante, "Real-Time Systems Design and Analysis," 1993.

[7] R. Brega, "A real-time operating system designed for predictability and run-
time safety," in Proceedings of The Fourth International Conference on Motion

and Vibration Control (MOVIC), 1998, pp. 379-384.

[8] H. Kopetz, Real-time systems: design principles for distributed embedded

applications vol. 25: Springer, 2011.

[9] M. Masmano, I. Ripoll, A. Crespo, and J. Real, "TLSF: A new dynamic

memory allocator for real-time systems," in Real-Time Systems, 2004. ECRTS

2004. Proceedings. 16th Euromicro Conference on, 2004, pp. 79-88.
[10] H. Li and C. Yin, "Analysis and Improvement of RTEMS Memory

Management," in Education Technology and Computer Science, 2009.

ETCS'09. First International Workshop on, 2009, pp. 107-111.

[11] R. Yerraballi, "Real-time operating systems: An ongoing review," in

Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS'2000), WIP

Section, Orlando Fl, 2000.

[12] David Kleidermacher and M. Griglock, "Real-time Operating System

Requirements for Use in Safety Critical Systems," Green Hills Software,
Inc2001.

[13] K. S. Gray, "Memory redundancy techniques," ed: Google Patents, 2002.

[14] E. J. Williams, "Memory management in fault tolerant computer systems," ed:

EP Patent 0,817,053, 2003.

[15] F. Qin, S. Lu, and Y. Zhou, "Safemem: Exploiting ECC-memory for detecting

memory leaks and memory corruption during production runs," in High-

Performance Computer Architecture, 2005. HPCA-11. 11th International

Symposium on, 2005, pp. 291-302.
[16] C. Borchert, H. Schirmeier, and O. Spinczyk, "Generative software-based

memory error detection and correction for operating system data structures," in

Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP

International Conference on, 2013, pp. 1-12.

[17] S. K. Reinhardt and S. S. Mukherjee, "Transient fault detection via

simultaneous multithreading," in ACM SIGARCH Computer Architecture News,

2000, pp. 25-36.
[18] M. M. Swift, B. N. Bershad, and H. M. Levy, "Improving the reliability of

commodity operating systems," ACM Transactions on Computer Systems

(TOCS), vol. 23, pp. 77-110, 2005.

[19] A. K. Sood, "Digging Inside the VxWorks OS and Firmware (The Holistic

Security)," SecNiche Security Labs.

[20] I. Koren and C. M. Krishna, Fault-tolerant systems: Morgan Kaufmann, 2010.

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,

"Construction of a highly dependable operating system," in Dependable

Computing Conference, 2006. EDCC'06. Sixth European, 2006, pp. 3-12.

[22] A. Mancina, D. Faggioli, G. Lipari, J. N. Herder, B. Gras, and A. S.
Tanenbaum, "Enhancing a dependable multiserver operating system with

temporal protection via resource reservations," Real-Time Systems, vol. 43, pp.

177-210, 2009.

[23] A. Specification, "653," Avionics Application Software Interface, Annapolis,

MD, 1997.

[24] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Windsor, "ARINC 653

interface in RTEMS," in Proc. DASIA, 2007.

[25] C. L. Liu and J. W. Layland, "Scheduling algorithms for multiprogramming in
a hard-real-time environment," Journal of the ACM (JACM), vol. 20, pp. 46-61,

1973.

[26] M. L. Dertouzos and A. K. Mok, "Multiprocessor online scheduling of hard-

real-time tasks," Software Engineering, IEEE Transactions on, vol. 15, pp.

1497-1506, 1989.

[27] Y. Zhang and K. Chakrabarty, "A unified approach for fault tolerance and

dynamic power management in fixed-priority real-time embedded systems,"

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, pp. 111-125, 2006.

[28] I. J. Bate, "Scheduling and timing analysis for safety critical real-time

systems," Ph.D., University of York Department Of Computer Science-

Publications-Ycst, 1999.

[29] G. Bournoutian and A. Orailoglu, "Dynamic transient fault detection and

recovery for embedded processor datapaths," in Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, 2012, pp. 43-52.

[30] X. Ping and Z. Xingshe, "Security-Driven Fault Tolerant Scheduling

Algorithm for High Dependable Distributed Real-Time System," in Parallel

Architectures, Algorithms and Programming (PAAP), 2011 Fourth

International Symposium on, 2011, pp. 29-33.

[31] G.-M. Chiu and J.-F. Chiu, "A new diskless checkpointing approach for

multiple processor failures," Dependable and Secure Computing, IEEE

Transactions on, vol. 8, pp. 481-493, 2011.
[32] B. Zhang, X. Xu, and B. Li, "Research on the design of software fault

tolerance based on RTEMS," in Computer, Mechatronics, Control and

Electronic Engineering (CMCE), 2010 International Conference on, 2010, pp.

402-405.

[33] T. Wei, P. Mishra, K. Wu, and J. Zhou, "Quasi-static fault-tolerant scheduling

schemes for energy-efficient hard real-time systems," Journal of Systems and

Software, vol. 85, pp. 1386-1399, 2012.
[34] A. S. Tanenbaum, Modern operating systems vol. 2, 1992.

[35] K. P. Birman and T. A. Joseph, "Reliable communication in the presence of

failures," ACM Transactions on Computer Systems (TOCS), vol. 5, pp. 47-76,

1987.

[36] Y. Amir, D. Dolev, S. Kramer, and D. Malki, "Transis: A communication

subsystem for high availability," in Fault-Tolerant Computing, 1992. FTCS-22.

Digest of Papers., Twenty-Second International Symposium on, 1992, pp. 76-

84.
[37] A. Lapidoth and P. Narayan, "Reliable communication under channel

uncertainty," Information Theory, IEEE Transactions on, vol. 44, pp. 2148-

2177, 1998.

[38] R. Thurlow, "RPC: Remote procedure call protocol specification version 2,"

2009.

[39] Y. Tanimura, T. Ikegami, H. Nakada, Y. Tanaka, and S. Sekiguchi,

"Implementation of fault-tolerant GridRPC applications," Journal of Grid

Computing, vol. 4, pp. 145-157, 2006.
[40] S. L. Blinick, J. C. Elliott, and E. Q. Garcia, "Redundant and fault tolerant

control of an I/O enclosure by multiple hosts," ed: Google Patents, 2011.

[41] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,

"RAID: High-performance, reliable secondary storage," ACM Computing

Surveys (CSUR), vol. 26, pp. 145-185, 1994.

[42] J. Radatz, A. Geraci, and F. Katki, "IEEE standard glossary of software

engineering terminology," IEEE Std, vol. 610121990, p. 121990, 1990.
[43] A. Avizienis, J.-C. Laprie, and B. Randell, Fundamental concepts of

dependability: University of Newcastle upon Tyne, Computing Science, 2001.

[44] P. Koopman and J. DeVale, "Comparing the robustness of POSIX operating

systems," in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth

Annual International Symposium on, 1999, pp. 30-37.

[45] A. Shahrokni and R. Feldt, "A systematic review of software robustness,"

Information and Software Technology, 2012.

[46] A. Colin and I. Puaut, "Worst-case execution time analysis of the RTEMS
real-time operating system," in Real-Time Systems, 13th Euromicro Conference

on, 2001., 2001, pp. 191-198.

[47] I. I. P. Ltd., "An Introduction to Safety Critical Systems," 1997.

[48] C. M. Kirsch, "Principles of real-time programming," in Embedded Software,

2002, pp. 61-75.

[49] T. S. Taft and R. A. Duff, Ada 95 Reference Manual. Language and Standard

Libraries: International Standard ISO/IEC 8652: 1995 (E) vol. 1246: Springer,

1997.
[50] E. Kligerman and A. D. Stoyenko, "Real-time Euclid: A language for reliable

real-time systems," Software Engineering, IEEE Transactions on, pp. 941-949,

1986.

[51] V. Barr and S. Montenegro, "BOSS/Ada: An Open Source Ada 95 Safety Kit

A Dependable open source embedded operating system for GNAT," Ada

Deutschland Tagung, pp. 53-66, 2002.

3rd International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi University of Mashhad

978-1-4799-2093-8/13/$31.00 ©2013 IEEE

