
978-1-4673-1975-1/12/$31.00 ©2012 IEEE ICIAfS’12

Abstract— It is argued that ontologically clear entity
relationship models can model the real world domains more
accurately than ontologically unclear models. However,
transformation of such models into the relational model at the
logical level has not yet been studied sufficiently with a view to
formulate new transformation rules. This paper presents a set
of new transformation rules to convert ontologically clear
conceptual models to relational models. Finally we did a
comparison of two relational models that were developed from
the ontologically clear and unclear models using a quality
criterion synthesized from the extant literature. The
preliminary results of this ongoing research study shows that
the quality of relational model developed from ontologically
clear conceptual model is superior to its ontologically unclear
counterpart.

I. INTRODUCTION
Conceptual modeling is an activity undertaken during the

early stages of information systems development work[3],
where a graphical diagram representing the real word
phenomena of an application domain is produced.
Researchers have enhanced the expressive power of a well-
known conceptual modeling methodology, the entity
relationship (ER) model [4], using an ontology [7] that can
describe the structure and the behavior of the real world.
These models are called ontologically clear entity
relationship diagrams (OC-ERD) [8] .

In order to take the advantage of OC-ERDs, such models
should be properly transformed into a relational database
schema (RDS) [9, 10] without losing the semantics of the
OC-ERD. The current set of rules developed to transform
generic ERDs is not fully applicable for OC-ERDs. As such,
this paper presents some preliminary results of an ongoing
research study undertaken to develop new transformation
rules and a method of evaluating the quality of the relational
model derived from such rules.

The rest of the paper is organized as follows.
Accordingly, the section II demonstrates an ontologically

unclear ERD (OUC-ERD) of a particular real world scenario
and its transformation together with issues of
transformation. Section III presents the ontologically clear
version of the OUC-ERD, the OC-ERD, and issues of
transforming it using the existing algorithm. The section
also presents a new algorithm proposed and the
transformation using it. Then in section IV, we propose a
quality criteria for assessing the quality of the two types of
RDSs resulted from both approaches and present the quality
comparison. Finally we discuss the preliminary results and
the future work of this ongoing research study in the section
V.

II. LOGICAL DATABASE DESIGN ISSUES WITH OUC-
ERDS

We now present an OUC-ERD and issues of transforming
it to the relational model using the existing ER to relational
transformation algorithm.

Fig 1 is an OUC-ERD representing a company in the real
world. The diagram contains a binary 1:1(one-to-one) and
optional relationship type “Manages” between two entity
types “Employee” and “Department”. The cardinality ratio
(0, 1) between the Employee entity type and the relationship
type has two meanings i.e. an employee may not manage a
department or an employee who manages a department can
manage only one department. The “StartDate” attribute
represents the date an employee starts managing a particular
department.

Optional relationships like the one above are believed to
be difficult to understand by typical domain users.
Ontology proscribes the use of optional relationship types
and advises using mandatory relationship types with
subtyping [8]. Accordingly, the diagram depicted in Fig 1 is
an ontologically unclear ER diagram (OUC-ERD).

Logical Database Design with Ontologically
Clear Entity Relationship Models

Dhammika Pieris* and Jayantha Rajapakse+
Email: *dhamika.pieris@monash.edu,
 +jayantha.rajapakse@monash.edu

 School of Information Technology, Level 4, Building 2
 Monash University, Sunway Campus

Jalan Lagoon Selatan, 46150 Bandar Sunway
SELANGOR DARUL EHSAN, MALAYSIA

The existing transformation algorithm proposed by
Elmasri and Navathe [9] is given below.
For each regular entity type E in the ER schema, create a
relation L that includes all the attributes of E. Choose one of
the key attributes of E as the primary key of L.

For each binary 1:1 relationship type in the ER schema,
identify the relations S and T that correspond to the entity
types that participating in R. Choose one of the relations –
S, say- and include as a foreign key in S the primary key of
T. Include all the simple attributes of R as attributes of S.

Fig 2 depicts the RDS obtained by transforming the
OUC-ERD using the above algorithm.

Since the RDS in Fig 2 has been obtained by exactly
following the transformation rules, we call it intra-algorithm
transformation.

However, there are some ambiguities prevailed in the
RDS. The reasons for having the primary key (PK), EmpNo
of Employee as a foreign key (FK) in the Department
relation are, firstly to represent the “Manages” relationship
of the OUC-ERD, and secondly to refer to the Employee
who is supposed to manage the Department. However, in
general, it might be difficult for a person other than the
designer of the RDS to understand these reasons.

Similarly, the meaning of the inclusion of the “StartDate”
attribute in the Department relation could not be understood.
The word “Manages” in the ERD has been omitted during
the transformation and hence it is not being included in the
RDS. One might have to refer back to the ERD and
sometimes even to the domain scenario to find the reason.
The solution used in the current practice to solve these
ambiguities is to rename the attributes using suitable
prefixes. Accordingly, EmpNo and StartDate in Department
are changed to Mgr_EmpNo and Mgr_StartDate

respectively. The prefix “Mgr” represents the word
“Manager”. The modified RDS is given in Fig 3.

However, we are of the view that these adjustment are
made outside the rules. Any of the transformation rules does
not address re-naming attributes, the method of re-naming
and how to decide the prefixes for re-naming. Since these
adjustments are made outside the legitimate transformation
algorithm, we call it extra-algorithm adjustments. This extra
algorithm process uses the designer’s domain expertise,
intuition, judgement and the personal opinion.

The extra algorithm adjustment creates several issues as
follows.

i Re-naming attributes outside the algorithm,
ii. How a particular word can be decided to use to make

a prefix for re-naming, for example “Manager” in
this case,

iii. How the prefix, for example “Mgr” is made.
Even after the extra-algorithm adjustments, some semantics
are still seemed to be ambiguous. For example, the OUC-
ERD indicates that an employee can manage only zero or
one department, and it has to be reflected in the RDS in Fig
3. However, it is not clear whether a manager employee,
denoted by the re-named attribute “Mgr_EmpNo” can
manage only one Department or more Departments, because
the same Mgr_EmpNo can be repeated in different tuples.
This shows that some semantic information has been lost
during the transformation and has not been re-established
even with the extra-algorithm adjustment process.
Assume a designer not familiar with the domain is given
such an OUC-ERD to design a RDS. Presumably, the
designer might perform the intra-algorithm transformation
and come up with a RDS depicted in Fig 2. However,
he/she might sometimes mess up with the entire design
when it comes to perform the extra- algorithm adjustments
due to lack of domain knowledge.

III. THE OC-ERD AND ITS TRANSFORMATION

In the OC-ERD depicted in Fig 4, the optional relationship
has been resolved to a mandatory relationship between the
Department and a newly created subtype “Manager” of the
Employee; the Employee has become a supertype.

Fig 3. Extra algorithm adjustments made to the transformed RDS in Fig 1.
The attributes “EmpNo” and “StartDate” have been re-named to
Mgr_EmpNo” and “Mgr_ StartDate”. The abbreviated prefix “Mgr”
represents the word “Manager”

Fig 2. The RDS obtained by transforming the OUC-ERD in Fig 1. using
the existing ERD to relational model transformation algorithm

Fig 1.Ontologically unclear ERD (OUC-ERD)

Cardinality ratios have now become very clear, and which
indicates each “Manager” definitely “Manages” a
“Department” and “Manages” one and only one
“Department” at any given time.

The transformation of the OC-ERD using existing rules
provides three separate optional RDSs as given in Fig 5.
Various types of ambiguities are present in each of the RDS,
for example, in Fig 5(a), information redundancies, inability
to identify the subtype/supertype relationship and the exact
entity that participate in the FK relationship, and inability to
identify the purpose of the FK relationship, etc. Fig 5 (b)
and (c) also contains some ambiguities.

The above simple example shows that the existing
transformation rules do not work properly for both OUC-
ERDs and OC-ERDs. Thus, it is not possible to obtain an
unambiguous, straightforward and trust worthy RDS which
preserves all the information represented in either of the
ERDs. Hence, it is essential to develop new or modified set
of rules to accommodate OC-ERDs as well as OUC-ERDs.

It is observed that OC-ERDs provide relatively greater
support to remedy the ambiguities in the transformation
process. For example, the issue of resolving the prefix
“Mgr” to re-name attributes. In the case of the OUC-ERD,

it is completely based on the designer’s expertise and
opinion. However, in the case of OC-ERD, the ERD itself
indicates the word “Manager” as a subtype participating in
the concerned relationship “Manages”, so that the word can
be abbreviated to form the prefix or the complete word can
be used as the prefix if desired. This situation motivated us
to introduce a logical procedure to the re-naming process
which links the OUC-ERD to the final RDS.

The proposed new algorithm that covers OC-ERDs
consists of following aspects.

1. A naming convention for the attributes, relationships
and entity types in the OC-ERD.

2. A new set of transformation rules to transform OC-
ERDs to the relational model.

3. Rules for re-naming names of attributes in the
relational database schema.

The proposed algorithm that has seven steps which are
either new or adapted from [9] is presented below.

Step 1: Mapping regular entity types
1. For each regular entity type E in the ERD, create a

relation L that includes all the attributes of E.
2. Choose one of the key attributes of E as the primary key

of L, i.e. PK(L).
3. Place the PK as the first attribute of the new relation L

proceeded by the remaining attributes of the entity E.

Step 2: Mapping of super type/sub type segments
Convert each super type/sub type segment with m number of
subtypes { S1, S2, …, Sm} and a super type C into relation
schemas using one of the following options:

Option 1:
1. Create a relation L for C with attributes Attrs(L) = {k, a1,

a2, .., an} and the primary key, PK(L) = k.
2. Create a separate relation Li for each sub class Si, 1 � i �

m, with the attributes Attrs(Li) = {k}� {attributes of Si
} and PK(Li) = k.

Option 2:
1. Create a single relation L with attributes Attrs(L) = {k, a1,

a2, …, an} � {t1}{attributes of S1} �... � {tm}{attributes
of Sm} and PK(L) = k. Each ti, 1 � i � m, is a Boolean
type attribute indicating whether a tuple belongs to
subclass Si.

Fig 5 Transformation of the OC-ERD in Fig 4 using existing rules, (a) –
optional RDS – 1, (b) –optional RDS –2, mgr is a Boolean type attribute
that indicates the subtype to which the tuple belongs, (c) –optional RDS - 3

Fig 4. Ontologically clear ERD (OC-ERD)

2. In L, the attributes of a particular subtype Si should be
included following its corresponding Boolean type
attribute ti.

Step 3: Naming of the transformed relations
Case 1: Super type name C is already included in the
subtype name S as its last word as follows

 S = XC where X is a new word used to form a part of
the subtype name.

 In this case the underscore must be placed in between X
and C to form X_C, so that Ls = X_C.

Case 2: When the super type name is not included in the
subtype name, the full subtype name should be joined to the
supertype name by an underscore to form S_C, where S is
the subtype name and C is the super type name.

Step 4: Naming a Boolean type attribute used to
transform a subtype
The name of the Boolean type attribute, say t, should be
made by joining the name of the subtype, say S, by a dash
together with the text string “Flg” that represents the word
Flag”, so that t = S-Flg.

Step 5: Mapping a binary 1:1 relationship type R in
between a regular entity type and a subtype of a
supertype
Assume that a sub type S of a super type C has a binary 1: 1
relationship type with a regular entity type E.

Case 1: The subtype is transformed to a separate relation.
In order to transform the relationship type R identify the
separate relations Ls and Le that correspond to the entity
type S (the sub type) and E (regular) that participate in R.

Option 1
1. Include as a foreign key in Le the primary key of Ls,

PK(Ls) and re-name it as S_PK(Ls).
2. Add a suffix (U) to be appeared as S_PK(L)(U). The

letter “U” indicates that the foreign key is unique.
3. Include any simple attribute, say A, of the relationship

type R in Le following the foreign key included and re-
name it as S_A.

4. If the subtype S in the ER schema does not include its
own attributes the separate relation, Ls that represents
the subtype S should be ignored for this option.

Option 2

1. Include as a foreign key in Ls the primary key of Le,
PK(Le) together with a suffix U to be appeared as PK(Le)
U. The letter “U” indicates that the foreign key is
unique.

2. Include all the attributes of the relationship type R in L
following the foreign key.

Case 2: The subtype is transformed using a Boolean type
attribute to a single relation together with its super type.

For each relationship type R identify the single relation L
that correspond to the S/C subtype/supertype segment and
the relation Le of the regular entity type E where S and E
participate in R.
1. Include as foreign key in Le the primary key of L, PK(L)

and rename it as S_PK(L).
2. Add a suffix (U) to be appeared as S_PK(L)(U). The

letter “U” indicates that the foreign key is unique.
3. Include all the simple attributes of R as attributes of Le

following the foreign key included.
4. Include any simple attribute, say A, of the relationship

type R in Le following the foreign key included and re-
name it as S_A.

5. If the subtype S in the ER schema does not include its
own attributes the Boolean type attribute included in the
relation L should be removed for this option

Step 6: Mapping a binary 1:1 relationship type R
between two different subtypes of different supertypes

Assume that A and B to be two different subtypes of two
different super types of a ER schema and assume that R is
a binary 1:1 relationship type that exists in between A and
B.

1. Transform one of the subtypes, say A, to a separate
relation LA.

2. Assuming that LB to be the separate relation
corresponding to the subtype B, include in LA as a foreign
key the primary key of LB, PK(LB), and rename it as
B_PK(LB). This foreign key should be included
following the last existing attribute of LA.

3. Include all the simple attributes of R in LA following the
foreign key.

4. If the subtype B contains its own attributes, it should be
transformed together with its supertype using either of
the following options appropriate.

a) Two separate relations for each of the subtype B and
its supertype (Step 2 Option 1 above).

b) A single relation for both the subtype B and its
supertype (Step 2 Option 2 above).

5. Else if the subtype B does not contain its own attributes
its super type should only be transformed.

Step 7: Mapping a binary 1:N relationship type between
two different subtypes of different supertypes
Assume that A and B are two different subtypes of two
different supertypes of the ER schema where R is a binary
1:N relationship type existed in between the two subtypes
and assume that A is at the 1 side and B is at the N side of
the relationship, so that an instance of A associate with
many instances of B.
1. Transform the subtype B which is at the N side to a

separate relation LB.

2. Assuming that LA to be the relation corresponding to the

subtype A, Include as a foreign key the primary key of

LA and rename it as A_PK(LA). This foreign key should

be included following the last existing attribute in LB.

3. Include in LB all the simple attributes of the relationship

type R following the included foreign key.

4. If the subtype A contains its own attributes, A and its

supertype should be transformed using either of the

following optional methods

a) Two separate relations for each of the subtype A and

its supertype (Step 2 Option 1 above).

b) A single relation for both the subtype A and its

supertype (Step 2 Option 2 above).

5. Else if the subtype A does not contain its own attributes

its super type should only be transformed to a separate

relation.

Fig 6 (a) and (b) depict the results of the transformation of
the OC-ERD given in Fig 4 using the new algorithm
presented above. Accordingly, the optional RDS (b) is a
result of the Case 1 option 1.1; optional RDS (a) is a result

of the Case 1 option 1.2. The result of Case 2 is same as the
RDS (b). Thus only two optional RDSs have been produced
though there are three separate optional methods to
transform the OC-ERD.

Even in this transformation some attributes needed to be

re-named, for example, EmpNo is re-named to
Manager_EmpNo. The difference between this re-naming
process and the re-naming process with regard to the OUC-
ERD is that in this case it is handled by the transformation
process itself without leaving for the designer intuition.
There are no extra-algorithm adjustments similar to the one
observed with the OUC-ERD transformation. This
systematic relationship has been prior established as a
general rule and given in the new algorithm in the Step 5,
Case 1, option 1.1 sub step ii and iii. The re-named FK
attribute has been given a suffix U indicating that the
foreign key is unique preventing any unexpected repetition
of the FK values in different tuples as was happened in Fig
3. Accordingly, all the ambiguities experienced in the
transformation of the OUC-ERD have been resolved by a
specific rule.

IV. QUALITY OF THE DATABASE SCHEMA DESIGNED
USING NEW ALGORITHM

Assessing the quality of RDSs resulting from OC-ERDs

via the new transformation algorithm is important. More

importantly, the relative quality of RDSs produced through

ontologically unclear model and the ontologically clear

models need to be assessed. The success of the new

algorithm can then only be claimed.

Fig 6. Transformation of the OC-ERD in Fig 4 using new algorithm, (a)
Optional OC-RDS - 1 (b) Optional OC-RDS - 2

Several previous studies [1, 2, 5] have proposed quality

dimensions and quality measuring schemes for data and

database schemas.

Table 1 shows a set of quality dimensions synthesised

form the extant literature. We believe that a preliminary

quality assessment can be done using these dimensions.

As a preliminary quality test we compared the RDS in Fig 3
together with the two optional RDSs in Fig 6 using the
seventh quality dimension namely, normalization in the
above Table I. We observed that all the relations in RDSs of
Fig 6 were in the third normal form. In the meantime, all the
relations in Figures 3 are in the first and the second normal
forms. Thus, it can be concluded that the relational database
schemas produced from the ontologically clear ERDs
following the new algorithm shows higher quality in terms
of the normalization level compared to its ontologically
unclear counterparts.

V. DISCUSSION AND FUTURE WORK
Using a simple real life example we have shown that

ontologically clear ER diagrams can produce high quality
relational models compared to its counterpart i.e.
ontologically unclear. This has been achieved by way of
modifying the existing transformation rules. However, to
obtain the optimal results this transformation algorithm has
to be improved further. As a preliminary study only a part of
a quality criterion was used for assessing the quality of the
relational models produced.

Future work of this ongoing research study includes the
following.

• To develop new rules to cover all the ontological
constructs
• To modify the existing rules to overcome current
deficiencies with regard to the ontologically unclear
diagrams
• To extend the quality assessment to cover the rest of
the quality criterion
• To improve the quality criterion in the meantime

It is expected that this study will have an impact on the
popularity and the use of the ontologically clear conceptual
ER models in the industry.

REFERENCES
[1] C. Batini, S. Ceri, and S. B. Navathe, Conceptual database

design: an Entity-relationship approach: Benjamin-Cummings
Publishing Co., Inc. Redwood City, CA, USA ©1992, 1992.

[2] R. Y. Wang, M. P. Reddy, and H. B. Kon, "Toward quality data:
An attribute-based approach," Decision Support Systems, vol.
13, pp. 349-372, 1995.

[3] R. Weber, "Research review paper conceptual modeling and
ontology: posibilities and pitfalls," Journal of Database
Management, vol. 14, pp. 1-20, 2003.

[4] P. P.-S. Chen, "The entity-relationship model: toward a unified
view of data," ACM Trans. Database Syst., vol. 1, pp. 9-36,
1976.

[5] C. Fahrner and G. Vossen, "A survey of database design
transformations based on the Entity-Relationship model," Data
& Knowledge Engineering, vol. 15, pp. 213-250, 1995.

[6] Y. Wand and R. Weber, "On the ontological expressiveness of
information systems analysis and design grammars,"
Information Systems Journal, vol. 3, pp. 217-237, 1993.

[7] M. Bunge, Treatise on basic phylosophy: Vol3: ontology I: The
furniture of the world.: D. Reidel Publishing Co., Inc., New
York, NY., 1977.

[8] Y. Wand, V. C. Storey, and R. Weber, "An ontological analysis
of the relationship constuct in conceptual modeling," ACM
Transactions on Database Systems, vol. 24, pp. 494-528,
December 1999.

[9] R. Elmasri and S. B. Navathe, "Fundamentals of Database
Systems," in Fundamentals of Database Systems, 5th Edition ed
New York: Addison Wesley, 2007, pp. 223-239

[10] E. F. Codd, "A relational model of data for large shared data
banks," Commun. ACM, vol. 13, pp. 377-387, 1970.

TABLE I
QUALITY DIMENSIONS THAT A RDS SHOULD SATISFY

No
Quality

Dimension
(QD)

Description

1 Accuracy A RDS should accurately represent information
modeled in the ERD.

2 Complete The RDS should preserve all the information
represented in its predecessor ERD without
losing anything(adapted from[1, 2])

3 Straightforward The entire RDS including any tiny part of it
must be a one logically and directly derived
from its predecessor ERD according to a
specific procedure

4 Trustworthy The RDS should reflect only the information
represented in its predecessor ERD and nothing
outside it (adapted from [2])

5 Clear The meaning intended by each item in the
schema must be clear

6 Minimality The RDS must be free from all the
redundancies. Each aspect of the ERD must
appear only ones in the RDS (adapted from [1,
5, 6])

7 Normalization The RDS must satisfy the well-known normal
forms as much as possible (adapted from[2])

8 Expressiveness The RDS should be easily understood through
its constructs(adapted from [1])

9 Reversible The respective ERD could be able to re-
produced only from the information presented in
the RDS following a specific logic.

